首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Jia G  Cheng G  Agrawal DK 《Autophagy》2007,3(1):63-64
Autophagy genes were first identified in the yeast system and some of their mammalian orthologues have also been characterized. Increasing lines of evidence indicate that various intracellular proteins, including G proteins, mammalian target of rapamycin (mTor) and Pl3K/Akt/PKB, of transmembrane signaling pathways are involved in the regulation of autophagy genes. We have recently discovered autophagy as a mechanism of cell death in atherosclerotic vascular smooth muscle cells (VSMCs). Tumor necrosis factor-alpha (TNF-alpha), insulin-like growth factor-1 (IGF-1), and 7-ketocholesterol can regulate the expression of autophagic genes, including microtubule-associated protein 1 light chain-3 (MAP1LC3) and Beclin 1, through Akt/PKB and c-jun N-terminal signal pathways in VSMCs. However, the balance between cell death and survival of VSMCs in the fibrous cap of atherosclerotic plaques appears to best correlate with plaque instability. Understanding the underlying cellular and molecular mechanisms of autophagy can provide key insights into the cell death machinery of atherosclerotic diseases.  相似文献   

2.
Vascular brachytherapy has become the therapeutic strategy of choice for in-stent restenosis. Clinical trials evaluating the effectiveness and safety of this technology have enrolled nearly 4000 patients using both gamma and beta emitters. At present, ongoing controversies include optimal dosimetry, whether beta emitters are as effective as gamma and whether centering delivery systems perform better than non-centering systems. Complications of brachytherapy such as edge effect, late thrombosis and late restenosis have received increasing attention. This review provides an update of the current status of clinical trials utilizing vascular brachytherapy to prevent the recurrence of in-stent restenosis.  相似文献   

3.
A major goal in haematopoietic stem cell (HSC) research is to define conditions for the expansion of HSCs or multipotent progenitor cells (MPPs). Since human HSCs/MPPs cannot be isolated, NOD/SCID repopulating cell (SRC) assays emerged as the standard for the quantification of very primitive haematopoietic cell. However, in addition to HSCs/MPPs, lympho-myeloid primed progenitors (LMPPs) were recently found to contain SRC activities, challenging this assay as clear HSC/MPP readout. Because our revised model of human haematopoiesis predicts that HSCs/MPPs can be identified as CD133+CD34+ cells containing erythroid potentials, we investigated the potential of human mesenchymal and conventional murine stromal cells to support expansion of HSCs/MPPs. Even though all stromal cells supported expansion of CD133+CD34+ progenitors with long-term myeloid and long-term lymphoid potentials, erythroid potentials were exclusively found within erythro-myeloid CD133lowCD34+ cell fractions. Thus, our data demonstrate that against the prevailing assumption co-cultures on human mesenchymal and murine stromal cells neither promote expansion nor maintenance of HSCs and MPPs.  相似文献   

4.
5.
6.
Stromal cell-derived factor 1 (SDF-1) is a critical regulator of endothelial progenitor cells (EPCs) mediated physiological and pathologic angiogenesis. It was considered to act via its unique receptor CXCR4 for a long time. CXCR7 is a second, recently identified receptor for SDF-1, and its role in human EPCs is unclear. In present study, CXCR7 was found to be scarcely expressed on the surface of human EPCs derived from cord blood, but considerable intracellular CXCR7 was detected, which differs from that on EPCs derived from rat bone marrow. CXCR7 failed to support SDF-1 induced human EPCs migration, proliferation, or nitric oxide (NO) production, but mediated human EPCs survival exclusively. Besides that, CXCR7 mediated EPCs tube formation along with CXCR4. Blocking CXCR7 with its antagonist CCX733 impaired SDF-1/CXCR4 induced EPCs adhesion to active HUVECs and trans-endothelial migration. Those results suggested that CXCR7 plays an important role in human cord blood derived EPCs in response to SDF-1.  相似文献   

