首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We estimated trophic position and carbon source for three consumers (Florida gar, Lepisosteus platyrhincus; eastern mosquitofish, Gambusia holbrooki; and riverine grass shrimp, Palaemonetes paludosus) from 20 sites representing gradients of productivity and hydrological disturbance in the southern Florida Everglades, U.S.A. We characterized gross primary productivity at each site using light/dark bottle incubation and stem density of emergent vascular plants. We also documented nutrient availability as total phosphorus (TP) in floc and periphyton, and the density of small fishes. Hydrological disturbance was characterized as the time since a site was last dried and the average number of days per year the sites were inundated for the previous 10 years. Food-web attributes were estimated in both the wet and dry seasons by analysis of δ15N (trophic position) and δ13C (food-web carbon source) from 702 samples of aquatic consumers. An index of carbon source was derived from a two-member mixing model with Seminole ramshorn snails (Planorbella duryi) as a basal grazing consumer and scuds (amphipods Hyallela azteca) as a basal detritivore. Snails yielded carbon isotopic values similar to green algae and diatoms, while carbon values of scuds were similar to bulk periphyton and floc; carbon isotopic values of cyanobacteria were enriched in C13 compared to all consumers examined. A carbon source similar to scuds dominated at all but one study site, and though the relative contribution of scud-like and snail-like carbon sources was variable, there was no evidence that these contributions were a function of abiotic factors or season. Gar consistently displayed the highest estimated trophic position of the consumers studied, with mosquitofish feeding at a slightly lower level, and grass shrimp feeding at the lowest level. Trophic position was not correlated with any nutrient or productivity parameter, but did increase for grass shrimp and mosquitofish as the time following droughts increased. Trophic position of Florida gar was positively correlated with emergent plant stem density.  相似文献   

2.
  • 1 The seasonal dynamics of the benthic macroinvertebrate assemblage, and the subset of this assemblage colonising naturally formed detritus accumulations, was investigated in two streams in south‐west Ireland, one draining a conifer plantation (Streamhill West) and the other with deciduous riparian vegetation (Glenfinish). The streams differed in the quantity, quality and diversity of allochthonous detritus and in hydrochemistry, the conifer stream being more acid at high discharge. We expected the macroinvertebrate assemblage colonising detritus to differ in the two streams, due to differences in the diversity and quantity of detrital inputs.
  • 2 Benthic density and taxon richness did not differ between the two streams, but the density of shredders was greater in the conifer stream, where there was a greater mass of benthic detritus. There was a significant positive correlation between shredder density and detritus biomass in both streams over the study period.
  • 3 Detritus packs in the deciduous stream were colonised by a greater number of macroinvertebrates and taxa than in the conifer stream, but packs in both streams had a similar abundance of shredders. The relative abundance of taxa colonising detritus packs was almost always significantly different to that found in the source pool of the benthos.
  • 4 Correspondence analysis illustrated that there were distinct faunal differences between the two streams overall and seasonally within each stream. Differences between the streams were related to species tolerances to acid episodes in the conifer stream. Canonical correspondence analysis demonstrated a distinct seasonal pattern in the detrital composition of the packs and a corresponding seasonal pattern in the structure of the detritus pack macroinvertebrate assemblage.
  • 5 Within‐stream seasonal variation both in benthic and detritus pack assemblages and in detrital inputs was of similar magnitude to the between‐stream variation. The conifer stream received less and poorer quality detritus than the deciduous stream, yet it retained more detritus and had more shredders in the benthos. This apparent contradiction may be explained by the influence of hydrochemistry (during spate events) on the shredder assemblage, by differences in riparian vegetation between the two streams, and possibly by the ability of some taxa to exhibit more generalist feeding habits and thus supplement their diets in the absence of high quality detritus.
  相似文献   

