首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein kinases and phosphatases play crucial roles in all the major cellular processes, such as signal transduction, cell differentiation, cell proliferation and cell cycle progression. Protein phosphorylation or dephosphorylation can form the basis of many critical processes, including enzyme activation or inactivation, protein localization and protein degradation. Given the importance of protein kinases to cellular development and function, it is critical that there are effective ways of disseminating information on protein kinases to the research community. This review describes such a web resource, 'The Protein Kinase Resource' (http://pkr.sdsc.edu/html/index.shtml), which serves as a repository for cellular and molecular data on protein kinases.  相似文献   

2.
Hippocampal long-term potentiation (LTP) is a persistent increase in the efficacy of synaptic transmission, which is widely thought to be a cellular mechanism that could contribute to learning and memory. Studies on the biochemical mechanisms underlying LTP suggest the involvement of protein kinases in both LTP induction and maintenance. In this report we describe an LTP-associated increase in the phosphorylation in vitro of a 17-kDa protein kinase C (PKC) substrate protein, which we have termed P17, in homogenates from the CA1 region of rat hippocampal slices. This LTP-associated increase in phosphorylation was expressed independent of significant levels of free Ca2+, as phosphorylation reactions were performed in the presence of 500 microM EGTA. The increased phosphorylation of P17 was substantially inhibited by PKC(19-36), a selective inhibitor of PKC. These data support the model that persistent PKC activation contributes to the maintenance of LTP and implicate P17 as a potential target for PKC in the CA1 region of the hippocampus.  相似文献   

3.
Threonine(668) (thr(668)) within the carboxy-terminus of the Alzheimer's disease amyloid precursor protein (APP) is a known in vivo phosphorylation site. Phosphorylation of APPthr(668) is believed to regulate APP function and metabolism. Thr(668) precedes a proline, which suggests that it is targeted for phosphorylation by proline-directed kinase(s). We have investigated the ability of four major neuronally active proline-directed kinases, cyclin dependent protein kinase-5, glycogen synthase kinase-3 beta, p42 mitogen-activated protein kinase and stress-activated protein kinase-1b, to phosphorylate APPthr(668) and report here that SAPK1b induces robust phosphorylation of this site both in vitro and in vivo. This finding provides a molecular framework to link cellular stresses with APP metabolism in both normal and disease states.  相似文献   

4.
Bistratene A, a polyether toxin isolated from the colonial ascidian Lissoclinum bistratum, causes incomplete differentiation of human leukemia (HL-60) cells apparently through a mechanism not involving protein kinase C. In view of the importance of phosphorylation/dephosphorylation in cellular growth and differentiation we have investigated protein phosphorylation in these cells following exposure to bistratene A, using two-dimensional polyacrylamide gel electrophoresis. Marked increases in the phosphorylation of a protein of 20 kDa, pl 6.7, and a basic protein of 25 kDa were observed after incubation with bistratene A. A comparison was made with cells treated with 12-O-tetradecanoylphorbol 13-acetate and bryostatin 5. While changes in phosphorylation patterns were observed with these two compounds, the 20 kDa and 25 kDa proteins did not undergo phosphorylation changes. The 20 kDa protein was induced rapidly by very low concentrations of bistratene A reaching near maximal levels with 10 nM at 15 min exposure. This protein was found to be localised to the cytoplasm. Phosphoaminoacid analysis demonstrated that the majority of 32P was present in serine and tyrosine residues. The increased phosphorylation of the 20 kDa protein appeared to be due to hyperphosphorylation of existing protein although there was some increase in the amount of the protein. These results suggest that bistratene A will be a useful tool with which to investigate cellular differentiation mechanisms.  相似文献   

