首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of diaphragm paralysis on respiratory activity were assessed in 13 anesthetized, spontaneously breathing dogs studied in the supine position. Transient diaphragmatic paralysis was induced by bilateral phrenic nerve cooling. Respiratory activity was assessed from measurements of ventilation and from the moving time averages of electrical activity recorded from the intercostal muscles and the central end of the fifth cervical root of the phrenic nerve. The degree of diaphragm paralysis was evaluated from changes in transdiaphragmatic pressure and reflected in rib cage and abdominal displacements. Animals were studied both before and after vagotomy breathing O2, 3.5% CO2 in O2, or 7% CO2 in O2. In dogs with intact vagi, both peak and rate of rise of phrenic and inspiratory intercostal electrical activity increased progressively as transdiaphragmatic pressure fell. Tidal volume decreased and breathing frequency increased as a result of a shortening in expiratory time. Inspiratory time and ventilation were unchanged by diaphragm paralysis. These findings were the same whether O2 or CO2 in O2 was breathed. After vagotomy, no significant change in phrenic or inspiratory intercostal activity occurred with diaphragm paralysis in spite of increased arterial CO2 partial pressure. Ventilation and tidal volume decreased significantly, and respiratory timing was unchanged. These results suggest that mechanisms mediated by the vagus nerves account for the compensatory increase in respiratory electrical activity during transient diaphragm paralysis. That inspiratory time is unchanged by diaphragm paralysis whereas the rate or rise of phrenic nerve activity increases suggest that reflexes other than the Hering-Breuer reflex contribute to the increased respiratory response.  相似文献   

2.
This study was undertaken to measure the neonate's response to CO-induced hypoxia in the first 10 days of life. CO breathing was used to induce hypoxia because CO causes tissue hypoxia with no or minimal chemoreceptor stimulation. An inspired gas mixture of 0.25 to 0.5% CO in air was used to raise the blood carboxyhemoglobin (HbCO) progressively from 0 to 60% over approximately 20 min. The study, conducted in awake conscious lambs aged 2 and 10 days, consisted in measuring the response of ventilation and the change in arterial blood gases during the rise of HbCO. The results showed that the 2- and 10-day-old lambs tolerated very high HbCO levels without an increase in minute ventilation (VE) and without metabolic acidosis. At both ages, HbCO caused no VE change until HbCO levels rose to between 45 and 50% after which the VE change was exponential in some animals but minimal in others. The VE change was brought about by a rise in tidal volume and respiratory frequency. During the period of maturation from 2 to 10 days, there was a small shift to the right in the VE-HbCO response. In the 10-day-old lambs the VE response to high HbCO was greater than that of the 2-day-olds because of the lambs' higher respiratory frequency response. Six of the 10-day-old lambs but only two of the 2-day-old lambs showed a hypoxic tachypnea to HbCO of 55-65%. None of the lambs developed periodic breathing, dysrhythmic breathing, or recurrent apneas with an HbCO level as high as 60%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To investigate the influence of inspiratory lung inflation on the respiratory activities of laryngeal motor nerves, vagally intact decerebrate paralyzed cats were ventilated by a servorespirator in accordance with their own phrenic nerve activity. Records were made of the activities of the phrenic nerve, the superior laryngeal nerve (SLN), the recurrent laryngeal nerve (RLN), and the intralaryngeal branches of the RLN serving the thyroarytenoid (TA) and posterior cricoarytenoid (PCA) muscles. Neural activities were assessed in the steady state at different end-tidal O2 and CO2 concentrations. Transient responses to withholding inspiratory lung inflation and to preventing expiratory lung emptying were also studied. Hypercapnia and hypoxia increased the inspiratory activities of the phrenic nerve, SLN, RLN, and its PCA branch. TA inspiratory activity was not changed. Expiratory activities of RLN, PCA, and TA were all increased in hypoxia. When lung inflation was withheld, neural inspiratory duration and the inspiratory activities of all nerves increased. The subsequent period of neural expiration was marked by an exaggerated burst of activity by the TA branch of the RLN. TA expiratory activity was also sharply increased after inspiratory efforts that were reflexly delayed by the prevention of lung emptying. TA activity in expiration was enhanced after vagotomy and was usually more prominent than when lung inflation was withheld before vagal section. The results demonstrate the importance and complexity of the influence of vagal afferents on laryngeal motor activity.  相似文献   

