首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malachite Green (MG), consisting of green crystals with a metallic lustre, is highly soluble in water, cytotoxic to various mammalian cells and also acts as a liver tumour promoter. In view of its industrial importance and possible exposure to human beings, MG poses a potential environmental health hazard. We have earlier reported the malignant transformation of Syrian hamster embryo (SHE) cells in primary culture by MG. In this study, we have studied the mitogen activated protein (MAP) kinase signal transduction pathway in preneoplastic cells induced by MG. Western blots of MG induced preneoplastic cells showed no phosphorylation of ERK1, an increased phosphoactive ERK2 associated with a decreased expression of phosphoactive JNK2. However, total forms of ERKs, JNKs and p38 Kinases showed similar levels of expression in control and preneoplastic SHE cells. Indirect immunofluorescence studies have shown a distinct nuclear localisation of phosphoactive ERKs in MG induced preneoplastic cells. Flow cytometric analysis showed an increase of S-phase cells in preneoplastic cells compared to control SHE cells. The present study indicates that hyperphosphorylation of ERK2, decreased JNK2 phosphorylation and an increase in S-phase cells seems to be the early changes associated with the MG induced malignant transformation of SHE cells in primary culture.  相似文献   

2.
3.
Summary Among the three major mitogen-activated protein kinase (MAPK) cascades—the extracellular signal regulated kinase (ERK) pathway, the c-JUN N-terminal/stress-activated protein kinase (JNK/SAPK) pathway, and the reactivating kinase (p38) pathway—retinoic acid selectively utilizes ERK but not JNK/SAPK or p38 when inducing myeloid differentiation of HL-60 human myeloblastic leukemia cells. Retinoic acid is known to active ERK2. The present data show that the activation is selective for this MAPK pathway. JNK/SAPK or p38 are not activated by retinoic acid. Presumably because it activates relevant signaling pathways including MAPK, the polyoma middle T antigen, as well as certain transformation defective mutants thereof, is known to promote retinoic acid-induced differentiation, although the mechanism of action is not well understood. The present results show that consistent with the selective involvement of ERK2, ectopic expression of either the polyoma middle T antigen or its dl23 mutant, which is defective for PLCγ and PI-3 kinase activation, or the Δ205 mutant, which in addition is also weakened for activation of src-like kinases, caused no enhanced JNK/SAPK or p38 kinase activity that promoted the effects of retinoic acid. However, all three of these polyoma antigens are known to enhance ERK2 activation and promote differentiation induced by retinoic acid. Polyoma-activated MAPK signaling relevant to retinoic acid-induced differentiation is thus restricted to ERK2 and does not involve JNK/SAPK or p38. Taken together, the data indicate that among the three parallel MAPK pathways, retinoic acid-induced HL-60 myeloid differentiation selectively depends on activating ERK but not the other two MAPK pathways, JNK/SAPK or p38, with no apparent cross talk between pathways. Furthermore, the striking ability of polyoma middle T antigens to promote retinoic acid-induced differentiation appears to utilize ERK, but not JNK/SPK or p38 signaling.  相似文献   

4.
5.
We used a genetic approach to characterize features of mitogen-activated protein kinase (MAPK) activation occurring as a consequence of expression of distinct erbB receptor combinations in transformed human cells. Kinase-deficient erbB proteins reduced epidermal growth factor (EGF)-induced tyrosine phosphorylation of endogenous Shc proteins and also reduced immediate and sustained EGF-induced ERK MAPK activities in human glioblastoma cells, although basal ERK MAPK activities were unaffected. Basal and EGF-induced JNK and p38 MAPK kinase activities were equivalent in parental cancer cells and EGFR-inhibited subclones. When ectopically overexpressed in murine fibroblasts and human glioblastoma cells, a constitutively activated human EGF receptor oncoprotein (deltaEGFR) induced EGF-independent elevation of basal ERK MAPK activity. Basal JNK MAPK kinase activity was also specifically induced by deltaEGFR, which correlated with increased phosphorylation of a 54-kDa JNK2 protein observed in deltaEGFR-containing cells. The JNK activities in response to DNA damage were comparably increased in cells containing wildtype EGFR or deltaEGFR. Consistent with the notion that transforming erbB complexes induce sustained and unregulated MAPK activities, coexpression of p185(neu) and EGFR proteins to levels sufficient to transform murine fibroblasts also resulted in prolonged EGF-induced ERK in vitro kinase activation. Transforming erbB complexes, including EGFR homodimers, deltaEGFR homodimers, and p185(neu)/EGFR heterodimers, appear to induce sustained, unattenuated activation of MAPK activities that may contribute to increased transformation and resistance to apoptosis in primary human glioblastoma cells.  相似文献   

