首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine the functional recovery and adaptation of dystrophic muscle to multiple bouts of contraction-induced injury. Because lengthening (i.e., eccentric) contractions are extremely injurious for dystrophic muscle, it was considered that repeated bouts of such contractions would exacerbate the disease phenotype in mdx mice. Anterior crural muscles (tibialis anterior and extensor digitorum longus) and posterior crural muscles (gastrocnemius, soleus, and plantaris) from mdx mice performed one or five repeated bouts of 100 electrically stimulated eccentric contractions in vivo, and each bout was separated by 10-18 days. Functional recovery from one bout was achieved 7 days after injury, which was in contrast to a group of wild-type mice, which still showed a 25% decrement in electrically stimulated isometric torque at that time point. Across bouts there was no difference in the immediate loss of strength after repeated bouts of eccentric contractions for mdx mice (-70%, P = 0.68). However, after recovery from each bout, dystrophic muscle had greater torque-generating capacity such that isometric torque was increased ~38% for both anterior and posterior crural muscles at bout 5 compared with bout 1 (P < 0.001). Moreover, isolated extensor digitorum longus muscles excised from in vivo-tested hindlimbs 14-18 days after bout 5 had greater specific force than contralateral control muscles (12.2 vs. 10.4 N/cm(2), P = 0.005) and a 20% greater maximal relaxation rate (P = 0.049). Additional adaptations due to the multiple bouts of eccentric contractions included rapid recovery and/or sparing of contractile proteins, enhanced parvalbumin expression, and a decrease in fiber size variability. In conclusion, eccentric contractions are injurious to dystrophic skeletal muscle; however, the muscle recovers function rapidly and adapts to repeated bouts of eccentric contractions by improving strength.  相似文献   

2.
Myostatin is a negative regulator of muscle mass. The impact of myostatin deficiency on the contractile properties of healthy muscles has not been determined. We hypothesized that myostatin deficiency would increase the maximum tetanic force (P(o)), but decrease the specific P(o) (sP(o)) of muscles and increase the susceptibility to contraction-induced injury. The in vitro contractile properties of extensor digitorum longus (EDL) and soleus muscles from wild-type (MSTN(+/+)), heterozygous-null (MSTN(+/-)), and homozygous-null (MSTN(-/-)) adult male mice were determined. For EDL muscles, the P(o) of both MSTN(+/-) and MSTN(-/-) mice were greater than the P(o) of MSTN(+/+) mice. For soleus muscles, the P(o) of MSTN(-/-) mice was greater than that of MSTN(+/+) mice. The sP(o) of EDL muscles of MSTN(-/-) mice was less than that of MSTN(+/+) mice. For soleus muscles, however, no difference in sP(o) was observed. Following two lengthening contractions, EDL muscles from MSTN(-/-) mice had a greater force deficit than that of MSTN(+/+) or MSTN(+/-) mice, whereas no differences were observed for the force deficits of soleus muscles. Myostatin-deficient EDL muscles had less hydroxyproline, and myostatin directly increased type I collagen mRNA expression and protein content. The difference in the response of EDL and soleus muscles to myostatin may arise from differences in the levels of a myostatin receptor, activin type IIB. Compared with the soleus, the amount of activin type IIB receptor was approximately twofold greater in EDL muscles. The results support a significant role for myostatin not only in the mass of muscles but also in the contractility and the composition of the extracellular matrix of muscles.  相似文献   

3.
Sarcolipin (SLN) inhibits sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pumps. To evaluate the physiological significance of SLN in skeletal muscle, we compared muscle contractility and SERCA activity between Sln-null and wild-type mice. SLN protein expression in wild-type mice was abundant in soleus and red gastrocnemius (RG), low in extensor digitorum longus (EDL), and absent from white gastrocnemius (WG). SERCA activity rates were increased in soleus and RG, but not in EDL or WG, from Sln-null muscles, compared with wild type. No differences were seen between wild-type and Sln-null EDL muscles in force-frequency curves or maximum rates of force development (+dF/dt). Maximum relaxation rates (-dF/dt) of EDL were higher in Sln-null than wild type across a range of submaximal stimulation frequencies, but not during a twitch or peak tetanic contraction. For soleus, no differences were seen between wild type and Sln-null in peak tetanic force or +dF/dt; however, force-frequency curves showed that peak force during a twitch and 10-Hz contraction was lower in Sln-null. Changes in the soleus force-frequency curve corresponded with faster rates of force relaxation at nearly all stimulation frequencies in Sln-null compared with wild type. Repeated tetanic stimulation of soleus caused increased (-dF/dt) in wild type, but not in Sln-null. No compensatory responses were detected in analysis of other Ca(2+) regulatory proteins using Western blotting and immunohistochemistry or myosin heavy chain expression using immunofluorescence. These results show that 1) SLN regulates Ca(2+)-ATPase activity thereby regulating contractile kinetics in at least some skeletal muscles, 2) the functional significance of SLN is graded to the endogenous SLN expression level, and 3) SLN inhibitory effects on SERCA function are relieved in response to repeated contractions thus enhancing relaxation rates.  相似文献   