4.
The ability to maintain alveolar ventilation is compromised by respiratory muscle weakness. To examine the independent role of reflexly mediated neural mechanisms to decreases in the strength of contraction of respiratory muscles, we studied the effects of partial paralysis on the level and pattern of phrenic motor activity in 22 anesthetized spontaneously breathing dogs. Graded weakness induced with succinylcholine decreased tidal volume and prolonged both inspiratory and expiratory time causing hypoventilation and hypercapnia. Phrenic peak activity as well as the rate of rise of the integrated phrenic neurogram increased. However, when studied under isocapnic conditions, increases in the severity of paralysis, as assessed from the ratio of peak diaphragm electromyogram to peak phrenic activity, produced progressive increases in inspiratory time and phrenic peak activity but did not affect its rate of rise. After vagotomy, partial paralysis induced in 11 dogs with succinylcholine also prolonged the inspiratory burst of phrenic activity, indicating that vagal reflexes were not solely responsible for the alterations in respiratory timing. Muscle paresis was also induced with gallamine or dantrolene, causing similar responses of phrenic activity and respiratory timing. Thus, at constant levels of arterial CO2 in anesthetized dogs, respiratory muscle partial paralysis results in a decrease in breathing rate without changing the rate of rise of respiratory motor activity. This is not dependent solely on vagally mediated reflexes and occurs regardless of the pharmacological agent used. These observations in the anesthetized state are qualitatively different from the response to respiratory muscle paralysis or weakness observed in awake subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Alveolar exchange of a gas is governed by the ventilation-perfusion ratio (VA/Q) and the Ostwald partition coefficient for that species. We altered the Ostwald coefficients for O2 and CO2 by considering an animal breathing water or a fluorocarbon (FC-80) and studied the effects on gas exchange. Among our conclusions are the following. 1) When the ratio of the CO2 to O2 solubility in the inspirate exceeds the ratio of the O2 to the CO2 slope of the blood dissociation curve, as in water breathing, the VA/Q line becomes concave upward, and elements having a low VA/Q differ from each other more in terms of CO2 than of O2. 2) As the ratio of the CO2 to O2 solubility in the inspired medium increases, CO2 elimination becomes more dependent on perfusion. 3) At times, the same R will prevail in areas having different VA/Q values. 4) The alveolar-to-arterial O2 and CO2 differences resulting from a given VA/Q distribution do not depend on the O2 and CO2 solubility coefficients of the inspired medium, but on the inspired and mixed venous concentrations necessary to maintain adequate arterial gas levels in the presence of different inspired media.  相似文献   

6.
The possible role of intrapulmonary CO2 receptors (IPC) in arterial CO2 partial pressure (PaCO2) homeostasis was investigated by comparing the arterial blood gas and ventilatory responses to CO2 loading via the inspired gas and via the venous blood. Adult male Pekin ducks were decerebrated 1 wk prior to an experiment. Venous CO2 loading was accomplished with a venovenous extracorporeal blood circuit that included a silicone-membrane blood oxygenator. The protocol randomized four states: control (no loading), venous CO2 loading, inspired CO2 loading, and venous CO2 unloading. Intravenous and inspired loading both resulted in hypercapnic hyperpnea. Comparison of the ventilatory sensitivity (delta VE/delta PaCO2) showed no significant difference between the two loading regimes. Likewise, venous CO2 unloading led to a significant hypocapnic hypopnea. Sensitivity to changes in PaCO2 could explain the response of ventilation under these conditions. The ventilatory pattern, however, was differentially sensitive to the route of CO2 loading; inspired CO2 resulted in slower deeper breathing than venous loading. It is concluded that IPC play a minor role in adjusting ventilation to match changes in pulmonary CO2 flux but rather are involved in pattern determination.  相似文献   