6.
Activated Ras, but not Raf, causes transformation of RIE-1 epithelial cells, supporting the importance of Raf-independent pathways in mediating Ras transformation. The p38 and JNK mitogen-activated protein kinase cascades are activated by Ras via Raf-independent effector function. Therefore, we determined whether p38 and JNK activation are involved in Ras transformation of RIE-1 epithelial cells. Rather surprisingly, we found that pharmacologic inhibition of p38, together with Raf activation of ERK, was sufficient to mimic the morphologic and growth transformation caused by oncogenic Ras. p38 inhibition together with ERK activation also caused the same alterations in cyclin D1 and p21(CIP1) expression caused by Ras and induced an autocrine growth factor loop important for transformation. Finally, in contrast to p38, we found that JNK activation promoted Ras transformation, and that Ras deregulation of p38 and JNK was not mediated by activation of the Rac small GTPase. We conclude that a key action of Raf-independent effector pathways important for Ras transformation may involve inhibition of p38 and activation of JNK.  相似文献   

7.
Thy-1 (CD90) crosslinking by monoclonal antibodies (mAb) in the context of costimulation causes the activation of mouse T-lymphocytes; however, the associated signal transduction processes have not been studied in detail. In this study we investigated the role of mitogen-activated protein kinases (MAPKs) in Thy-1-mediated T-lymphocyte activation using mAb-coated polystyrene microspheres to crosslink Thy-1 and costimulatory CD28 on murine T-lymphocytes. Concurrent Thy-1 and CD28 crosslinking induced DNA synthesis by T-lymphocytes, as well as interleukin (IL)-2 and IL-2 receptor (IL-2R) α chain (CD25) expression. Increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, and c-Jun N-terminal protein kinase (JNK) was also observed. Pharmacologic inhibition of ERK1/2 or JNK activation inhibited Thy-1-induced DNA synthesis and IL-2 production by T-lymphocytes. p38 MAPK inhibition also decreased DNA synthesis in Thy-1-stimulated T-lymphocytes; however, IL-2 production was increased in these cells. Inhibition of JNK, but not ERK1/2 or p38 MAPK, caused a marked reduction in Thy-1-induced CD25 expression. In addition, inhibition of p38 MAPK or JNK, but not ERK1/2, impaired the growth of IL-2-dependent CTLL-2 T-lymphocytes but did not substantially affect CD25 expression. Finally, exogenous IL-2 reversed the inhibitory effect of ERK1/2 or JNK inhibition on Thy-1-stimulated DNA synthesis by T-lymphocytes but did not substantially reverse JNK inhibition of CD25 expression. Collectively, these results suggest that during Thy-1-induced T-lymphocyte activation, ERK1/2 and JNK promoted IL-2 production whereas p38 MAPK negatively regulated IL-2 expression. JNK signalling was also required for CD25 expression. IL-2R signalling involved both p38 MAPK and JNK in CTLL-2 cells, whereas p38 MAPK was most important for IL-2R signalling in primary T-lymphocytes. MAPKs are therefore essential signalling intermediates for the Thy-1-driven proliferation of mouse T-lymphocytes.  相似文献   

8.
9.
Low-energy laser irradiation (LELI) has been shown to promote skeletal muscle regeneration in vivo and to activate skeletal muscle satellite cells, enhance their proliferation and inhibit differentiation in vitro. In the present study, LELI, as well as the addition of serum to serum-starved myoblasts, restored their proliferation, whereas myogenic differentiation remained low. LELI induced mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) phosphorylation with no effect on its expression in serum-starved myoblasts. Moreover, a specific MAPK kinase inhibitor (PD098059) inhibited the LELI- and 10% serummediated ERK1/2 activation. However, LELI did not affect Jun N-terminal kinase (JNK) or p38 MAPK phosphorylation or protein expression. Whereas a 3-sec irradiation induced ERK1/2 phosphorylation, a 12-sec irradiation reduced it, again with no effect on JNK or p38. Moreover, LELI had distinct effects on receptor phosphorylation: it caused phosphorylation of the hepatocyte growth factor (HGF) receptor, previously shown to activate the MAPK/ERK pathway, whereas no effect was observed on tumor suppressor necrosis alpha (TNF-alpha) receptor which activates the p38 and JNK pathways. Therefore, by specifically activating MAPK/ERK, but not JNK and p38 MAPK enzymes, probably by specific receptor phosphorylation, LELI induces the activation and proliferation of quiescent satellite cells and delays their differentiation.  相似文献   