4.
We tested the effects of inhibiting the carbonic anhydrase activity of rat soleus and extensor digitorum longus muscles on the isometric contractile properties and the resistance to fatigue. SOL and EDL muscles from female rats were incubated in vitro in the presence of methazolamide, a specific inhibitor of carbonic anhydrase, before determining their contractile properties. Methazolamide had no effects on the contractile properties of the soleus muscle (10(-5) or 10(-3) M) and extensor digitorum longus (10(-3) M), except for the half-relaxation time of the soleus muscle which increased significantly. Values for half-relaxation time were significantly increased with both concentrations of the inhibitor. Muscles were then submitted to a fatigue protocol lasting 30 min. During the fatigue test, no significant difference was observed between control and 10(-5) M methazolamide soleus muscles. In presence of 10(-3) M methazolamide however, the soleus muscle showed a significantly increased resistance to fatigue compared with control preparations. No significant effect was observed with the extensor digitorum longus muscle exposed to 10(-3) M methazolamide. Results are discussed in terms of the presence of two different isoforms of carbonic anhydrase that may be associated with calcium uptake and energy metabolic processes, respectively.  相似文献   

5.
We tested the hypothesis that positive inotropic factors decrease fatigue and improve recovery from fatigue in mammalian skeletal muscle in vitro. To induce fatigue, we stimulated mouse soleus and extensor digitorum longus (EDL) to perform isometric tetanic contractions (50 impulses x s(-1) for 0.5 s) at 6 contractions x min(-1) for 60 min in soleus and 3 contractions x min(-1) for 20 min in EDL. Muscles were submerged in Krebs-Henseleit bicarbonate solution (Krebs) at 27 degrees C gassed with 95% nitrogen - 5% carbon dioxide (anoxia). Before and for 67 min after the fatigue period, muscles contracted at 0.6 contractions x min(-1) in 95% oxygen - 5% carbon dioxide (hyperoxia). We added a permeable cAMP analog (N6, 2'-O-dibutyryladenosine 3':5'-cyclic monophosphate at 10(-3) mol x L(-1) (dcAMP)), caffeine (2 x 10(-3) mol x L(-1), or Krebs as vehicle control at 25 min before, during, or at the end of the fatigue period. In soleus and EDL, both challenges added before fatigue significantly increased developed force but only caffeine increased developed force when added during the fatigue period. At the end of fatigue, the decrease in force in challenged muscles was equal to or greater than in controls so that the force remaining was the same or less than in controls. EDL challenged with dcAMP or caffeine at any time recovered more force than controls. In soleus, caffeine improved recovery except when added before fatigue. With dcAMP added to soleus, recovery was better after challenges at 10 min and the end of the fatigue period. Thus, increased intracellular concentrations of cAMP and (or) Ca2+ did not decrease fatigue in either muscle but improved recovery from fatigue in EDL and, in some conditions, in soleus.  相似文献   

6.