5.
Nearly all processes in cells are regulated by the coordinated interplay between reversible protein phosphorylation and dephosphorylation. Therefore, it is a great challenge to identify all phosphorylation substrates of a single protein kinase to understand its integration into intracellular signaling networks. In this work, we developed an assay that holds promise as being useful for the identification of phosphorylation substrates of a given protein kinase of interest. The method relies on irreversible inhibition of endogenous kinase activities with the ATP analogue 5'-fluorosulfonylbenzoyladenosine (5'FSBA). 5'FSBA-treated cell extracts are then combined with a purified activated kinase to allow phosphorylation of putative substrate proteins, followed by a two-step purification protocol and identification by fingerprint mass spectrometry. Specifically, we applied this method to identify new phosphorylation substrates of the Drosophila p21-activated kinase (PAK) protein Mbt. Among candidate proteins identified by mass spectrometry, the dynactin complex subunit dynamitin was verified as a bona fide Mbt phosphorylation substrate and interaction partner, suggesting an involvement of this PAK protein in the regulation of dynactin-dependent cellular processes.  相似文献   

6.
Li T  Li F  Zhang X 《Proteins》2008,70(2):404-414
Protein phosphorylation plays important roles in a variety of cellular processes. Detecting possible phosphorylation sites and their corresponding protein kinases is crucial for studying the function of many proteins. This article presents a new prediction system, called PhoScan, to predict phosphorylation sites in a kinase-family-specific way. Common phosphorylation features and kinase-specific features are extracted from substrate sequences of different protein kinases based on the analysis of published experiments, and a scoring system is developed for evaluating the possibility that a peptide can be phosphorylated by the protein kinase at the specific site in its sequence context. PhoScan can achieve a specificity of above 90% with sensitivity around 90% at kinase-family level on the data experimented. The system is applied on a set of human proteins collected from Swiss-Prot and sets of putative phosphorylation sites are predicted for protein kinase A, cyclin-dependent kinase, and casein kinase 2 families. PhoScan is available at http://bioinfo.au.tsinghua.edu.cn/phoscan/.  相似文献   

7.
Rho-associated kinase (Rho-kinase/ROCK/ROK) is a serine/threonine kinase and plays an important role in various cellular functions. The cAMP-dependent protein kinase (protein kinase A/PKA) and protein kinase C (PKC) are also serine/threonine kinases, and directly and/or indirectly take part in the signal transduction pathways of Rho-kinase. They have similar phosphorylation site motifs, RXXS/T and RXS/T. The purpose of this study was to identify whether sites phosphorylated by Rho-kinase could be targets for PKA and PKC and to find peptide substrates that are specific to Rho-kinase, i.e., with no phosphorylation by PKA and PKC. A total of 18 substrates for Rho-kinase were tested for phosphorylation by PKA and PKC. Twelve of these sites were easily phosphorylated. These results mean that Rho-kinase substrates can be good substrates for PKA and/or PKC. On the other hand, six Rho-kinase substrates showing no or very low phosphorylation efficiency (<20%) for PKA and PKC were identified. Kinetic parameters (K(m) and k(cat)) showed that two of these peptides could be useful as substrates specific to Rho-kinase phosphorylation.  相似文献   

8.
Proper regulation of the cAMP-dependent protein kinase (protein kinase A, PKA) is necessary for cellular homeostasis, and dysregulation of this kinase is crucial in human disease. Mouse embryonic fibroblasts (MEFs) lacking the PKA regulatory subunit Prkar1a show altered cell morphology and enhanced migration. At the molecular level, these cells showed increased phosphorylation of cofilin, a crucial modulator of actin dynamics, and these changes could be mimicked by stimulating the activity of PKA. Previous studies of cofilin have shown that it is phosphorylated primarily by the LIM domain kinases Limk1 and Limk2, which are under the control of the Rho GTPases and their downstream effectors. In Prkar1a−/− MEFs, neither Rho nor Rac was activated; rather, we showed that PKA could directly phosphorylate Limk1 and thus enhance the phosphorylation of cofilin. These data indicate that PKA is crucial in cell morphology and migration through its ability to modulate directly the activity of LIM kinase.  相似文献   