7.
Stress-induced release of IL-1alpha and fibroblast growth factor-1 is dependent on intracellular copper and is a major driver of neointimal hyperplasia. Therefore, we assessed the effect of tetrathiomolybdate (TTM), a clinically proven copper chelator, on in-stent restenosis. Nine pigs were treated with TTM (5 mg/kg po) twice daily for 2 wk before stent implantation and for 4 wk thereafter, and nine pigs served as controls. In-stent restenosis was assessed by quantitative coronary angiography (QCA), intravascular ultrasound (IVUS), and histomorphometry. Serum ceruloplasmin activity was used as a surrogate marker of copper bioavailability. In TTM-treated animals, ceruloplasmin dropped 70 +/- 10% below baseline levels. Baseline characteristics were comparable in TTM-treated and control animals. At 4-wk follow-up, all parameters relevant to in-stent restenosis were significantly reduced in TTM-treated animals: minimal lumen diameter by QCA was 2.03 +/- 0.57 and 1.47 +/- 0.45 mm in TTM-treated and control animals, respectively (P < 0.05), percent stenosis diameter was 39% less in TTM-treated animals (27.1 +/- 16.6% vs. 44.5 +/- 16.1%, P < 0.05), minimal lumen area by IVUS was 60% larger in TTM-treated animals (4.27 +/- 1.56 vs. 2.67 +/- 1.19 mm(2), P < 0.05), and neointimal volume by histomorphometry was 37% less in TTM-treated animals (34.9 +/- 11.5 vs. 55.2 +/- 19.6 mm(3), P < 0.05). We conclude that systemic copper chelation with a clinically approved chelator significantly inhibits in-stent restenosis.  相似文献   

8.
Previous studies have provided compelling evidence for the presence of oxidized proteins and lipids in advanced human atherosclerotic lesions. The catalyst responsible for such oxidation is unknown and controversial. We have previously provided evidence for elevated levels of iron in lesions. In this study we hypothesized that if iron ions catalyzed protein and lipid oxidation in the artery wall, then there should be a positive correlation between these parameters. Iron concentrations in ex vivo healthy human arteries and advanced carotid lesions were quantified by electron paramagnetic resonance spectroscopy. Four specific side-chain oxidation products of proteins, and the lipid oxidation products 7-ketocholesterol and cholesterol ester alcohols and hydroperoxides, were quantified by HPLC in the same samples used for the iron measurements. Parent amino acids, cholesterol, and cholesterol esters were also quantified. Statistically elevated levels of iron, cholesterol, cholesterol esters, 7-ketocholesterol, and cholesterol ester alcohols and hydroperoxides were detected in advanced lesions compared with healthy control tissue. Iron levels correlated positively and strongly with all four markers of protein oxidation, but not with either marker of lipid oxidation. These data support the hypothesis that elevated levels of iron contribute to the extent of protein, but not lipid, oxidation in advanced human lesions.  相似文献   

9.
BackgroundRNAi technology is a promising tool for gene therapy of vascular disease. However, the biological heterogeneity between endothelial (EC) and vascular smooth muscle cells (SMC) and within different vascular beds make them differentially susceptible to siRNA. This is further complicated by the task of choosing the right transfection reagent that leads to consistent gene silencing across all cell types with minimal toxicity. The goal of this study was to investigate the intrinsic RNAi susceptibility of primary human aortic and coronary artery endothelial and vascular smooth muscle cells (AoEC, CoEC, AoSMC and CoSMC) using adherent cell cytometry.MethodsCells were seeded at a density of 5000 cells/well of a 96well plate. Twenty four hours later cells were transfected with either non-targeting unlabeled control siRNA (50 nM), or non-targeting red fluorescence labeled siRNA (siGLO Red, 5 or 50 nM) using no transfection reagent, HiPerFect or Lipofectamine RNAiMAX. Hoechst nuclei stain was used to label cells for counting. For data analysis an adherent cell cytometer, Celigo was used.ResultsRed fluorescence counts were normalized to the cell count. EC displayed a higher susceptibility towards siRNA delivery than SMC from the corresponding artery. CoSMC were more susceptible than AoSMC. In all cell types RNAiMAX was more potent compared to HiPerFect or no transfection reagent. However, after 24 h, RNAiMAX led to a significant cell loss in both AoEC and CoEC. None of the other transfection conditions led to a significant cell loss.ConclusionThis study confirms our prior observation that EC are more susceptible to siRNA than SMC based on intracellular siRNA delivery. RNAiMax treatment led to significant cell loss in AoEC and CoEC, but not in the SMC populations. Additionally, this study is the first to demonstrate that coronary SMC are more susceptible to siRNA than aortic SMC.  相似文献   