Background  

Slowed muscle relaxation is the contractile hallmark of myotonia congenita, a disease caused by genetic CLC-1 chloride channel deficiency, which improves with antecedent brief contractions ("warm-up phenomenon"). It is unclear to what extent the myotonia continues to dissipate during continued repetitive contractions and how this relates temporally to muscle fatigue. Diaphragm, EDL, and soleus muscles were examined in vitro during repetitive 20 Hz and 50 Hz train stimulation in a drug-induced (9-AC) rat myotonia model.  相似文献   

7.
Genetically modified mice with deficiency of the G protein α-subunit (G(s)α) in skeletal muscle showed metabolic abnormality with reduced glucose tolerance, low muscle mass, and low contractile force, along with a fast-to-slow-fiber-type switch (Chen M, Feng HZ, Gupta D, Kelleher J, Dickerson KE, Wang J, Hunt D, Jou W, Gavrilova O, Jin JP, Weinstein LS. Am J Physiol Cell Physiol 296: C930-C940, 2009). Here we investigated a hypothesis that the switching to more slow fibers is an adaptive response with specific benefit. The results showed that, corresponding to the switch of myosin isoforms, the thin-filament regulatory proteins troponin T and troponin I both switched to their slow isoforms in the atrophic soleus muscle of 3-mo-old G(s)α-deficient mice. This fiber-type switch involving coordinated changes of both thick- and thin-myofilament proteins progressed in the G(s)α-deficient soleus muscles of 18- to 24-mo-old mice, as reflected by the expression of solely slow isoforms of myosin and troponin. Compared with age-matched controls, G(s)α-deficient soleus muscles with higher proportion of slow fibers exhibited slower contractile and relaxation kinetics and lower developed force, but significantly increased resistance to fatigue, followed by a better recovery. G(s)α-deficient soleus muscles of neonatal and 3-wk-old mice did not show the increase in slow fibers. Therefore, the fast-to-slow-fiber-type switch in G(s)α deficiency at older ages was likely an adaptive response. The benefit of higher fatigue resistance in adaption to metabolic deficiency and aging provides a mechanism to sustain skeletal muscle function in diabetic patients and elderly individuals.  相似文献   

8.
Skeletal muscle fatigue in vitro is temperature dependent   总被引:2,自引:0,他引:2  
Our purpose was to determine the effect of temperature on the fatigability of isolated soleus and extensor digitorum longus (EDL) muscles from rats during repeated isometric contractions. Muscles (70-90 mg) were studied at 20-40 degrees C in vitro. Fatigability was defined with respect to both the time and number of stimuli required to reach 50% of the force (P) developed at the onset of the fatigue test. Fatigue was studied during stimulation protocols of variable [force approximately 70% of maximum force (Po)] and constant frequency (28 Hz). Results for soleus and EDL muscles were qualitatively similar, but fatigue times were longer for soleus than for EDL muscles. During the variable-frequency protocol, development of approximately 70% of Po required an increase in stimulation frequency as temperature increased. During stimulation at these frequencies, fatigue time shortened as temperature increased. For both fatigue protocols, the relationship between temperature and the number of stimuli required to reach fatigue followed a bell-shaped curve, with maximum values at 25-30 degrees C. The temperature optimum for maximizing the number of isometric contractions to reach fatigue reflects direct effects of temperature on muscle function.  相似文献   

9.
We have investigated the physiological role of desmin in skeletal muscle by measuring isometric tension generated in skinned fibres and intact skeletal muscles from desmin knock-out (DES-KO) mice. About 80% of skinned single extensor digitorum longus (EDL) fibres from adult DES-KO mice generated tensions close to that of wild-type (WT) controls. Weights and maximum tensions of intact EDL but not of soleus (SOL) muscles were lowered in DES-KO mice. Repeated contractions with stretch did not affect subsequent isometric tension in EDL muscles of DES-KO mice. Tension during high frequency fatigue (HFF) declined faster and this deficiency was compensated in DES-KO EDL muscles by 5 mM caffeine which had no influence on HFF in WT EDL. Furthermore, caffeine evoked twitch potentiation was higher in DES-KO than in WT muscles. We conclude that desmin is not essential for acute tensile strength but rather for optimal activation of intact myofibres during E-C coupling.  相似文献   

10.
Unloading of skeletal muscles by hindlimb unweighting is known to induce muscle atrophy and a shift toward faster contractile properties associated with an increase in the expression of fast contractile proteins, particularly in slow soleus muscles. Contractile properties suggest that slow soleus muscles acquire SR properties close to those of a faster one. We studied the expression and properties of the sarcoplasmic reticulum calcium release (RyR) channels in soleus and gastrocnemius muscles of rats submitted to hindlimb unloading (HU). An increase in RyR1 and a slight decrease in RyR3 expression was detected in atrophied soleus muscles only after 4 weeks of HU. No variation appeared in fast muscles. [(3)H]Ryanodine binding experiments showed that HU neither increased the affinity of the receptors for [(3)H]ryanodine nor changed the caffeine sensitivity of [(3)H]ryanodine binding. Our results suggested that not only RyR1 but also RyR3 expression can be regulated by muscle activity and innervation in soleus muscle. The changes in the RyR expression in slow fibers suggested a transformation of the SR from a slow to a fast phenotype.  相似文献   