3.
4.
J. W. Moore 《Hydrobiologia》1977,54(3):201-208
The ash free dry weight of algae in the plankton, epilithon and gut of predominant herbivores was determined between June 1975 and July 1976 in 2 subarctic Canadian rivers (Baker Creek, Yellowknife River). Algae usually represented < 1% of suspended solids in both rivers and up to 8o% of material attached to rocks. While they were never found in the gut of rotifers and copepod nauplii in Baker Creek, they accounted for 0.5% of the contents of the planktonic conchostracon Lynceus brachyurus. Due to the inpalatable colonial structure of most attached algal species, the zoobenthos (mainly mayfly nymphs) contained only a few cells. Size selection against large fragments of detritus resulted in increased consumption of algae (5–13%) by Simulium venustum, S. decorum and S. arcticum. In the Yellowknife River, Diaptomus ashlandi (CIII–CVI stages) and Holopedium gibberum contained only a few (30–50) algal cells during summer. Because of size selection, large algae were not ingested by these species. The inpalatability of colonial algae greatly reduced consumption in the predominant zoobenthic species, Ephemerella coxalis and E. margarita. While all species digested diatoms, the Chlorophyta usually passed through the gut unharmed. It is concluded that algae are not an important energy source for invertebrates in either stream.  相似文献   

5.
In the last few years, awareness in developed countries has increased regarding the importance of urban watercourses as essential natural resources for human well being. Macroinvertebrates have been used as bioindicators to complement physico-chemical evaluation of water quality after environmental perturbations. The city of Manaus is closely associated with the Amazonian rain forest and with its dense hydrographic network. Any perturbation, such as deforestation and/or water pollution in the city’s streams, therefore causes changes in the local ecosystem as the population increases. In this study, 65 streams were sampled in October and November 2003. Samples were taken from stream-bed sediment in the center of the channel and litter/sediment at the edge of the stream. Deforestation, total Nitrogen (TN), total Phosphorus (TP), depth, width, electrical conductivity, temperature and dissolved Oxygen (DO) were measured. A total of 115,549 specimens were collected, distributed among 152 taxa. Oligochaeta, Chironomus, Psychodidae and Ceratopogonidae were the taxa with the greatest frequencies of occurrence and the highest total abundances. Higher deforestation, TN and TP were correlated with lower DO and greater electrical conductivity, pH and water temperature. Deforestation, TN and TP were not associated with water velocity and stream width. Depth was the only variable correlated (negatively) with deforestation and not correlated with TN and TP. Greater deforestation, TN and TP were correlated with lower richness of taxa; but these variables did not affect abundance. Canonical Correspondence Analysis ordenated the streams into two groups; the majority of the streams were in the group with high levels of deforestation and with high values of TP, TN, pH, electrical conductivity and temperature, where the macroinvertebrates were reduced to a few taxa. The other group was composed of streams that were well oxygenated and deep, where richness of taxa was higher. These results indicate changes in community composition in response to changes in environmental conditions. The highest taxa correlation was with streams that were well oxygenated and had the greatest depth and water velocity. Species Indicator Analysis identified 29 taxa as indicators of nonimpacted streams, 16 as indicators of deforested streams and three as indicators of streams impacted by deforestation and domestic sewage. Of the total sampled streams, 80% were impacted by deforestation and water pollution and had fauna tolerant of these perturbations. Water pollution, represented by TN and TP, affected the macroinvertebrate fauna in a way similar to deforestation, i.e., causing reduction in taxa richness, simplifying the insect community composition without changing abundance. Use of the taxa suggested in this study as environmental indicators could improve the evaluation of water quality in the streams in Central Amazonia. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. Handling editor: D. Dudgeon  相似文献   