10.
STAT4 signaling, activated by either interleukin 12 (IL12) or interferon alpha (IFNalpha), promotes T(H)1 responses in CD4(+) T cells. Vascular endothelial cells (EC) may also become polarized in response to various cytokines, favoring recruitment and activation of T(H)1 or T(H)2 effector cells. Here we have investigated the role of the STAT4 pathway in EC. Cultured human umbilical vein EC (HUVEC) express low levels of STAT4, which may be tyrosine-phosphorylated by treatment with IFNalpha but not IL12. This is because HUVEC lack both subunits of the IL12 receptor (IL12Rbeta1 and IL12Rbeta2), even following treatment with various cytokines. IL12 phosphorylation of STAT4 can be observed in HUVEC that have been transduced to express the IL12R. To identify STAT4-induced genes we pursued three approaches: analysis by DNA microarray and quantitative RT-PCR (Q-PCR) of the IL12 responses in IL12R-transduced EC; analysis by Q-PCR of IFNalpha responses in STAT4-overexpressing EC; and analysis of IFNalpha responses in U3A neuroblastoma cell lines that express either STAT1 or STAT4, but not both. In all three instances we observe STAT4-mediated induction of the chemokine monocyte chemoattractant protein 1 (MCP1) and suppressor of cytokine signaling 3 (SOCS3) mRNA, and we confirm the production of each protein in both IL12R-transduced EC and STAT4-transduced U3A cells. These observations reveal that there is a STAT4 response of EC, activated by IFNalpha but not IL12, and that it may modulate the pro-inflammatory behavior of EC.  相似文献   

11.
The effects of heparin (180 micrograms/ml) on steady state mRNA levels for fibronectin, thrombospondin, actin and collagen types I and III were investigated in human umbilical artery smooth muscle cells. Heparin caused a 120% increase in thrombospondin mRNA levels and a 60% and 180% increase in the mRNA levels of procollagen chains alpha 2(I) and alpha 1(III), respectively. No change in fibronectin or actin mRNA levels resulted from heparin treatment. We reported earlier (Biochem. Biophys. Res. Comm. 148:1264, 1987) that heparin increases smooth muscle cell synthesis of both fibronectin and thrombospondin. These data show that heparin coordinately regulates thrombospondin mRNA and protein levels. The heparin induced increase in fibronectin biosynthesis apparently reflects control at the translational or post-translational level.  相似文献   

12.
A 69-year-old female patient with hypertension and diabetes mellitus presented in September 2002 with an acute coronary syndrome. Coronary angiography demonstrated significant one-vessel disease (figure 1A) with a preserved left ventricular function.  相似文献   

13.
《Cytokine》2014,68(2):65-70
The study aim was to determine the predictive value of interleukin (IL)-33, a recently described member of the IL-1 family of cytokines, for the development of in-stent restenosis (ISR). IL-33 serum levels were measured in 387 consecutive patients undergoing percutaneous coronary intervention (PCI) of whom 193 had stable angina, 93 non-ST elevation myocardial infarction (NSTEMI), and 101 ST-elevation MI (STEMI), respectively. Blood was taken directly before and 24 h after stent implantation. The presence of ISR was initially evaluated by clinical means after six to eight months. When presence of myocardial ischemia was suspected, coronary angiography was performed to confirm the suspected diagnosis of ISR. Clinical ISR was present in total in 34 patients (8.8%). IL-33 was detectable in 185 patients and was below detection limit in 202 patients. In patients with decreased IL-33 (n = 95), unchanged or non-detectable levels (n = 210) or increased levels of IL-33 after PCI (n = 82), ISR-rate was 2.1%, 9.5% and 14.6%, respectively (p < 0.05). Accordingly, patients with ISR showed a significant increase of IL-33 upon PCI (p < 0.05). This association was independent from clinical presentation and risk factors as well as numbers and type of stents. In patients with both stable and unstable coronary artery disease, an increase of IL-33 serum levels after stent implantation is associated with a higher rate of in-stent restenosis.  相似文献   

14.
Intracoronary radiation therapy is currently the only available treatment for the prevention of recurrence of in-stent restenosis. We report a case of severe coronary spasm after excimer laser angioplasty, balloon angioplasty, and intracoronary gamma radiation in the right coronary artery (RCA) that resulted in an acute myocardial infarction. Treatment with 600 μg of intracoronary nitroglycerin resulted in minimal improvement; therefore, diltiazem 400 μg was administered intracoronary with total resolution of the spasm, restoring normal coronary blood flow without trace of acute dissection or thrombus inside the artery.  相似文献   