11.
12.
Li H  Jiao B  Yu ZB 《生理学报》2007,59(3):369-374
为研究模拟失重大鼠萎缩比目鱼肌强直收缩疲劳后恢复速率的影响因素,采用尾部悬吊模拟失重大鼠模型及离体骨骼肌条灌流技术,观测其在不同收缩模式下疲劳后的恢复过程。正常大鼠离体比目鱼肌条实验显示,10s短时程(S10P)与300s长时程(L10P)强直收缩轻度疲劳[强直收缩最大张力(P0)下降10%]后,在20min恢复期末,均可恢复至疲劳前P0,且恢复程度不受疲劳持续时间的影响;轻度疲劳后,在灌流液中加入10μmol/L钌红抑制肌浆网Ca^2+释放功能,恢复速率减慢,恢复程度最大仅至94%P0,然后呈下降趋势,提示轻度疲劳可能仅抑制肌原纤维功能。60s短时程(S50P)与300s长时程(L50P)强直收缩中度疲劳(P0下降50%)后,在20min恢复期末,收缩张力分别恢复至95%P0和90%P0,表明中度疲劳持续时间影响恢复的速率;相同条件中度疲劳后,在灌流液中加入5mmol/L咖啡因促进肌浆网Ca62+释放功能,恢复速率明显加快,无论疲劳持续时间长短,5min便可完全恢复,提示中度疲劳不仅抑制肌原纤维功能,还抑制肌浆网Ca^2+释放功能。尾部悬吊1周的大鼠比目鱼肌明显萎缩,其重量/体重之比仅为对照大鼠的60%。采用短与长持续时间的轻与中度疲劳作用后,在20min恢复期末,收缩张力分别恢复至94%P0(S10P)、95%P0(L10P)、92%P0(S50P)、84%P0(L50P),均与同步对照组有显著差异。以上结果提示:模拟失重1周大鼠萎缩的比目鱼肌,轻度与中度疲劳均可抑制肌原纤维功能与肌浆网Ca^2+释放功能,使恢复速率减慢。  相似文献   

13.
Central and peripheral factors were studied in fatigue of submaximal intermittent isometric contractions of the human quadriceps and soleus muscles. Subjects made repeated 6 s, 50% maximal voluntary contractions (MVC) followed by 4 s rest until the limit of endurance (Tlim). Periodically, a fatigue test was performed. This included a brief MVC, either a single shock or 8 pulses at 50 Hz during a rest period and a shock superimposed on a target force voluntary contraction. At Tlim, the MVC force had declined by 50%, usually in parallel with the force from stimulation at 50 Hz. The twitches superimposed on the target forces declined more rapidly, disappearing entirely at Tlim. In similar experiments on adductor pollicis, no reduction of the evoked M wave was seen. The results suggest that, during fatigue of quadriceps and adductor pollicis induced by this protocol, no central fatigue was apparent, but some was seen in soleus. Thus the reduced force-generating capacity could result mainly or entirely from failure of the muscle contractile apparatus.  相似文献   

14.
The reduced release of Ca2+ from sarcoplasmic reticulum (SR) is considered a major determinant of muscle fatigue. In the present study, we investigated whether the presence of dantrolene, an established inhibitor of SR Ca2+ release, or caffeine, a drug facilitating SR Ca2+ release, modifies muscle fatigue development. Accordingly, the effects of Ca2+ release modulators were analyzed in vitro in mouse fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles, fatigued by repeated short tetani (40 Hz for 300 ms, 0.5 s(-1) in soleus and 60 Hz for 300 ms, 0.3 s(-1) in EDL, for 6 min). Caffeine produced a substantial increase of tetanic tension of both EDL and soleus muscles, whereas dantrolene decreased tetanic tension only in EDL muscle. In both EDL and soleus muscles, 5 microM dantrolene did not affect fatigue development, whereas 20 microM dantrolene produced a positive staircase during the first 3 min of stimulation in EDL muscle and a slowing of fatigue development in soleus muscle. The development of the positive staircase was abolished by the addition of 15 microM ML-7, a selective inhibitor of myosin light chain kinase. On the other hand, caffeine caused a larger and faster loss of tension in both EDL and soleus muscles. The results seem to indicate that the changes in fatigue profile induced by caffeine or dantrolene are mainly due to the changes in the initial tetanic tension caused by the drugs, with the resulting changes in the level of contraction-dependent factors of fatigue, rather than to changes in the SR Ca2+ release during fatigue development.  相似文献   