7.
We determined the effect of acute hypoxia on the ventilatory (VE) and electromyogram (EMG) responses of inspiratory (diaphragm) and expiratory (transversus abdominis) muscles in awake spontaneously breathing ponies. Eleven carotid body-intact (CBI) and six chronic carotid body-denervated (CBD) ponies were studied during normoxia (fractional inspired O2 concn [FIO2] = 0.21) and two levels of hypoxia (FIO2 approximately 0.15 and 0.12; 6-10 min/period). Four CBI and five CBD ponies were also hilar nerve (pulmonary vagal) denervated. Mean VE responses to hypoxia were greater in CBI ponies (delta arterial PCO2 = -4 and -7 Torr in CBI during hypoxic periods; -1 and -2 Torr in CBD). Hypoxia increased the rate of rise and mean activity of integrated diaphragm EMG in CBI (P less than 0.05) and CBD (P greater than 0.05) ponies relative to normoxia. Duration of diaphragm activity was reduced in CBI (P less than 0.05) but unchanged in CBD ponies. During hypoxia in both groups of ponies, total and mean activities per breath of transversus abdominis were reduced (P less than 0.05) without a decrease in rate of rise in activity. Time to peak and total duration of transversus abdominis activity were markedly reduced by hypoxia in CBI and CBD ponies (P less than 0.05). Hilar nerve denervation did not alter the EMG responses to hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The purpose of this study was to assess the influence of pulmonary inflations on activities of single phrenic motoneurons. Studies were performed in decerebrate and paralyzed cats; activities of phrenic nerve and single phrenic motoneurons were recorded. Animals were ventilated with a servo-respirator which produced alterations in tracheal pressure in parallel with changes in integrated activity of the phrenic nerve. At end-tidal fractional concentrations of CO2 of 0.05, phrenic motoneurons were distributed into "early" and "late" populations, depending on time of onset of activity. During the late stages of neural inspiration, differences in levels of integrated activity of the phrenic nerve became evident between cycles with and without lung inflations. At a time approximating 90% of the inspiratory duration during inflations, integrated phrenic activity was higher for cycles with inflation. Concomitantly, with lung inflations, the discharge frequencies of early phrenic motoneurons were lower, and late motoneurons began to discharge sooner than when inflations were withheld. Similar results were obtained in hypercapnia. We conclude that reflexes activated by pulmonary inflations may produce augmentation, as well as inhibition of phrenic motoneuronal activities. Factors responsible for eliciting these reflex augmentations and inhibitions are discussed.  相似文献   

9.
The ventilatory response to a reduction in mixed venous PCO2 has been reported to be a decrease in breathing even to the point of apnea with no change in arterial CO2 partial pressure (PaCO2), whereas a recent report in exercising dogs found a small but significant drop in PaCO2 (F. M. Bennett et al. J. Appl. Physiol. 56: 1335-1337, 1984). The purpose of the present study was to attempt to reconcile this discrepancy by carefully investigating the cardiopulmonary response to venous CO2 removal over the entire range from eupnea to the apneic threshold in awake, spontaneously breathing normoxic dogs. Six dogs with chronic tracheostomies were prepared with bilateral femoral arteriovenous shunts under general anesthesia. Following recovery, an extracorporeal venovenous bypass circuit, consisting of a roller pump and a silicone-membrane gas exchanger, was attached to the femoral venous cannulas. Cardiopulmonary responses were measured during removal of CO2 from the venous blood and during inhalation of low levels of CO2. Arterial PO2 was kept constant by adjusting inspired O2. The response to venous CO2 unloading was a reduction in PaCO2 and minute ventilation (VE). The slope of the response, delta VE/delta PaCO2, was the same as that observed during CO2 inhalation. This response continued linearly to the point of apnea without significant changes in cardiovascular function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Inspiratory rhythm in airway smooth muscle tone   总被引:2,自引:0,他引:2  
In anesthetized paralyzed open-chested cats ventilated with low tidal volumes at high frequency, we recorded phrenic nerve activity, transpulmonary pressure (TPP), and either the tension in an upper tracheal segment or the impulse activity in a pulmonary branch of the vagus nerve. The TPP and upper tracheal segment tension fluctuated with respiration, with peak pressure and tension paralleling phrenic nerve activity. Increased end-tidal CO2 or stimulation of the carotid chemoreceptors with sodium cyanide increased both TPP and tracheal segment tension during the increased activity of the phrenic nerve. Lowering end-tidal CO2 or hyperinflating the lungs to achieve neural apnea (lack of phrenic activity) caused a decrease in TPP and tracheal segment tension and abolished the inspiratory fluctuations. During neural apnea produced by lowering end-tidal CO2, lung inflation caused no further decrease in tracheal segment tension and TPP. Likewise, stimulation of the cervical sympathetics, which caused a reduction in TPP and tracheal segment tension during normal breathing, caused no further reduction in these parameters when the stimulation occurred during neural apnea. During neural apnea the tracheal segment tension and TPP were the same as those following the transection of the vagi or the administration of atropine (0.5 mg/kg). Numerous fibers in the pulmonary branch of the vagus nerve fired in synchrony with the phrenic nerve. Only these fibers had activity which paralleled changes in TPP and tracheal tension. We propose that the major excitatory input to airway smooth muscle arises from cholinergic nerves that fire during inspiration, which have preganglionic cell bodies in the ventral respiratory group in the region of the nucleus ambiguus and are driven by the same pattern generators that drive the phrenic and inspiratory intercostal motoneurons.  相似文献   