9.
Protein tyrosine phosphorylation, modulated by the rate of both protein tyrosine kinase and protein tyrosine phosphatase activities, is critical for cellular signal transduction cascades. We report that endothelin-1 stimulation of rabbit platelets resulted in a dose- and time-dependent tyrosine phosphorylation of four groups of proteins in the molecular mass ranges of 50, 60, 70–100 and 100–200 kDa and that one of these corresponds to focal adhesion kinase. This effect is also related to the approximately 60% decrease in protein tyrosine phosphatase activity. Moreover, this inhibited activity was less sensitive to orthovanadate. In the presence of forskolin that increases the cAMP level a dose-dependent inhibition of the endothelin-stimulated tyrosine phosphorylation of different protein substrates and a correlation with an increase in the protein tyrosine phosphatase activity (11.6-fold compared to control) have been found. Further studies by immunoblotting of immunoprecipitated soluble fraction with anti-protein tyrosine phosphatase-1C from endothelin-stimulated platelets have demonstrated that the tyrosine phosphorylation of platelet protein tyrosine phosphatase-1C is correlated with the decrease in its phosphatase activity. As a consequence, modulation and regulation by endothelin-1 in rabbit platelets can be proposed through a cAMP-dependent pathway and a tyrosine phosphorylation process that may affect some relevant proteins such as focal adhesion kinase.  相似文献   

10.
Li L  Wu LL 《生理学报》2007,59(5):614-618
脂联素是主要由白色脂肪组织分泌的一种活性多肽,具有调节脂肪酸和葡萄糖代谢、抗炎、减轻动脉粥样硬化等多种生物学功能,血浆脂联素含量降低参与了代谢性疾病及心血管疾病的发生、发展。腺苷酸活化蛋白激酶(AMP.activated protein kinase,AMPK)是脂联素信号通路中的关键信号分子,本文就其在脂联素心血管保护效应中的作用作一综述,介绍脂联素改善糖、脂代谢紊乱、动脉粥样硬化、心力衰竭及心肌缺血,再灌注损伤作用机制的新进展。  相似文献   

11.
ARPP-16 and ARPP-19 are closely related cAMP-regulated phosphoproteins that were initially discovered in mammalian brain as in vitro substrates for protein kinase A (PKA). ARPP-16 is enriched in dopamine-responsive medium spiny neurons in the striatum, while ARPP-19 is ubiquitously expressed. ARPP-19 is highly homologous to alpha-endosulfine and database searches allowed the identification of novel related proteins in D. melanogaster, C. elegans, S. mansoni and yeast genomes. Using isoform-specific antibodies, we now show that ARPP-19 is composed of at least two differentially expressed isoforms (termed ARPP-19 and ARPP-19e/endosulfine). All ARPP-16/19 family members contain a conserved consensus site for phosphorylation by PKA (RKPSLVA in mammalian ARPP-16 and ARPP-19), and this site was shown to be efficiently phosphorylated in vitro by PKA. An antibody that specifically recognized the phosphorylated form of ARPP-16/19/19e was used to examine the phosphorylation of ARPP-16/19 family members in intact cells. In striatal slices, the phosphorylation of ARPP-16 was increased in response to activation of D(1)-type dopamine receptors, and decreased in response to activation of D(2)-type dopamine receptors. In non-neuronal cells, ARPP-19 was highly phosphorylated in response to activation of PKA. These results establish that ARPP-16/19 proteins constitute a family of PKA-dependent intracellular messengers that function in all cells. The high levels of ARPP-16 in striatal neurons and its bi-directional regulation by dopamine suggest a specific role in dopamine-dependent signal transduction. The conservation of this protein family through evolution suggests that it subserves an important cellular function that is regulated by PKA.  相似文献   

