首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
3.
Nguyen MT  Schroeder SJ 《Biochemistry》2010,49(49):10574-10581
Consecutive GU pairs at the ends of RNA helices provide significant thermodynamic stability between -1.0 and -3.8 kcal/mol at 37 °C, which is equivalent to approximately 2 orders of magnitude in the value of a binding constant. The thermodynamic stabilities of GU pairs depend on the sequence, stacking orientation, and position in the helix. In contrast to GU pairs in the middle of a helix that may be destabilizing, all consecutive terminal GU pairs contribute favorable thermodynamic stability. This work presents measured thermodynamic stabilities for 30 duplexes containing two, three, or four consecutive GU pairs at the ends of RNA helices and a model to predict the thermodynamic stabilities of terminal GU pairs. Imino proton NMR spectra show that the terminal GU nucleotides form hydrogen-bonded pairs. Different orientations of terminal GU pairs can have different conformations with equivalent thermodynamic stabilities. These new data and prediction model will help improve RNA secondary structure prediction, identification of miRNA target sequences with GU pairs, and efforts to understand the fundamental physical forces directing RNA structure and energetics.  相似文献   

4.
5.
Sugimoto N  Nakano M  Nakano S 《Biochemistry》2000,39(37):11270-11281
Thermodynamics of 66 RNA/DNA duplexes containing single mismatches were measured by UV melting methods. Stability enhancements for rG. dT mismatches were the largest of all mismatches examined here, while rU.dG mismatches were not as stable. The methyl group on C5 of thymine enhanced the stability by 0.12 approximately 0.53 kcal mol(-)(1) depending on the identity of adjacent Watson-Crick base pairs, whereas the 2'-hydroxyl group in ribouridine stabilized the duplex by approximately 0.6 kcal mol(-)(1) regardless of the adjacent base pairs. Stabilities induced by the methyl group in thymine, the 2'-hydroxyl group of ribouridine, and an nucleotide exchange at rG.dT and rU.dG mismatches were found to be independent of each other. The order for the mismatch stabilities is rG.dT > rU. dG approximately rG.dG > rA.dG approximately rG.dA approximately rA. dC > rA.dA approximately rU.dT approximately rU.dC > rC.dA approximately rC.dT, although the identity of the adjacent base pairs slightly altered the order. The pH dependence stability and structural changes were suggested for the rA.dG but not for rG.dA mismatches. Comparisons of trinucleotide stabilities for G.T and G.U pairs in RNA, DNA, and RNA/DNA duplexes indicate that stable RNA/DNA mismatches exhibit a stability similar to RNA mismatches while unstable RNA/DNA mismatches show a stability similar to that of DNA mismatches. These results would be useful for the design of antisense oligonucleotides.  相似文献   

6.
Influenza A is a negative sense RNA virus of significant public health concern. While much is understood about the life cycle of the virus, knowledge of RNA secondary structure in influenza A virus is sparse. Predictions of RNA secondary structure can focus experimental efforts. The present study analyzes coding regions of the eight viral genome segments in both the (+) and (-) sense RNA for conserved secondary structure. The predictions are based on identifying regions of unusual thermodynamic stabilities and are correlated with studies of suppression of synonymous codon usage (SSCU). The results indicate that secondary structure is favored in the (+) sense influenza RNA. Twenty regions with putative conserved RNA structure have been identified, including two previously described structured regions. Of these predictions, eight have high thermodynamic stability and SSCU, with five of these corresponding to current annotations (e.g., splice sites), while the remaining 12 are predicted by the thermodynamics alone. Secondary structures with high conservation of base-pairing are proposed within the five regions having known function. A combination of thermodynamics, amino acid and nucleotide sequence comparisons along with SSCU was essential for revealing potential secondary structures.  相似文献   

7.
RNA structures contain many bulges and loops that are expected to be sites for inter- and intra-molecular interactions. Nucleotides in the bulge are expected to influence the structure and recognition of RNA. The same stability is assigned to all trinucleotide bulged RNA in the current secondary structure prediction models. In this study thermal denaturation experiments were performed on four trinucleotide bulged RNA, in the context of HIV-1 TAR RNA, to determine whether the bulge sequence affects RNA stability and its divalent ion interactions. Cytosine-rich bulged RNA were more stable than uracil-rich bulged RNA in 1 M KCl. Interactions of divalent ions were more favorable with uracil-rich bulged RNA by ~2 kcal/mol over cytosine-rich bulged RNA. The UCU-TAR RNA (wild type) is stabilized by 1.7 kcal/mol in 9.5 mM Ca2+ as compared with 1 M KCl, whereas no additional gain in stability is measured for CCC-TAR RNA. These results have implications for base substitution experiments traditionally employed to identify metal ion binding sites. To our knowledge, this is the first systematic study to quantify the effect of small sequence changes on RNA stability upon interactions with divalent ions.  相似文献   