11.
We studied the effects of altered ventilatory drives on the activity of the whole phrenic nerve and single phrenic motoneurons in dogs anesthetized with alpha-chloralose and paralyzed with gallamine triethiodide. Single phrenic motoneurons were classified as either late-onset or early-onset motoneurons (LOM and EOM, respectively), depending on the time of onset of their activity during inspiration. Increase in ventilatory drive was induced by altering chemical drive with changes in arterial blood gases and also by altering the vagal afferent contribution to ventilatory drive. The latter was accomplished by inducing pulmonary gas embolism (PGE) during hyperoxia. Whole phrenic nerve activity was increased by both types of increase in ventilatory drive. In both cases, changes in the firing pattern of LOMs and EOMs were responsible for the increased phrenic output. The changes in post-PGE firing pattern of the LOMs generally consisted of a shift in the time of onset to an earlier point in inspiration and an increase in the number of spikes per inspiratory cycle. Vagotomy abolished the difference between the contributions of LOMs and EOMs to the phrenic response to PGE. Data from dogs studied while they were breathing spontaneously were qualitatively the same as those from the paralyzed animals, indicating no major role for phasic volume feedback in these responses. Our data regarding altered chemical drive are similar to those reported earlier in other species, whereas those regarding PGE demonstrate that vagally mediated increases in ventilatory drive affect both LOMs and EOMs, although LOMs are affected to a greater degree.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The steady-state and transient effects of hyperoxic hypercapnia on the electromyographic activities of the genioglossus (GG), posterior cricoarytenoid (PCA), and diaphragm (D) were studied in conscious unsedated cats with chronically implanted electrodes. Hypercapnia (inhalation of 3.4 and 7.4% CO2 in O2) increased the phasic electrical activity occurring during inspiration in all three muscles and also increased tonic activity of the GG. The GG responded to steady-state CO2 inhalation alinearly and with larger increases in activity than the PCA and D. Phasic GG activity was present in only 4 of 10 cats breathing 100% O2, whereas phasic PCA and D activity could be observed in all animals studied. When gas mixtures containing CO2 were given, the GG reached its new steady-state level more slowly than the D or PCA, and when CO2 was rapidly removed from the inspired gas mixture, the GG attained its steady state sooner than either the PCA or D. These results suggest that in awake unsedated animals, chemical stimuli do not affect either transient or steady-state responses of the GG in the same way as the D. These differences seem to be explained mainly by different threshold characteristics of hypoglossal and phrenic neurons but also in part by dissimilarities in their steady-state responses.  相似文献   

13.
Ethane quantitated in the expired alveolar gas is a noninvasive measure of free radical activity. This method has been criticized for lack of control of minute ventilation (VE) in spontaneously breathing animals, although ethane, which is poorly soluble in tissues, should not be affected by changes in VE. We measured ethane elimination rates in six strain 13 guinea pigs (GP13) during spontaneous room air breathing and in six room air breathing, pentobarbital-anesthetized, tracheostomized, externally warmed, mechanically ventilated GP13s at various levels of VE. In the ventilated animals, weight0.75/VE (metabolic activity corrected for VE) was a linear function of arterial CO2 tension (PaCO2) drawn from arterial line (r = 0.72, P less than 0.005). However, weight0.75/VE did not correlate with ethane elimination rates (r = 0.12, not significant). The mean (+/- SD) ethane elimination rates in the spontaneously breathing animals was 3.15 +/- 0.96 pmol.min-1.100 g-1 and was not significantly different from the mean rate in the mechanically ventilated animals (3.11 +/- 1.37) over a range of VE's. These data demonstrate that ethane elimination rates are not affected by changes in VE and are unaffected by pentobarbital anesthesia.  相似文献   