6.
1. Few studies have evaluated the effectiveness of riparian buffers in the tropics, despite their potential to reduce the impacts of deforestation on stream communities. We examined macroinvertebrate assemblages and stream habitat characteristics in small lowland streams in southeastern Costa Rica to assess the impacts of deforestation on benthic communities and the influence of riparian forest buffers on these effects. Three different stream reach types were compared in the study: (i) forested reference reaches, (ii) stream reaches adjacent to pasture with a riparian forest buffer at least 15 m in width on both banks and (iii) stream reaches adjacent to pasture without a riparian forest buffer. 2. Comparisons between forest and pasture reaches suggest that deforestation, even at a very local scale, can alter the taxonomic composition of benthic macroinvertebrate assemblages, reduce macroinvertebrate diversity and eliminate the most sensitive taxa. The presence of a riparian forest buffer appeared to significantly reduce the effects of deforestation on benthic communities, as macroinvertebrate diversity and assemblage structure in forest buffer reaches were generally very similar to those in forested reference reaches. One forest buffer reach was clearly an exception to this pattern, despite the presence of a wide riparian buffer. 3. The taxonomic structure of macroinvertebrate assemblages differed between pool and riffle habitats, but contrasts among the three reach types in our study were consistent across the two habitats. Differences among reach types also persisted across three sampling periods during our 15‐month study. 4. Among the environmental variables we measured, only stream water temperature varied significantly among reach types, but trends in periphyton abundance and stream sedimentation may have contributed to observed differences in macroinvertebrate assemblage structure. 5. Forest cover was high in all of our study catchments, and more research is needed to determine whether riparian forest buffers will sustain similar functions in more extensively deforested landscapes. Nevertheless, our results provide support for Costa Rican regulations protecting riparian forests and suggest that proper riparian management could significantly reduce the impacts of deforestation on benthic communities in tropical streams.  相似文献   

7.
Intermittent streams are common worldwide, and the ability of invertebrates to recover from floods and drought is a key feature of communities from these highly disturbed ecosystems. The macroinvertebrate assemblages of Kings Creek in northeastern Kansas were sampled regularly from four intermittent and two perennial sites over 2 years (1995–1996) to investigate the response and recovery to seasonal drying and floods. A 9mo drying period reduced taxa richness and density to 14% and 3% of pre-drying assemblages, respectively, in 1995–1996, whereas a 2mo drying period reduced richness by half and density to 4% of pre-drying assemblages in 1996. Floods at intermittent sites reduced densities and richness by 95% and 50%, respectively. A >50 y-flood reduced macroinvertebrate richness by 97% and density by >99% at a downstream perennial site. Resistance and resilience of total macroinvertebrate density was typically greater to floods than to drying, whereas resilience of taxa richness did not differ between disturbance types. The time required for recovery to pre-flood conditions (richness and density) was half as long (27 vs. 76 day) for intermittent sites compared to perennial sites. Colonization of intermittent sites was a function of distance from upstream refugia. Floods were a more important disturbance on assemblages in a downstream reach as compared to upstream reaches. In contrast, upstream reaches were more likely to dry. Recovery following flood and drought was dominated by colonization as opposed to tolerance, thus resilience is more important than resistance in regulating macroinvertebrate communities in these streams, and relative position in the landscape affects disturbance type, intensity, and ability of communities to recover from disturbance.  相似文献   

8.
  • 1 It is axiomatic that unusually long dry periods (droughts) adversely affect aquatic biota. Recovery after drought is rapid by macroinvertebrates that possess strategies to survive drying or are highly mobile but other taxa take longer to recolonise depending on the timing, intensity, and duration of the dry phase.
  • 2 Although drought acts as a sustained ‘ramp’ disturbance, impacts may be disproportionately severe when certain critical thresholds are exceeded. For example, ecological changes may be gradual while a riffle dries but cessation of flow causes abrupt loss of a specific habitat, alteration of physicochemical conditions in pools downstream, and fragmentation of the river ecosystem. Many ecological responses to drought within these habitats apparently depend on the timing and rapidity of hydrological transitions across these thresholds, exhibiting a ‘stepped’ response alternating between gradual change while a threshold is approached followed by a swift transition when a habitat disappears or is fragmented.
  • 3 In two Australian intermittent streams, drought conditions eliminated or decimated several groups of macroinvertebrates, including atyid shrimps, stoneflies and free‐living caddisflies. These taxa persisted during the early stages of the drought but did not recruit successfully the following year, despite a return to higher‐than‐baseflow conditions. This ‘lag effect’ in response to drought emphasises the value of long‐term survey data. Although changes in faunal composition were inconsistent among sites, marked shifts in taxa richness, abundance and trophic organisation after the riffle habitat dried provide evidence for a stepped response.
  • 4 Responses by macroinvertebrate assemblages to droughts of differing severity in English chalk streams were variable. The prolonged 1988–92 drought had a greater impact than shorter droughts in the early 1970s but recovery over the next 3 years was swift. Effects of the 1995 summer drought were buffered by sustained groundwater discharge from the previous winter. These droughts tended to reduce available riverine habitats, especially via siltation, but few taxa were eliminated because they could recolonise from perennial sections of the chalk streams.
  • 5 In the contrasting environments of the intermittent streams studied in England and Australia, there are parallels in the rapid rates of recolonisation. However, recruitment by taxa that lack desiccation‐resistant stages or have limited mobility is delayed. Currently, long‐term data on these systems may be insufficient to indicate persistent effects of droughts or predict the impacts of excessive surface or groundwater abstraction or the increased frequency and duration of droughts expected with global climate change.
  相似文献   