15.
Skeletal muscle constitutively expresses both the type I (neuronal) and type III (endothelial) isoforms of nitric oxide synthase (NOS). We tested the functional importance of type III NOS using skeletal muscles with similar levels of type III NOS expression (diaphragm and soleus) from wild-type, heterozygous, and type III NOS-deficient littermate mice. Muscles were incubated at 37 degrees C in Krebs-Ringer solution. NO accumulation in the medium was measured by chemiluminescence; force-frequency and fatigue characteristics were measured using direct electrical stimulation. Diaphragm and soleus released NO at similar rates during passive incubation; these rates increased during active contraction. NO release by type III NOS-deficient muscle was not different from that of wild-type muscle under any condition tested. Force-frequency and fatigue characteristics also were unaffected by genotype. Because type III NOS deficiency did not alter function, we conclude that NO effects previously observed in wild-type muscle are likely to be mediated by type I NOS.  相似文献   

16.
This investigation examined the effects of hypokinesia/hypodynamia (H/H) on fatigability and contractile properties of rat soleus (S) and gastrocnemius (G) muscles. Whole-body suspension for 1 wk was used to eliminate hindlimb load-bearing functions and simultaneously permit voluntary isotonic contractions. Train stimulations (45/min, 16 min) resulted in significantly (P less than 0.05) faster rates of fatigue to lower asymptotes in G from H/H rats. Fatigue in the S was minimal at this stimulation frequency and differences between H/H and control animals were not significant. Contractile properties (twitch and tetanic) were measured before and after train stimulations. H/H suspension resulted in an increased twitch tension in G. However, H/H did not change train or tetanic tensions per gram or other G contractile properties. Peak twitch, train, and tetanic tensions, time to peak tension, one-half relaxation time, and twitch and tetanic peak rates of tension development and decline were unchanged by H/H in S muscles. These results indicate that 1 wk of H/H-induced muscle atrophy significantly increases fatigability in G but does not effect contractile properties of fast-twitch (G) or slow-twitch (S) muscles.  相似文献   

17.
The specific role of each subtype of thyroid hormone receptor (TR) on skeletal muscle function is unclear. We have therefore studied kinetics of isometric twitches and tetani as well as fatigue resistance in isolated soleus muscles of R-alpha(1)- or -beta-deficient mice. The results show 20-40% longer contraction and relaxation times of twitches and tetani in soleus muscles from TR-alpha(1)-deficient mice compared with their wild-type controls. TR-beta-deficient mice, which have high thyroid hormone levels, were less fatigue resistant than their wild-type controls, but contraction and relaxation times were not different. Western blot analyses showed a reduced concentration of the fast-type sarcoplasmic reticulum Ca(2+)-ATPase (SERCa1) in TR-alpha(1)-deficient mice, but no changes were observed in TR-beta-deficient mice compared with their respective controls. We conclude that in skeletal muscle, both TR-alpha(1) and TR-beta are required to get a normal thyroid hormone response.  相似文献   