14.
We tested two hypotheses: 1) that the spontaneous enhancement of phrenic motor output below a C2 spinal hemisection (C2HS) is associated with plasticity in ventrolateral spinal inputs to phrenic motoneurons; and 2) that phrenic motor recovery in anesthetized rats after C2HS correlates with increased capacity to generate inspiratory volume during hypercapnia in unanesthetized rats. At 2 and 4 wk post-C2HS, ipsilateral phrenic nerve activity was recorded in anesthetized, paralyzed, vagotomized, and ventilated rats. Electrical stimulation of the ventrolateral funiculus contralateral to C2HS was used to activate crossed spinal synaptic pathway phrenic motoneurons. Inspiratory phrenic burst amplitudes ipsilateral to C2HS were larger in the 4- vs. 2-wk groups (P<0.05); however, no differences in spinally evoked compound phrenic action potentials could be detected. In unanesthetized rats, inspiratory volume and frequency were quantified using barometric plethysmography at inspired CO2 fractions between 0.0 and 0.07 (inspired O2 fraction 0.21, balance N2) before and 2, 3, and 5 wk post-C2HS. Inspiratory volume was diminished, and frequency enhanced, at 0.0 inspired CO2 fraction (P<0.05) 2-wk post-C2HS; further changes were not observed in the 3- and 5-wk groups. Inspiratory frequency during hypercapnia was unaffected by C2HS. Hypercapnic inspiratory volumes were similarly attenuated at all time points post-C2HS (P<0.05), thereby decreasing hypercapnic minute ventilation (P<0.05). Thus increases in ipsilateral phrenic activity during 4 wk post-C2HS have little impact on the capacity to generate inspiratory volume in unanesthetized rats. Enhanced crossed phrenic activity post-C2HS may reflect plasticity associated with spinal axons not activated by our ventrolateral spinal stimulation.  相似文献   

15.
The relative effects of temperature and CO2 on the blood flow in the common carotid artery (CCBF) were investigated in vagotomized, paralyzed rabbits under urethane-chloralose general anaesthesia with artificial ventilation. During hypothermia a 52% fall of CCBF was observed in rabbits ventilated by the classic method. Administration of a hyperkapnic mixture for breathing caused a further 16% CCBF fall, with a simultaneous rise in PaCO2 by 23%. During ventilation with a respirator triggered by phrenic nerve activity hypothermia caused a 30% CCBF fall without changes in PaCO2 value. Administration of the hyperkapnic mixture for breathing caused, in these circumstances, a 9% CCBF fall with a 7% PaCO2 increase. Hyperthermia caused during ventilation by the classic method a 42% rise in CCBF and a 22% PaCO2 rise. The hyperkapnic mixture given for breathing decreased the CCBF by 9% and increased the PaCO2 by 15%. On the other hand, during ventilation with the respirator triggered by phrenic nerve activity no changes were observed in these parameters. This suggests that the thermic stimulus exerts a direct effect on the regulation of the blood flow to the brain, and during hypothermia it prevails over the stimulus produced by CO2.  相似文献   

16.
The effects of ketamine on the activities of the mylohyoid nerve (a branch of the Vth nerve) and of both phrenic nerves were investigated in rabbits anaesthetized with halothane, paralyzed and artificially ventilated. Intravenous administration of ketamine elicited a marked prolongation of the phrenic inspiratory discharge (without significantly affecting its amplitude) and a depression of the mylohyoid expiratory activity. An elimination of the volume-related input from the lungs ("no-inflation manoeuvre") or deflation elicited under these conditions typical apneustic pattern of breathing. The response to tracheal occlusion at peak-inspiration was "classical". We conclude that ketamine inhibits the Vth nerve motor nucleus which is not only an important component of the central inspiratory-inhibitory neurones but also a "relay station" between the vagal and the central inspiratory "off-switch" mechanisms.  相似文献   

17.
Inspiratory phase activity was recorded from 33 phrenic motoneuron (PM) axonal fibers in anesthetized, vagotomized, artificially ventilated adult rats. During control conditions (no inspired CO2 added), the population of PM fibers could be separated into early and late onset types based on the time of firing onset relative to the onset of whole phrenic nerve activity. Mean discharge frequencies of both types were not significantly different. Compared with late PM's, early PM's had more spikes per inspiration, fired for a longer period, and the last spike occurred later and during the postinspiratory period. Further, the mean minimal interspike interval was shorter for early PM's than for late PM's. Increasing inspired CO2 to 0.03 and 0.05 resulted in earlier firing onsets and a greater number of spikes per inspiration, particularly for late PM's. Increases in mean firing frequency occurred for both PM types. Mean minimal interspike intervals for both types of PM's showed progressive reductions as CO2 rose. For almost all of the firing properties examined in this study, responses of rat PM axons were similar to those previously reported for the cat.  相似文献   