8.
The West Nile virus (WNV) RNA genome harbors the characteristic methylated cap structure present at the 5' end of eukaryotic mRNAs. In the present study, we report a detailed study of the binding energetics and thermodynamic parameters involved in the interaction between RNA and the WNV RNA triphosphatase, an enzyme involved in the synthesis of the RNA cap structure. Fluorescence spectroscopy assays revealed that the initial interaction between RNA and the enzyme is characterized by a high enthalpy of association and that the minimal RNA binding site of NS3 is 13 nucleotides. In order to provide insight into the relationship between the enzyme structure and RNA binding, we also correlated the effect of RNA binding on protein structure using both circular dichroism and denaturation studies as structural indicators. Our data indicate that the protein undergoes structural modifications upon RNA binding, although the interaction does not significantly modify the stability of the protein.  相似文献   

9.
10.
11.
Results from optical melting studies of Watson–Crick complementary heteroduplexes formed between 2′-O-methyl RNA and RNA oligonucleotides are used to determine nearest neighbor thermodynamic parameters for predicting the stabilities of such duplexes. The results are consistent with the physical model assumed by the individual nearest neighbor-hydrogen bonding model, which contains terms for helix initiation, base pair stacking and base pair composition. The sequence dependence is similar to that for Watson–Crick complementary RNA/RNA duplexes, which suggests that the sequence dependence may also be similar to that for other backbones that favor A-form RNA conformations.  相似文献   

12.
《Seminars in Virology》1997,8(3):153-165
RNA molecules fold into specific base-paired conformations that contain single-stranded regions, A-form double helices, hairpin loops, internal loops, bulges, junctions, pseudoknots, kissing hairpins, and so forth. These structural motifs are recognized by proteins, other RNAs, and other parts of the same RNA. The interactions of these structural elements are crucial to the biological functions of the RNA molecules. We describe the different motifs and discuss their thermodynamic stabilities relative to single strands of RNA. The stabilities determine under what conditions they occur and whether they change when interacting with proteins or other ligands.  相似文献   

13.
Thermodynamics of single mismatches in RNA duplexes   总被引:4,自引:0,他引:4  
Kierzek R  Burkard ME  Turner DH 《Biochemistry》1999,38(43):14214-14223
The thermodynamic properties and structures of single mismatches in short RNA duplexes were studied in optical melting and imino proton NMR experiments. The free energy increments at 37 degrees C measured for non-GU single mismatches range from -2.6 to 1.7 kcal/mol. These increments depend on the identity of the mismatch, adjacent base pairs, and the position in the helix. UU and AA mismatches are more stable close to a helix end, but GG mismatch stability is essentially unaffected by the position in the helix. Approximations are suggested for predicting stabilities of single mismatches in short RNA duplexes.  相似文献   

14.
Modified nucleotides are useful tools to study the structures, biological functions and chemical and thermodynamic stabilities of nucleic acids. Derivatives of 2,6-diaminopurine riboside (D) are one type of modified nucleotide. The presence of an additional amino group at position 2 relative to adenine results in formation of a third hydrogen bond when interacting with uridine. New method for chemical synthesis of protected 3′-O-phosphoramidite of LNA-2,6-diaminopurine riboside is described. The derivatives of 2′-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides were used to prepare complete 2′-O-methyl RNA and LNA-2′-O-methyl RNA chimeric oligonucleotides to pair with RNA oligonucleotides. Thermodynamic stabilities of these duplexes demonstrated that replacement of a single internal 2′-O-methyladenosine with 2′-O-methyl-2,6-diaminopurine riboside (DM) or LNA-2,6-diaminopurine riboside (DL) increases the thermodynamic stability (ΔΔG°37) on average by 0.9 and 2.3 kcal/mol, respectively. Moreover, the results fit a nearest neighbor model for predicting duplex stability at 37°C. D-A and D-G but not D-C mismatches formed by DM or DL generally destabilize 2′-O-methyl RNA/RNA and LNA-2′-O-methyl RNA/RNA duplexes relative to the same type of mismatches formed by 2′-O-methyladenosine and LNA-adenosine, respectively. The enhanced thermodynamic stability of fully complementary duplexes and decreased thermodynamic stability of some mismatched duplexes are useful for many RNA studies, including those involving microarrays.  相似文献   