18.
This study evaluated the influence of dystonia musculorum (dt) mutation, characterized by spinocerebellar fibers degeneration, on cardiac and skeletal muscles: one respiratory (diaphragm, Dia), three masticatory (anterior temporalis, AT; masseter superficialis, MS; and anterior digastric, AD), one hindlimb (soleus, S), tongue (T), and one cardiac (ventricle, V). Body and muscle weight, muscle protein content, and myosin heavy chain (MHC) isoforms relative expression were then compared in dt mutant mice and in normal mice, according to sex. Male body and muscle weight was always greater than that of females, but there was no specific muscle difference in females. dt mutant mice showed a reduced whole body growth but no specific muscle atrophy, as well as a global decrease in muscle protein content that made muscles more fragile. dt mutation induced a global reduction of muscle protein concentration, whereas a general influence of sex could not be disclosed. Concerning MHC relative composition, all the muscles were fast-twitch: Dia, AT, MS, AD, S, and T expressed predominantly the fast type 2 MHC isoforms, whereas V contained only MHC alpha, also a fast MHC. Female muscles were slower than male muscles, except for S, which was faster. However, classification of muscles in terms of shortening velocity was very different in normal males and females. In other respects, dt mutant muscles were slower and consequently more fatigue resistant than normal, except for S, which became faster and less fatigue resistant. dt mutation exhibits then a specific effect on this continually active postural muscle. In the other muscles, global increased fatigue resistance could constitute an adaptive response to work requirements modifications linked to the muscle damage. It should be noted that a developmental MHC (neonatal) was present in female dt AD. Innervation, which influences muscle structure, is altered in dt mutant and could be another causal factor of the fast-to-slow MHC switches. It appears that dystonin, the dt gene product, is very important in maintaining the structural integrity of both cardiac and skeletal muscle and in its absence, the muscle becomes more fragile and is damaged by modified activity.  相似文献   

19.
Differences between motor units in hindlimb locomotor muscles of male and female Wistar rats were studied. The contractile and action potential properties of various types of motor units as well as proportions of these units in the medial gastrocnemius muscle were analyzed. Experiments were based on functional isolation and electrical stimulation of axons of single motor units. Composition of motor units was different for male and female subjects, with higher number of the fast fatigable and lower number of slow type units in male animals. The contraction and the half-relaxation times were significantly longer in male motor units, what might be due to differences in muscle size. Slower contraction of male motor units likely corresponds to lower firing rates of their motoneurons. On the other hand, no significant differences between sexes were observed with respect to force parameters of motor units (the twitch and the maximum tetanus forces), except the fast resistant units (higher force values in male muscles). The mass of the muscle was approximately 1.5 time bigger in male rats. However, the mean ratio of motor unit tetanus force to the muscle mass was almost twice smaller in this group, what indirectly suggests that muscles of male rats are composed of higher number of motor units. Finally, female muscles appeared to have higher fatigue resistance as the effect of higher proportion of resistant units (slow and fast resistant) and higher values of the fatigue index in respective motor unit types. The motor unit action potentials in female rats had slightly lower amplitudes and shorter time parameters although this difference was significant only for fast resistant units.  相似文献   

20.
Diabetes induces changes in the structural, biochemical, electrical, and contractile properties of skeletal muscles. Neuropeptide Y (NPY) administered locally can induce angiogenesis in a rat ischemic limb model and restore the contractile function of the ischemic muscle. The effects of NPY on the contractile characteristics of limb skeletal muscles were examined in streptozotocin-induced diabetic rats. Rats were treated with sham pellets (control groups) or NPY-containing pellets (1 mg of NPY/pellet, 14 days releasing time) administered locally to the rat hind limb 2 months after induction of diabetes. Contractile properties and fatigability of the slow-twitch soleus and fast-twitch gastrocnemius medials muscle were compared in control (sham), control NPY, diabetic (sham), and diabetic NPY groups. In order to induce fatigue trains of repetitive tetanic stimulation were used (600 ms/1 s simulation-rest cycle per train, 112 trains at an 85-Hz fusion frequency). Two months of untreated diabetes significantly prolonged soleus contraction and slowed its relaxation, but had minimal effects on soleus tension. NPY ameliorated the diabetic effects on soleus speed-related contractile properties, restoring its contraction and relaxation times. Diabetes significantly reduced gastrocnemius medials tetanic tension, leaving its contractile characteristics mostly unaffected. NPY partially restored gastrocnemius tetanic tension production capacity. Diabetes significantly increased fatigability of both muscles, which was partially restored by NPY, as evidenced by restored endurance of soleus muscle. The results suggest that NPY administered locally tends to normalize muscle performance and improve fatigue resistance of skeletal muscles in streptozotocin diabetes. Further examination is needed to establish the mechanisms of local NPY action on muscle contractile properties in streptozotocin-induced diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号