9.
Fish assemblages were sampled by electrofishingover a two- to ten-year period in undisturbedand anthropogenically disturbed South Carolinacoastal plain streams. Jaccard similarity,Bray–Curtis similarity, and Spearman rankcorrelations among samples collected from thesame sites over time were significantly greaterat undisturbed sites than at disturbed sites,suggesting greater fish assemblage persistenceand stability at the undisturbed sites. TheIndex of Biotic Integrity (IBI) also exhibitedsignificantly less variation over time atundisturbed sites than at disturbed sites.Physical habitat structure changed more overtime at disturbed sites than at undisturbedsites, and this variability was directlyrelated to temporal variability in fishassemblage structure. Comparisons betweenmultiple and single pass electrofishing samplessuggested that only a small proportion of thetemporal variability observed at the studysites was caused by inefficient sampling.Assessment of temporal variation in fishassemblage structure can serve as an indicatorof environmental disturbance and facilitate thedistinction of substantive ecological changefrom normal background variation.  相似文献   

10.
1. According to the guidelines of the European Water Framework Directive, assessment of the ecological quality of streams and rivers should be based on ecotype-specific reference conditions. Here, we assess two approaches for establishing a typology for Mediterranean streams: a top-down approach using environmental variables and bottom-up approach using macroinvertebrate assemblages.
2. Classification of 162 sites using environmental variables resulted in five ecotypes: (i) temporary streams; (ii) evaporite calcareous streams at medium altitude; (iii) siliceous headwater streams at high altitude; (iv) calcareous headwater streams at medium to high altitude and (v) large watercourses.
3. Macroinvertebrate communities of minimally disturbed sites ( n  = 105), grouped using UPGMA (unweighted pair-group method using arithmetic averages) on Bray–Curtis similarities, were used to validate four of the five ecotypes obtained using environmental variables; ecotype 5, large watercourses, was not included as this group had no reference sites.
4. Analysis of similarities ( anosim ) showed that macroinvertebrate assemblage composition differed among three of the four ecotypes, resulting in differences between the bottom-up and top-down classification approaches. Siliceous streams were clearly different from the other three ecotypes, evaporite and calcareous ecotypes did not show large differences in macroinvertebrate assemblages and temporary streams formed a very heterogeneous group because of large variability in salinity and hydrology.
5. This study showed that stream classification schemes based on environmental variables need to be validated using biological variables. Furthermore, our findings indicate that special attention should be given to the classification of temporary streams.  相似文献   

11.
1. To examine the effects of forest harvest practices on headwater stream macroinvertebrates, we compiled a 167 site database with macroinvertebrate, fish, physical habitat and catchment land cover data from the three forested ecoregions in western Oregon. For our analysis, headwater streams were defined by catchment areas <10 km2 and perennial water during summer low flows. Almost all sites in the database were selected using a randomised survey design, constituting a representative sample of headwater streams in these ecoregions. 2. Macroinvertebrate taxonomic and functional feeding group composition were very similar among the three ecoregions in the study area (Coast Range, Cascades and Klamath Mountains). On average, 55% of the individuals at each site were in the orders Ephemeroptera, Plecoptera or Trichoptera. Dipteran taxa (mostly chironomids) accounted for another 34%. At almost all sites, non‐insects made up <10% of the macroinvertebrate assemblage. Almost half (49%) of the assemblages were collectors; remaining individuals were about evenly divided among scrapers, shredders and predators. 3. There were 189 different macroinvertebrate taxa at the 167 sites with richness at individual sites ranging from 7 to 71 taxa. Ordination by non‐metric multidimensional scaling revealed a strong association between % Ephemeroptera, especially Baetis, and site scores along the first axis. This axis was also strongly related to % coarse substratum and fast water habitat. The second axis was strongly related to % intolerant individuals, site slope and altitude. No strong relationships were evident between any ordination axis and either logging activity, presence/absence of fish, catchment size or ecoregion. 4. Based on macroinvertebrate index of biotic integrity (IBI) scores, 62% of the sites had no impairment, 31% of the sites had slight impairment and only 6% of the sites had moderate or severe impairment. IBI scores were not strongly related to forest harvest history. All four severely impaired sites and five of the seven sites with moderate impairment were lower altitude, shallower slope stream reaches located in the Coast Range with evidence of agricultural activity in their catchment or riparian zone. % sand + fine substratum was the environmental variable most strongly related to macroinvertebrate IBI.  相似文献   