15.
The NMR structure of a 12-mer RNA derived from the helix 6 of SRP RNA from Pyrococcus furiosus, whose loop-closing base pair is U.G, was determined, and the structural and thermodynamic properties of the RNA were compared with those of a mutant RNA with the C:G closing base pair. Although the structures of the two RNAs are similar to each other and adopt the GNRR motif the conformational stabilities are significantly different to each other It was suggested that weaker stacking interaction of the GAAG loop with the U:G closing base pair in 12-mer RNA causes the lower conformational stability.  相似文献   

16.
Proteins with RNA chaperone activity are able to promote folding of RNA molecules by loosening their structure. This RNA unfolding activity is beneficial when resolving misfolded RNA conformations, but could be detrimental to RNAs with low thermodynamic stability. In order to test this idea, we constructed various RNAs with different structural stabilities derived from the thymidylate synthase (td) group I intron and measured the effect of StpA, an Escherichia coli protein with RNA chaperone activity, on their splicing activity in vivo and in vitro. While StpA promotes splicing of the wild-type td intron and of mutants with wild-type-like stability, splicing of mutants with a lower structural stability is reduced in the presence of StpA. In contrast, splicing of an intron mutant, which is not destabilized but which displays a reduced population of correctly folded RNAs, is promoted by StpA. The sensitivity of an RNA towards StpA correlates with its structural stability. By lowering the temperature to 25°C, a temperature at which the structure of these mutants becomes more stable, StpA is again able to stimulate splicing. These observations clearly suggest that the structural stability of an RNA determines whether the RNA chaperone activity of StpA is beneficial to folding.  相似文献   

17.
RNA interference can be used as a tool for gene silencing mediated by small interfering RNAs (siRNA). The critical step in effective and specific RNAi processing is the selection of suitable constructs. Major design criteria, i.e., Reynolds’s design rules, thermodynamic stability, internal repeats, immunostimulatory motifs were emphasized and implemented in the siRNA design tool. The tool provides thermodynamic stability score, GC content and a total score based on other design criteria in the output. The viability of the tool was established with different datasets. In general, the siRNA constructs produced by the tool had better thermodynamic score and positional properties. Comparable thermodynamic scores and better total scores were observed with the existing tools. Moreover, the results generated had comparable off-target silencing effect. Criteria evaluations with additional criteria were achieved in WEKA.  相似文献   

18.
19.
A thermodynamic study of unusually stable RNA and DNA hairpins.   总被引:11,自引:0,他引:11       下载免费PDF全文
V P Antao  S Y Lai    I Tinoco  Jr 《Nucleic acids research》1991,19(21):5901-5905
About 70% of the RNA tetra-loop sequences identified in ribosomal RNAs from different organisms fall into either (UNCG) or (GNRA) families (where N = A, C, G, or U; and R = A or G). RNA hairpins with these loop sequences form unusually stable tetra-loop structures. We have studied the RNA hairpin GGAC(UUCG)GUCC and several sequence variants to determine the effect of changing the loop sequence and the loop-closing base pair on the thermodynamic stability of (UNCG) tetra-loops. The hairpin GGAG(CUUG)CUCC with the conserved loop G(CUUG)C was also unusually stable. We have determined melting temperatures (Tm), and obtained thermodynamic parameters for DNA hairpins with sequences analogous to stable RNA hairpins with (UNCG), C(GNRA)G, C(GAUA)G, and G(CUUG)C loops. DNA hairpins with (TTCG), (dUdUCG), and related sequences in the loop, unlike their RNA counterparts, did not form unusually stable hairpins. However, DNA hairpins with the consensus loop sequence C(GNRA)G were very stable compared to hairpins with C(TTTT)G or C(AAAA)G loops. The C(GATA)G and G(CTTG)C loops were also extra stable. The relative stabilities of the unusually stable DNA hairpins are similar to those observed for their RNA analogs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号