18.
In response to moderate hypoxia many newborn animals are capable of increasing ventilation only transiently. To examine the hypothesis that changes in brain stem extracellular fluid (ECF) pH explain this transient ventilatory response, we measured brain stem ECF pH and respiratory drive during hypoxia in newborn pigs. The animals were anesthetized with alpha-chloralose-urethan, paralyzed, vagotomized, and mechanically ventilated with a servo-controlled ventilator to regulate end-tidal CO2. Hypoxic ventilation for 6 min was achieved by changing inspired gas from 100% to 10-15% O2. Respiration, measured as integrated phrenic nerve activity, showed a range of responses. In 13 trials increased phrenic activity early in the hypoxic period was sustained or further augmented for the duration of the period. In contrast, in eight other trials phrenic activity increased and then declined. Regardless of the respiratory response, ECF pH (measured with a flat-surface electrode) increased slightly (0.009 +/- 0.002 U) during the first 2.5 min of hypoxia and then declined 0.061 +/- 0.017 U by the 6th min. This acidotic shift in ECF pH is inconsistent with the hypothesis that an alkalotic shift causes the nonsustained respiratory response of newborn pigs.  相似文献   

19.
We determined whether the [CO2] in the upper airways (UA) can influence breathing in ponies and whether UA [CO2] contributes to the attenuation of a thermal tachypnea during periods of elevated inspired CO2. Six ponies were studied 1 mo after chronic tracheostomies were created. For one protocol the ponies were breathing room air through a cuffed endotracheal tube. Another smaller tube was placed in the tracheostomy and directed up the airway. By use of this tube, a pump, and prepared gas mixtures, UA [CO2] was altered without affecting alveolar or arterial PCO2. When the ponies were at a neutral environmental temperature (TA) and breathing frequency (f) was 8 breaths X min-1, increasing UA [CO2] up to 18-20% had no effect on f. However, when TA was increased 20 degrees C to increase f to 50 breaths X min-1, then increasing UA [CO2] to 6% or to 18-20% reduced f by 5 +/- 1.7 (SE) and 12 +/- 1.6 breaths X min-1, respectively (t = 3.3, P less than 0.01). These data suggest that in the pony there exists a UA CO2-H+ sensory mechanism. For a second protocol the ponies were breathing a 6% CO2 gas mixture for 15 min in the normal fashion over the entire airway (nares breathing, NBr) or they were breathing this gas mixture for 15 min through the cuffed endotracheal tube (TBr). At a neutral TA, increasing inspired [CO2] to 6% resulted in a 6-breaths X min-1 increase in f during both NBr and TBr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We examined the influence of vagal pulmonary receptors exerted on the breathing pattern and inspiratory activities of phrenic nerve and intercostal electromyograms (EMG) during hypoxia in rabbit pups. Animals in their second week of life were anaesthetized with ketamine (50 mg/kg) and acepromazine (3 mg/kg) and tracheostomized. While they breathed spontaneously, we recorded tidal volume (VT), integrated phrenic activity (PHR), integrated external intercostal EMG (INT), and blood pressure (BP). To prevent secondary ventilatory depression, animals were exposed to 12% O2 (balanced with N2) for no longer than 5 min before and after vagotomy. All measurements were taken from 1 min following the onset of hypoxic exposure until the end of the run. During hypoxia, VT, PHR, and INT increased in intact rabbit pups. There was an almost immediate decrease in BP that was maintained during the total period of hypoxia exposure. Hypoxia resulted in inconsistent changes in inspiratory (TI) and expiratory (TE) time in intact animals. Following vagotomy, PHR, INT, VT, BP, and TE responses were the same as in intact animals. However, TI significantly decreased in all animals. In response to hypoxia with and without vagal feedback, INT increased less than PHR in most cases. Qualitatively similar effects of hypoxia were observed in an adult rabbit. The results reveal that the increase in VT and the shortening of TI in response to hypoxia do not depend on vagal feedback in rabbits during the early postnatal period. In fact TI shortening was significant only without vagal feedback.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号