12.
1. We monitored streams within the Gila River drainage in south‐western New Mexico, U.S.A., over a 5‐year period, to investigate the influence of ash input on water quality and stream biota following forest wildfires. 2. Nutrients [ammonium, nitrate, soluble reactive phosphate (SRP)], potassium and alkalinity were most affected by fires; all were increased in stream water following ash input. Concentrations of each returned to prefire conditions within 4 months. Ammonium and nitrate also increased in stream water as a result of atmospheric fallout (e.g. smoke) from fires outside the catchment. 3. Periphyton biomass was not affected significantly by wildfires, although there was a shift in diatom assemblage to smaller more adnate taxa. Cocconeis placentula was frequently the dominant postfire species. 4. The influence of wildfires on macroinvertebrates ranged from minimal to dramatic reductions in density depending upon the duration of ash flows and the characteristics of the ash material that entered each system. Macroinvertebrate densities returned to prefire conditions within 1 year. 5. An in‐situ ashing experiment was conducted on a first‐order stream in the Gila River drainage to monitor on‐site physiochemical and biotic responses during and after fire ash addition, for comparison with ash delivery from real wildfires on monitored streams. Physical–chemical parameters and algae and macroinvertebrates were monitored in an ashed and upstream reference reach for 13 months. Results generally substantiated findings from monitored streams. 6. Concentrations of major ions and nutrients, as well as turbidity, conductivity and pH, increased immediately in stream water below the point of ashing, while dissolved oxygen decreased. Changes in water chemistry were short‐lived (=24 h) except for SRP. The concentration of SRP in stream water was significantly higher in the ashed reach than the control reach for at least 1 month after ash input. 7. Periphyton biomass and diatom assemblages were not significantly altered in the ashing study, whereas macroinvertebrate density was measurably lower in the ashed reach for nearly a year. Macroinvertebrate drift was over 10‐fold greater in the ashed reach compared with the reference reach during ashing. Dissimilarity between macroinvertebrate communities in the reference and ashed reaches was significantly greater than variation within reaches for nearly a year.  相似文献   

13.
1. Most Finnish streams were channelised during the 19th and 20th century to facilitate timber floating. By the late 1970s, extensive programmes were initiated to restore these degraded streams. The responses of fish populations to restoration have been little studied, however, and monitoring of other stream biota has been negligible. In this paper, we review results from a set of studies on the effects of stream restoration on habitat structure, brown trout populations, benthic macroinvertebrates and leaf retention. 2. In general, restoration greatly increased stream bed heterogeneity. The cover of mosses in channelised streams was close to that of unmodified reference sites, but after restoration moss cover declined to one‐tenth of the pre‐restoration value. 3. In one stream, densities of age‐0 trout were slightly lower after restoration, but the difference to an unmodified reference stream was non‐significant, indicating no effect of restoration. In another stream, trout density increased after restoration, indicating a weakly positive response. The overall weak response of trout to habitat manipulations probably relates to the fact that restoration did not increase the amount of pools, a key winter habitat for salmonids. 4. Benthic invertebrate community composition was more variable in streams restored 4–6 years before sampling than in unmodified reference streams or streams restored 8 years before sampling. Channelised streams supported a distinctive set of indicator species, most of which were filter‐feeders or scrapers, while most of the indicators in streams restored 8 years before sampling were shredders. 5. Leaf retentiveness in reference streams was high, with 60–70% of experimentally released leaves being retained within 50 m. Channelised streams were poorly retentive (c. 10% of leaves retained), and the increase in retention following restoration was modest (+14% on average). Aquatic mosses were a key retentive feature in both channelised and natural streams, but their cover was drastically reduced through restoration. 6. Mitigation of the detrimental impacts of forestry (e.g. removal of mature riparian forests) is a major challenge to the management of boreal streams. This goal cannot be achieved by focusing efforts only on restoration of physical structures in stream channels, but also requires conservation and ecologically sound management of riparian forests.  相似文献   