10.
Malachite green (MG) consisting green crystals with a metallic lustre is extremely soluble in water and is highly cytotoxic to mammalian cells and also acts as liver tumor promoter. In view of its industrial importance and possible exposure to human beings, MG poses a potential environmental health hazard. We have earlier reported that MG induces malignant transformation in Syrian hamster embryo (SHE) cells. Since tyrosine phosphorylation and dephosphorylation reactions are known to play critical roles during normal and abnormal cellular proliferation, in this study we have studied the tyrosine phosphorylation, tyrosine phosphorylated proteins and protein tyrosine phosphatases in malignantly transformed cells and during sequential development of cellular transformation by MG compared to control cells. The present investigation shows that enhanced tyrosine phosphorylation and tyrosine phosphorylated proteins associated with the static levels of tyrosine protein phosphatases may probably contribute to the abnormal cellular proliferation during malignant transformation of SHE cells by MG.  相似文献   

11.
Mast cell chymase is known to induce eosinophil migration in vivo and in vitro. In the present study, we investigated possible involvement of mitogen-activated protein (MAP) kinases; extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38, in the chymase-induced eosinophil migration. Human chymase induced a rapid phosphorylation of ERK1/2 and p38 in human eosinophilic leukemia EoL-1 cells, while no phosphorylation was detected in JNK. The chymase-induced phosphorylation of ERK and p38 was inhibited by pertussis toxin. Similar results were obtained in the experiments using mouse chymase and eosinophils. U0126 (the inhibitor for MAP/ERK kinase) suppressed chymase-induced migration of EoL-1 cells and mouse eosinophils. However, SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) showed little effect on the migration. It is suggested therefore that chymase activates ERK and p38 probably through G-protein-coupled receptor, and that ERK but not p38 cascade may have a crucial role in chymase-induced migration of eosinophils.  相似文献   

12.
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is associated with a broad range of biological properties including antitumor activity. However, the effect of DHA on gastric cancer has not been clearly clarified. The aim of this study was to investigate the role and mechanism of DHA in human gastric cancer cell line BGC-823. Cell viability was assessed by MTT assay. Cell apoptosis was analyzed with flow cytometry. The expressions of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38 MAPK) and their phosphorylated forms as well as apoptosis related proteins were examined by western blot analysis. The results demonstrated that DHA inhibited cell viability of BGC-823 cells in a dose- and time-dependent manner. DHA treatment upregulated the expression of Bax, cleaved caspase-3 and -9, and degraded form of PARP, and downregulated the Bcl-2 expression and Bcl-2/Bax ratio. Meanwhile, DHA increased the phosphorylation of ERK1/2, JNK1/2 and p38 MAPK. Synthetic inhibitors of JNK1/2 or p38 MAPK kinase activity, but not inhibitor of ERK1/2, significantly abolished the DHA-induced activation of caspase-3 and -9. In vivo tumor-suppression assay further indicated that DHA displayed significant inhibitory effect on BGC-823 xenografts in tumor growth. These results indicate that DHA induces apoptosis of BGC-823 cells through JNK1/2 and p38 MAPK signaling pathways and DHA could serve as a potential additional chemotherapeutic agent for treatment of gastric cancer.  相似文献   

13.
Aquaporin-1 (AQP1) is a water channel that is induced by hypertonicity. The present study was undertaken to clarify the osmoregulation mechanism of AQP1 in renal medullary cells. In cultured mouse medullary (mIMCD-3) cells, AQP1 expression was significantly induced by hypertonic treatment with impermeable solutes, whereas urea had no effect on AQP1 expression. This result indicates the requirement of a hypertonic gradient. Hypertonicity activated ERK, p38 kinase, and JNK in mIMCD-3 cells. Furthermore, all three MAPKs were phosphorylated by the upstream activation of MEK1/2, MKK3/6, and MKK4, respectively. The treatments with MEK inhibitor U0126, p38 kinase inhibitor SB203580, and JNK inhibitor SP600125 significantly attenuated hypertonicity-induced AQP1 expression in mIMCD-3 cells. In addition, hypertonicity-induced AQP1 expression was significantly reduced by both the dominant-negative mutants of JNK1- and JNK2-expressing mIMCD-3 cells. NaCl-inducible activity of AQP1 promoter, which contains a hypertonicity response element, was attenuated in the presence of U0126, SB203580, and SP600125 in a dose-dependent manner and was also significantly reduced by the dominant-negative mutants of JNK1 and JNK2. These data demonstrate that the activation of ERK, p38 kinase, and JNK pathways and the hypertonicity response element in the AQP1 promoter are involved in hypertonicity-induced AQP1 expression in mIMCD-3 cells.  相似文献   