12.
AMP-activated protein kinase (AMPK) is emerging as a central cellular signaling hub involved in energy homeostasis and proliferation. The kinase is considered as a suitable target for pharmacological intervention in several energy-related pathologies like diabetes type II and cancer, although its signaling network is still incompletely understood. Here we apply an original two-dimensional in vitro screening approach for AMPK substrates that combines biophysical interaction based on surface plasmon resonance with in vitro phosphorylation. By enriching for proteins that interact with a specific AMPK isoform, we aimed to identify substrates that are also preferentially phosphorylated by this specific AMPK isoform. Application of this screen to full-length AMPK α2β2γ1 and soluble rat liver proteins identified the tumor suppressor fumarate hydratase (FH). FH was confirmed to interact with and to be preferentially phosphorylated by the AMPKα2 isoform by using yeast-two-hybrid and in vitro phosphorylation assays. AMPK-mediated phosphorylation of FH significantly increased enzyme activity in vitro and in vivo, suggesting that it is a bona fide AMPK substrate. In vivo, AMPKα2 is supposed to target the cytosolic/nuclear pools of FH, whose tumor suppressor function relies on DNA damage repair and inhibition of HIF-1α-signaling.  相似文献   

13.
细菌蛋白质磷酸化修饰是调控细菌基因表达的一种重要方式,在细菌诸多生命活动中发挥非常关键的作用。本文系统概括了近年来细菌蛋白质磷酸化修饰的种类、双组分调控系统中磷酸化修饰调控信号传导、酪氨酸残基磷酸化修饰以及丝/苏氨酸残基磷酸化修饰等,同时对不同种类细菌蛋白质磷酸化修饰的功能进行综述,这些研究将对人类了解细菌蛋白质翻译后修饰的磷酸化调控及其与控制细菌感染的关系提供参考价值。  相似文献   

14.
Mess1是新近鉴定的 STE2 0家族的蛋白激酶 .对 Mess1的基因表达和蛋白功能进行研究 ,发现其 m RNA在鼠组织中广泛分布 ,但在不同细胞系中表达显著不同 ;结构分析表明 ,Mess1蛋白N端是保守的 STE2 0样激酶催化区 ,C端是高度亲水的酸性调节区 ,包含多个潜在的丝氨酸 /苏氨酸磷酸化调节位点 .哺乳动物细胞表达的 Mess1对 MBP显示出激酶活性 ,并发生自主磷酸化 .Mess1可被砷酸盐应激激活 ,但丝裂原 EGF刺激无活化效应 .表明 Mess1可能在蛋白磷酸化的早期过程中发挥作用 ,介导细胞对严重应激刺激引起的特异性反应 .  相似文献   

15.
Receptor tyrosine kinase (RTK) Met or c-Met is a target of hepatocyte growth factor (HGF) and it plays an important role under normal and pathological conditions. Activation of Met signaling pathway is associated with several cellular processes, such as proliferation, survival, motility, angiogenesis, invasion, and metastasis. In this article, we describe the ability of Met to activate upon a mild alkali treatment. To identify potential alkali-regulated proteins, CAKI-1 cells were treated with alkaline media and further tested for protein phosphorylation changes. By anti-phosphotyrosine antibody precipitation and lectin chromatography, we identified Met as a major cytoplasmic membrane protein that responded to pH changes by its phosphorylation. The activation of Met by alkali occurred at pH >8.0 and was dose-dependent. Specificity of the Met response to alkali was confirmed by the treatment with Met kinase inhibitor SU11274 and also by Met receptor knockout using CRISPR/CAS9 genome editing system. Both approaches completely blocked the Met phosphorylation response in CAKI-1 cells. Similar pH-dependent Met activation was observed in the HeLa cell line. Our data suggest existence of ligand-independent mechanism of Met receptor activation.  相似文献   

16.
Binding of integrins to the extracellular matrix (ECM) activates various signal transduction pathways and regulates gene expression in many cell types. Integrin-dependent cytoplasmic protein/protein interactions are necessary for activation of those signal transduction cascades. In our studies we investigated a possible association of pp125FAK, an adhesion involved tyrosine kinase, with the integrin β1 subunit. Further we wanted to know to which extent protein tyrosine phosphorylation affects cell adhesion to the ECM and the possible β1 integrin/pp125FAKcomplex. We were able to show that in HaCaT cells (a human keratinocyte derived cell line) the integrin β1 subunit is associated with tyrosine kinase pp125FAK. This association was observed in ECM-adherent cells and nonadherent cells and is independent of tyrosine phosphorylation. However, cell adhesion of HaCaT cells to specific substrates requires tyrosine phosphorylation since genistein treatment that blocks phosphorylation of many cellular proteins as pp125FAKled to a reduced substrate adhesion.  相似文献   