14.
We compared the stream habitat characteristics and macroinvertebrate assemblages of boreal headwater streams in both the Finnish and the Russian parts of a single river basin, the Koitajoki River. Over the last 50 years, the Finnish side of the catchment has been managed using modern forestry techniques, whereas Russian side has remained nearly unexploited and is near to its natural state. Differences in silvicultural activities were observed to contribute to differences in habitat structure. The channel habitats were in fairly natural state in the Russian reference streams, whereas the impacted Finnish sites were cleared and straightened. In comparison with the impacted channels, the abundance of coarse woody debris (CWD) was 10–100-fold higher in the reference streams. Implications on the forestry-induced deterioration of water quality were also observed. On the contrary, only small differences in macroinvertebrate assemblages were detected. Despite the lower amount of retentive structures (CWD), significantly higher relative abundance of shredders was observed in the forestry-impacted streams. Otherwise the zoobenthic communities were quite similar in the two subcatchments. We suggest that several mechanisms may explain this similarity: (1) community structure is controlled by naturally acidic conditions, (2) the adverse impacts of forestry on habitat structure and water quality of streams may be compensated by increased input of deciduous litter and organic compounds from drained, structurally young riparian forests and (3) macroinvertebrate species have flexible feeding habits and may thus readily adapt to changing conditions.  相似文献   

15.
The influences of productivity, vegetation coverage, and benthivorous fish abundance on macroinvertebrate abundance and mean size were examined in Midwestern USA impoundments. While impoundment productivity was not strongly related to total abundance and mean size of macroinvertebrates, it was related to specific taxa. As productivity increased, Ephemeroptera and Odonata abundance decreased and Diptera abundance increased. Despite the shift in taxonomic composition, mean individual size of the macroinvertebrate community varied little with changes in impoundment productivity. Relationships between macroinvertebrates and benthivorous fish were mixed. Macroinvertebrate abundance, especially Diptera, increased with increases in bluegill Lepomis macrochirus Rafinesque abundance and decreased with increases in channel catfish Ictalurus punctatus (Rafinesque) (which are stocked annually) abundance. Fish were not related to the mean size of macroinvertebrates. Macrophyte coverage was not related to macroinvertebrate abundance or mean size. Overall, macroinvertebrate abundance was mostly related to productivity and benthivorous fish in these impoundments. Mean size of macroinvertebrates did not differ with productivity, fish abundance, or macrophyte coverage.  相似文献   