14.
Interleukin (IL)-8 serves as a major chemoattractant for neutrophils and has also been proposed to affect cancer progression. In the present study, we show that IGF-I stimulates IL-8 mRNA expression and IL-8 secretion in the leukemic cell line HL-60. Stimulation of IL-8 expression was completely attenuated by two inhibitors of mitogen-activated protein kinase (MAPK) kinase (MEK), which phosphorylates the MAPKs extracellular-regulated kinase (ERK)1 and ERK2, and by the c-Jun NH2-terminal kinase (JNK) inhibitor SP600125. In contrast, inhibitors of p38 MAPK and phosphatidylinositol-3 kinase (PI3K) did not abrogate the effect of IGF-I. We also show that IGF-I stimulates the activation of ERK1 and ERK2, but we could not detect any effect of IGF-I on the phosphorylation of p38, JNKp46 or JNKp54. Collectively, our results suggest that basal JNK activity and activation of the MEK–ERK pathway are required for upregulation of IL-8 by IGF-I in HL-60 cells.  相似文献   

15.
JNK, a member of the mitogen-activated protein kinases (MAPKs), is activated by the MAPK kinases SEK1 and MKK7 in response to environmental stresses. In the present study, the effects of CdCl2 treatment on MAPK phosphorylation and HSP70 expression were examined in mouse embryonic stem (ES) cells lacking the sek1 gene, the mkk7 gene, or both. Following CdCl2 exposure, the phosphorylation of JNK, p38, and ERK was suppressed in sek1-/- mkk7-/- cells. When sek1-/- or mkk7-/- cells were treated with CdCl2, JNK phosphorylation, but not the phosphorylation of either p38 or ERK, was markedly reduced, while a weak reduction in p38 phosphorylation was observed in sek1-/- cells. Thus, both SEK1 and MKK7 are required for JNK phosphorylation, whereas their role in p38 and ERK phosphorylation could overlap with that of another kinase. We also observed that CdCl2-induced HSP70 expression was abolished in sek1-/- mkk7-/- cells, was reduced in sek1-/- cells, and was enhanced in mkk7-/- cells. Similarly, the phosphorylation of heat shock factor 1 (HSF1) was decreased in sek1-/- mkk7-/- and sek1-/- cells, but was increased in mkk7-/- cells. Transfection with siRNA specific for JNK1, JNK2, p38, ERK1, or ERK2 suppressed CdCl2-induced HSP70 expression. In contrast, silencing of p38 or p38 resulted in further accumulation of HSP70 protein. These results suggest that HSP70 expression is up-regulated by SEK1 and down-regulated by MKK7 through distinct MAPK isoforms in mouse ES cells treated with CdCl2.  相似文献   

16.
Nicotine is potentially associated with the onset of chronic obstructive pulmonary disease (COPD) and lung cancer. To gain insights into the molecular mechanism underlying such nicotine-induced conditions, microarray- bioinformatics analysis was carried out in the present study to explore the gene expression profiles in human bronchial epithelial cells (HBECs) treated with 5 microM nicotine for 4, 8, and 10 h. Of 1,800 assessed genes overall, 260 (14.4%) were upregulated and 17 (0.9%) down regulated significantly. Gene ontology analysis demonstrated that most of the differentially expressed genes belonged to the category of molecular function, especially to the subcategories of enzyme activity. The integration of obtained information with bioinformatics tools in DAVID and KEGG databases indicated that the greatest number of overexpressed genes was involved in mitogen-activated protein kinase (MAPK) pathway. Membrane array analysis subsequently suggested that both extracellular signal-regulated kinase (ERK) 1/2 and c-Jun-NH(2)-terminal kinase (JNK) signalings but not p38 MAPK signaling were activated in response to nicotine. Pretreatment of HBECs with specific inhibitors against ERK 1/2 and JNK but not p38 could significantly inhibit nicotine-induced interleukin- 8 production. These results suggest that MAPK pathway may mediate the effect of nicotine through ERK 1/2 and JNK but not p38 in HBECs treated with nicotine.  相似文献   