15.
Here, we present a case of a 63-year-old male who presented with in-stent restenosis of two coronary arteries simultaneously (mid circumflex and proximal ramus). After the brachytherapy of the circumflex artery for in-stent restenosis, the patient refused the staged procedure for the ramus in-stent restenosis. After approximately 2 years, the patient underwent coronary angiography for recurrent chest pain. Surprisingly, the proximal ramus stent showed marked regression of in-stent restenosis. We hypothesized that the gamma brachytherapy of the circumflex artery could have induced the regression of in-stent restenosis of the adjacent ramus artery due to the deep tissue penetration of gamma radiation. Based on our observation, we believe that in the treatment of in-stent restenosis of a coronary artery, the initial balloon angioplasty may not be as important as the radiation itself. This observation warrants further study to evaluate the effect of external or internal radiation on in-stent restenosis without balloon angioplasty. If our hypothesis is confirmed, the treatment of in-stent restenosis with external radiation could substantially simplify the treatment of this disease. This case report follows a brief review of the literature.  相似文献   

16.
17.
Cancer of the reproductive tract encompasses malignancies of the uterine corpus, cervix, ovary, Fallopian tube, among others and accounts for 15% of female cancer mortalities. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) mediates apoptosis by binding to death receptors and offers a promising cancer treatment. The goal of this study was to investigate and characterize the effect of TRAIL in endometrial cancer cell lines and normal (non-cancerous) epithelial cells of endometrial origin. We also examined the effect of TRAIL in other primary cultured cancers and normal cells of the human female reproductive tract and evaluated if TRAIL mediated apoptosis correlated with death receptors and decoy receptors 1 and 2. Herein, we demonstrate that TRAIL at concentrations which kill cancerous cells, does not mediate apoptosis or alter cell viability in normal human endometrium, ovary, cervix or Fallopian tube. The partial inhibition by a caspase 9 inhibitor and the total inhibition by a caspase 8 inhibitor demonstrates the dependency on the extrinsic apoptotic pathway. The selective mortality does not correlate with the presence of death or decoy receptors. These results suggest that TRAIL may be an effective treatment for endometrial cancer and other female reproductive cancers, with minimal secondary effects on healthy tissue. This work was supported by a grant from the Wellcome Trust GR071469 (GIO) and the Chilean national science grants FONDECYT 1060495 (GIO) and 1020675 (MC). An erratum to this article is available at .  相似文献   

18.
Mitochondrial energy production is involved in various cellular processes. Here we show that ATP content is significantly increased in lineage-restricted progenitor cells compared with hematopoietic stem and progenitor cells (HSPCs) or more differentiated cells. Transplantation analysis using a mouse model of mitochondrial disease revealed that mitochondrial respiration defects resulted in a significant decrease in the total number and repopulating activity of bone marrow cells, although the number of HSPCs increased. The proliferative activity of HSPCs and lineage-restricted progenitor cells was not impaired by reduction of ATP content and there seems to be no associated increase in reactive oxygen species levels and apoptosis. Our findings indicate that mitochondrial respiration defects modulate HSPC commitment/differentiation into lineage-restricted progenitor cells.  相似文献   

19.
20.
Primary keratinocytes derived from human epidermis are widely used in tissue engineering and regenerative medicine. An important aspect in clinical applications is the preservation of human skin keratinocyte stem cells. However, it is difficult to expand the number of human skin keratinocyte stem cells, which are undifferentiated and highly proliferative in culture by using standard cell culture methods. It is even more difficult to identify them, since universal specific markers for human skin keratinocyte stem cells have not been identified. In this paper, we show a method to produce a large number of primary progenitor human skin keratinocytes by using our novel culture techniques. Primary human skin keratinocyte monolayers are cultured using twice the volume of medium without serum and lacking essential fatty acids. Once the cells reach 70–80% confluence, they begin to float up into the overlying medium and are called “epithelial pop-up keratinocytes (ePUKs)” allowing the cells to be passaged without the use of trypsin. We analyzed the properties of ePUKs by cell size, cell viability, immunocytofluorescence biomarker staining, and cell cycle phase distribution by fluorescence-activated cell sorting (FACS). Our results showed that these ePUKs appear to be progenitor epithelial cells, which are small in size, undifferentiated, and have a high proliferative capacity. We believe that ePUKs are suitable for use in medical applications requiring a large number of primary human progenitor skin keratinocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号