16.
1. Rainforest streams in eastern Madagascar have species‐rich and diverse endemic insect communities, while streams in deforested areas have relatively depauperate assemblages dominated by collector‐gatherer taxa. We sampled a suite of benthic insects and their food resources in three primary rainforest streams within Ranomafana National Park in eastern Madagascar and three agriculture streams in the park's deforested peripheral zone. We analysed gut contents and combined biomass and stable isotope data to examine stream community responses to deforestation in the region, which is a threatened and globally important hotspot for freshwater biodiversity. 2. Gut analyses showed that most taxa depended largely on amorphous detritus, obtained either from biofilms (collector‐gatherers) or from seston (microfilterers). Despite different resource availability in forest versus agriculture streams, diets of each taxon did not differ between stream types, suggesting inflexible feeding modes. Carbon sources for forest stream insects were difficult to discern using δ13C. However, in agriculture streams dependence on terrestrial carbon sources was low relative to algal sources. Most insect taxa with δ13C similar to terrestrial carbon sources (e.g. the stonefly Madenemura, the caddisfly Chimarra sp. and Simulium blackflies) were absent or present at lower biomass in agriculture streams relative to forest streams. Conversely, collector‐gatherers (Afroptilum mayflies) relied on algal carbon sources and had much higher biomass in agriculture streams. 3. Our analyses indicate that a few collector‐gatherer species (mostly Ephemeroptera) can take advantage of increased primary production in biofilms and consequently dominate biomass in streams affected by deforestation. In contrast, many forest stream insects (especially those in the orders Plecoptera, Trichoptera and Diptera) depend on terrestrial carbon sources (i.e. seston and leaf litter), are unable to track resource availability and consequently decline in streams draining deforested landscapes. These forest‐specialists are often micro‐endemic and particularly vulnerable to deforestation. 4. The use of consumer biomass data in stable isotope research can help detect population‐level responses to shifts in basal resources caused by anthropogenic change. We also suggest that restoration of vegetated riparian zones in eastern Madagascar and elsewhere could mitigate the deleterious effects of deforestation on sensitive, endemic stream taxa that are dependent on terrestrial carbon sources.  相似文献   

17.
Photosynthesis and respiration by the epilithic community on cobble in an arctic tundra stream, were estimated from oxygen production and consumption in short-term (4–12 h), light and dark, chamber incubations. Chlorophyll a was estimated at the end of each incubation by quantitatively removing the epilithon from the cobble. Fertilization of the river with phosphate alone moderately increased epilithic chlorophyll a, photosynthesis, and respiration. Fertilization with ammonium sulfate and phosphate, together, greatly increased each of these variables. Generally, under both control and fertilized conditions, epilithic chlorophyll a concentrations (mg m−2), photosynthesis, and respiration (mg O2 m−2, h−1) were higher in pools than in riffles. Under all conditions, the P/R ratio was consistent at ∼ 1.8 to 2.0. The vigor of epilithic algae in riffles, estimated from assimilation coefficients (mg O2 [mg Chl a]−1 h−1) was greater than the vigor of epilithic algae in pools. However, due to the greater accumulation of epilithic chlorophyll a in pools, total production (and respiration) in pools exceeded that in riffles. The epilithic community removed both ammonium and nitrate from water in chambers. Epilithic material, scoured by high discharge in response to storm events and suspended in the water column, removed ammonium and may have increased nitrate concentrations in bulk river water. However, these changes were small compared to the changes exerted by attached epilithon.  相似文献   

18.
1. Logging can strongly affect stream macroinvertebrate communities, but the direction and magnitude of these effects and their implications for trout abundance are frequently region‐specific and difficult to predict. 2. In first‐order streams in northern New England (U.S.A.) representing a chronosequence of logging history (<2 to >80 years since logging), we measured riparian forest conditions, stream macroinvertebrate community characteristics and brook trout (Salvelinus fontinalis) abundance. Principal component analysis was used to collapse forest data into two independent variables representing variation in logging history, riparian forest structure and canopy cover. We used these data to test whether logging history and associated forest conditions were significant predictors of macroinvertebrate abundance and functional feeding group composition, and whether brook trout abundance was related to logging‐associated variation in invertebrate communities. 3. Catchments with high PC1 scores (recently logged, high‐density stands with low mean tree diameter) and low PC2 scores (low canopy cover) had significantly higher total macroinvertebrate abundance, particularly with respect to chironomid larvae (low PC2 scores) and invertebrates in the grazer functional feeding group (high PC1 scores). In contrast, proportional representation of macroinvertebrates in the shredder functional feeding group increased with time since logging and canopy cover (high PC2 scores). Brook trout density and biomass was significantly greater in young, recently logged stands (high PC1 scores) and was positively related to overall macroinvertebrate abundance. In addition, three variables – trout density, invertebrate abundance and shredder abundance – successfully discriminated between streams that were less‐impacted versus more‐impacted by forestry. 4. These results indicate that timber harvest in northern New England headwater streams may shift shredder‐dominated macroinvertebrate communities supporting low trout abundance to a grazer/chironomid‐dominated macroinvertebrate community supporting higher trout abundance. However, while local effects on brook trout abundance may be positive, these benefits may be outweighed by negative effects of brook trout on co‐occurring species, as well as impairment of habitat quality downstream. Research testing the generality of these patterns will improve understanding of how aquatic ecosystems respond to anthropogenic and natural trajectories of forest change.  相似文献   