17.
Diverse biological events are regulated through protein phosphorylation mediated by protein kinases. Some of these protein kinases are known to be involved in the pathogenesis of various diseases. Although 518 protein kinase genes were identified in the human genome, it remains unclear how many and what kind of protein kinases are expressed and activated in cells and tissues under varying situations. To investigate cellular signaling by protein kinases, we developed monoclonal antibodies, designated as Multi-PK antibodies, that can recognize multiple protein kinases in various biological species. These Multi-PK antibodies can be used to profile the kinases expressed in cells and tissues, identify the kinases of special interest, and analyze protein kinase expression and phosphorylation state. Here we introduce some applications of Multi-PK antibodies to identify and characterize the protein kinases involved in epigenetics, glucotoxicity in type 2 diabetes, and pathogenesis of ulcerative colitis. In this review, we focus on the recently developed technologies for kinomics studies using the powerful analytical tools of Multi-PK antibodies.  相似文献   

18.
Mitogen-activated protein kinases (MAPKs) are a family of proteins that constitute signaling pathways involved in processes that control gene expression, cell division, cell survival, apoptosis, metabolism, differentiation and motility. The MAPK pathways can be divided into conventional and atypical MAPK pathways. The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases, MAPK kinase, and MAPK. Atypical MAPK pathways are not organized into this three-tiered cascade. MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases. The latter are referred to as MAPK-activated protein kinases. This review focuses on one such MAPK-activated protein kinase, MAPK-activated protein kinase 5 (MK5) or p38-regulated/activated protein kinase (PRAK). This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways. Recent findings on the regulation of the activity and subcellular localization, bona fide interaction partners and physiological roles of MK5/PRAK are discussed.  相似文献   

19.
Cysteine string protein (CSP) is a neuronal chaperone that maintains normal neurotransmitter exocytosis and is essential for preventing presynaptic neurodegeneration. CSP is phosphorylated in vivo on a single residue, Ser10, and this phosphorylation regulates its cellular functions, although the molecular mechanisms involved are unclear. To identify novel phosphorylation-specific binding partners for CSP, we used a pull-down approach using synthetic peptides and recombinant proteins. A single protein band was observed to bind specifically to a Ser10-phosphorylated CSP peptide (residues 4-14) compared to a non-phosphorylated peptide. This band was identified as 14-3-3 protein of various isoforms using mass spectrometry and Western blotting. PKA phosphorylation of full-length CSP protein stimulated 14-3-3 binding, and this was abolished in a Ser10-Ala mutant CSP, confirming the binding site as phospho-Ser10. As both CSP and 14-3-3 proteins are implicated in neurotransmitter exocytosis and neurodegeneration, this novel phosphorylation-dependent interaction may help maintain the functional integrity of the synapse.  相似文献   

20.
Arginine vasopressin (AVP)-induced tyrosine phosphorylation was studied in a rat smooth muscle cell line, A-10, by western blotting, using a monoclonal antibody against phosphotyrosine. AVP stimulated the phosphorylation of several cellular proteins of molecular mass 60-130 kDa in a time- and dose-dependent manner. Phosphorylation was mediated largely by V(1)receptor subtype since it was inhibited by selective V(1)antagonist and was only partially elicited by the V(2)agonist, desmopressin. Heterotrimeric G-proteins seemed to be involved in the phosphorylation mechanism because fluoraluminates, an activator of heterotrimeric G-proteins (and thus an uncoupler of the receptor-G-protein interaction) inhibited the AVP-induced phosphorylation. The protein kinase C (PKC) inhibitors: staurosporine, H7 and GF109203X are able to block the AVP-stimulated phosphorylation. The last of these has been shown to be one of the most selective inhibitors of PKC. These results indicate that PKC is upstream of the phosphorylation, a motion which is supported by the fact that the AVP-stimulated phosphorylation was downregulated by phorbol esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号