17.
Mitogen-activated protein (MAP) kinases have been implicated as important mediators of the inflammatory response. Here we report that c-Jun NH(2)-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 MAP kinase activities are reprogrammed during the IL-6 induced macrophage-like differentiation of the murine myeloid M1 cell line. Moreover, p38 inhibition upregulates JNK and ERK activity in M1 cells and in thioglycollate-elicited peritoneal exudate macrophages. IL-6-induced M1 differentiation also induces expression of the anti-inflammatory cytokine IL-10, and p38 inhibition potentiates this increase in IL-10 expression in an ERK-dependent manner. Thus, we speculate that during inflammatory conditions in vivo macrophage p38 may regulate JNK and ERK activity and inhibit IL-10 expression. These data highlight the importance of p38 in the molecular mechanisms of macrophage function.  相似文献   

18.
19.
Angiotensin II is implicated in pathophysiological processes associated with vascular injury and repair, which include regulating the expression of numerous NF-kappaB-dependent genes. The present study examined the effect of angiotensin II on interleukin-1beta-induced NF-kappaB activation and the subsequent expression of inducible NO synthase (iNOS) and vascular cell adhesion molecule-1 (VCAM-1) in cultured rat vascular smooth muscle cells. Neither NF-kappaB activation nor iNOS or VCAM-1 expression was induced in cells treated with angiotensin II alone. However, when added together with interleukin-1beta, angiotensin II, through activation of the AT(1) receptor, inhibited iNOS expression and enhanced VCAM-1 expression induced by the cytokine. The inhibitory effect of angiotensin II on iNOS expression was associated with a down-regulation of the sustained activation of extracellular signal-regulated kinase (ERK) and NF-kappaB by interleukin-1beta, whereas the effect on VCAM-1 was independent of ERK activation. The effect of angiotensin II on iNOS was abolished by inhibition of p38 mitogen-activated protein kinase (MAPK) with SB203580, but not by inhibition of PI3 kinase with wortmannin or stress-activated protein kinase/c-Jun NH(2)-terminal kinase (JNK) with JNK inhibitor II. Thus, angiotensin II, by a mechanism that requires the participation of p38 MAPK, differentially regulates the expression of NF-kappaB-dependent genes in response to interleukin-1beta stimulation by controlling the duration of activation of ERK and NF-kappaB.  相似文献   

20.
Infection of erythroid progenitor cells by Friend spleen focus-forming virus (SFFV) leads to acute erythroid hyperplasia and eventually to erythroleukemia in susceptible strains of mice. The viral envelope protein, SFFV gp55, forms a complex with the erythropoietin receptor (EpoR) and a short form of the receptor tyrosine kinase Stk (sf-Stk), activating both and inducing Epo-independent proliferation. Recently, we discovered that coexpression of SFFV gp55 and sf-Stk is sufficient to transform NIH 3T3 and primary fibroblasts. In the current study, we demonstrate that sf-Stk and its downstream effectors are critical to this transformation. Unlike SFFV-derived erythroleukemia cells, which depend on PU.1 expression for maintenance of the transformed phenotype, SFFV gp55-sf-Stk-transformed fibroblasts are negative for PU.1. Underscoring the importance of sf-Stk to fibroblast transformation, knockdown of sf-Stk abolished the ability of these cells to form anchorage-independent colonies. Like SFFV-infected erythroid cells, SFFV gp55-sf-Stk-transformed fibroblasts express high levels of phosphorylated MEK, ERK, phosphatidylinositol 3-kinase (PI3K), Gab1/2, Akt, Jun kinase (JNK), and STAT3, but unlike virus-infected erythroid cells they fail to express phosphorylated STATs 1 and 5, which may require involvement of the EpoR. In addition, the p38 mitogen-activated protein kinase (MAPK) stress response is suppressed in the transformed fibroblasts. Inhibition of either JNK or the PI3K pathway decreases both monolayer proliferation and anchorage-independent growth of the transformed fibroblasts as does the putative kinase inhibitor luteolin, but inhibition of p38 MAPK has no effect. Our results indicate that sf-Stk is a molecular endpoint of transformation that could be targeted directly or with agents against its downstream effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号