19.
1. We studied the effect of substratum movement on the communities of adjacent mountain and spring tributaries of the Ivishak River in arctic Alaska (69°1′N, 147°43′W). We expected the mountain stream to have significant bed movement during summer because of storm flows and the spring stream to have negligible bed movement because of constant discharge. 2. We predicted that the mountain stream would be inhabited only by taxa able to cope with frequent bed movement. Therefore, we anticipated that the mountain stream would have lower macroinvertebrate species richness and biomass and a food web with fewer trophic levels and lower connectance than the spring stream. 3. Substrata marked in situ indicated that 57–66% of the bed moved during summer in the mountain stream and 4–20% moved in the spring stream. 4. Macroinvertebrate taxon richness was greater in the spring (25 taxa) than in the mountain stream (20 taxa). Mean macroinvertebrate biomass was also greater in the spring (4617 mg dry mass m?2) than in the mountain stream (635 mg dry mass m?2). Predators contributed 25% to this biomass in the spring stream, but only 7% in the mountain stream. 5. Bryophyte biomass was >1000 times greater in the spring stream (88.4 g ash‐free dry mass m?2) than the mountain stream (0.08 g ash‐free dry mass m?2). We attributed this to differences in substratum stability between streams. The difference in extent of bryophyte cover between streams probably explains the high macroinvertebrate biomass in the spring stream. 6. Mean food‐web connectance was similar between streams, ranging from 0.18 in the spring stream to 0.20 in the mountain stream. Mean food chain length was 3.04 in the spring stream and 1.83 in the mountain stream. Dolly Varden char (Salvelinus malma) was the top predator in the mountain stream and the American dipper (Cinclus mexicanus) was the top predator in the spring stream. The difference in mean food chain length between streams was due largely to the presence of C. mexicanus at the spring stream. 7. Structural differences between the food webs of the spring and mountain streams were relatively minor. The difference in the proportion of macroinvertebrate biomass contributing to different trophic levels was major, however, indicating significant differences in the volume of material and energy flow between food‐web nodes (i.e. food web function).  相似文献   

20.
Stuart E. Bunn 《Hydrobiologia》1988,162(3):211-223
The long-term processing of jarrah (Eucalyptus marginata) leaves was examined in a small forest stream to determine the role played by macroinvertebrates and the influence of soluble polyphenols in the leaves. The widely used exponential model of litter processing was inadequate in describing the fate of jarrah leaves. Decomposition occurred in three distinct phases and was best described by a quadratic model. After a substantial and rapid loss due to leaching, processing was virtually inhibited during summer and autumn, with no associated increase in the organic nitrogen content. Macroinvertebrates played a significant role in the latter part of the year, processing approximately 25% of the initial leaf mass.High levels of soluble polyphenols in the leaves had an inhibitory effect on the microbial colonization of jarrah leaves, as indicated by the organic nitrogen content. However, pre-leaching of these compounds had no effect on the rate of decomposition nor on the leaf bag fauna. Polyphenols released into the stream during summer, when flows are low, may reach high concentrations and contribute to the slow processing at this time. Leaf litter processing in a nearby sedimented stream was compared with that in the undisturbed stream. Sediment disrupted litter processing, virtually eliminating the contribution made by invertebrates. Smothered leaf bags became anoxic, restricting microbial activity and reducing leaf quality. The low processing rate of leaves in the sedimented stream was attributed to differences in the leaf bag fauna. Leaf bags in the sedimented stream had more animals but shredders were poorly represented and predators were the most abundant feeding group. The low density of shredders was more likely to be a result of the reduced availability of detritus rather than selective predation. Whatever the reason, invertebrates in the sedimented stream were denied access to an important source of energy. Inorganic sediment can have a profound effect on stream function by interfering with the shredder-CPOM pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号