首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alphavirus Semliki Forest virus (SFV) and a number of other enveloped animal viruses infect cells via a membrane fusion reaction triggered by the low pH within endocytic vesicles. In addition to having a low pH requirement, SFV fusion and infection are also strictly dependent on the presence of cholesterol in the host cell membrane. A number of conformational changes in the SFV spike protein occur following low-pH treatment, including dissociation of the E1-E2 dimer, conformational changes in the E1 and E2 subunits, and oligomerization of E1 to a homotrimer. To allow the ordering of these events, we have compared the kinetics of these conformational changes with those of fusion, using pH treatment near the fusion threshold and low-temperature incubation to slow the fusion reaction. Dimer dissociation, the E1 conformational change, and E1 trimerization all occur prior to the mixing of virus and cell membranes. Studies of cells incubated at 20 degrees C showed that as with virus fusion, E1 trimerization occurred in the endosome before transport to lysosomes. However, unlike the strictly cholesterol-dependent membrane fusion reaction, the E1 homotrimer was produced in vivo during virus uptake by cholesterol-depleted cells or in vitro by low-pH treatment of virus in the presence of artificial liposomes with or without cholesterol. Purified, lipid-free spike protein rosettes were assayed to determine the requirement for virus membrane cholesterol in E1 homotrimer formation. Spike protein rosettes were found to undergo E1 oligomerization upon exposure to low pH and target liposomes and showed an enhancement of oligomerization with cholesterol-containing membranes. The E1 homotrimer may represent a perfusion complex that requires cholesterol to carry out the final coalescence of the viral and target membranes.  相似文献   

2.
Semliki Forest virus is an enveloped alphavirus that infects cells by a membrane fusion reaction triggered by the low pH present in endocytic vacuoles. Fusion is mediated by the E1 spike protein subunit. During fusion, several conformational changes occur in E1 and E2, the two transmembrane subunits of the spike protein. These changes include dissociation of the E1-E2 dimer, alteration of the trypsin sensitivity and monoclonal antibody binding patterns of E1, and formation of a sodium dodecyl sulfate (SDS)-resistant E1 homotrimer. A critical characteristic of Semliki Forest virus fusion is also its dependence on the presence of both cholesterol and sphingomyelin in the target membrane. We have here examined the conformational changes induced by low pH treatment of E1*, the water-soluble, proteolytically truncated ectodomain of the E1 subunit. Following low pH treatment, E1* was shown to bind efficiently to artificial liposomes. Similar to virus fusion, optimal E1*-liposome binding required low pH, cholesterol, and sphingomyelin. The E1 ectodomain, although monomeric in its neutral pH form, assembled into an SDS-resistant oligomer following treatment at low pH. This low pH-induced oligomerization required target membranes containing both cholesterol and sphingomyelin. Our results demonstrate that the E1 ectodomain responds to low pH similarly to the full-length E1 subunit. The ectodomain facilitates the characterization of conformational changes and membrane binding in the absence of virus fusion or other virus components.  相似文献   

3.
Lu YE  Eng CH  Shome SG  Kielian M 《Journal of virology》2001,75(17):8329-8339
During infection of host cells, a number of enveloped animal viruses are known to produce soluble forms of viral membrane glycoproteins lacking the transmembrane domain. The roles of such soluble glycoproteins in viral life cycles are incompletely understood, but in several cases they are believed to modulate host immune response and viral pathogenesis. Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells through low-pH-dependent fusion and buds from the plasma membrane. Fusion is mediated by the E1 subunit of the SFV spike protein. Previous studies described the in vivo generation of E1s, a truncated soluble form of E1, under conditions in which budding is inhibited in mammalian host cells. We have here examined the properties of E1s generation and the biological activity of E1s. E1s cleavage required spike protein transport out of the endoplasmic reticulum and was independent of virus infection. Cell surface E1 efficiently acted as a precursor for E1s. E1s generation was strongly pH dependent in BHK cells, with optimal cleavage at a pH of < or =7.0, conditions that inhibited the budding of SFV but not the budding of the rhabdovirus vesicular stomatitis virus. The pH dependence of E1s production and SFV budding was unaffected by the stability of the spike protein dimer but was a function of the host cell. Similar to the intact virus and in vitro-generated E1 ectodomain, treatment of E1s at low pH in the presence of target membranes triggered specific acid-dependent conformational changes. Thus, under a variety of conditions, SFV-infected cells can produce a soluble form of E1 that is biologically active.  相似文献   

4.
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells via a membrane fusion reaction triggered by acidic pH in the endocytic pathway. Fusion is mediated by the spike protein E1 subunit, an integral membrane protein that contains the viral fusion peptide and forms a stable homotrimer during fusion. We have characterized four monoclonal antibodies (MAbs) specific for the acid conformation of E1. These MAbs did not inhibit fusion, suggesting that they bind to an E1 region different from the fusion peptide. Competition analyses demonstrated that all four MAbs bound to spatially related sites on acid-treated virions or isolated spike proteins. To map the binding site, we selected for virus mutants resistant to one of the MAbs, E1a-1. One virus isolate, SFV 4-2, showed reduced binding of three acid-specific MAbs including E1a-1, while its binding of one acid-specific MAb as well as non-acid-specific MAbs to E1 and E2 was unchanged. The SFV 4-2 mutant was fully infectious, formed the E1 homotrimer, and had the wild-type pH dependence of infection. Sequence analysis demonstrated that the relevant mutation in SFV 4-2 was a change of E1 glycine 157 to arginine (G157R). Decreased binding of MAb E1a-1 was observed under a wide range of assay conditions, strongly suggesting that the E1 G157R mutation directly affects the MAb binding site. These data thus localize an E1 region that is normally hidden in the neutral pH structure and becomes exposed as part of the reorganization of the spike protein to its fusion-active conformation.  相似文献   

5.
Semliki Forest virus (SFV) infects cells by an acid-dependent membrane fusion reaction catalyzed by the virus spike protein, a complex containing E1 and E2 transmembrane subunits. E1 carries the putative virus fusion peptide, and mutations in this domain of the spike protein were previously shown to shift the pH threshold of cell-cell fusion (G91A), or block cell-cell fusion (G91D). We have used an SFV infectious clone to characterize virus particles containing these mutations. In keeping with the previous spike protein results, G91A virus showed limited secondary infection and an acid-shifted fusion threshold, while G91D virus was noninfectious and inactive in both cell- cell and virus-liposome fusion assays. During the low pH- induced SFV fusion reaction, the E1 subunit exposes new epitopes for monoclonal antibody (mAb) binding and forms an SDS-resistant homotrimer, the virus associates hydrophobically with the target membrane, and fusion of the virus and target membranes occurs. After low pH treatment, G91A spike proteins were shown to bind conformation-specific mAbs, associate with target liposome membranes, and form the E1 homotrimer. However, both G91A membrane association and homotrimer formation had an acid-shifted pH threshold and reduced efficiency compared to wt virus. In contrast, studies of the fusion-defective G91D mutant showed that the virus efficiently reacted with low pH as assayed by mAb binding and liposome association, but was essentially inactive in homotrimer formation. These results suggest that the G91D mutant is noninfectious due to a block in a late step in membrane fusion, separate from the initial reaction to low pH and interaction with the target membrane, and involving the lack of efficient formation of the E1 homotrimer.  相似文献   

6.
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells via a membrane fusion reaction triggered by the acidic pH of endosomes. In response to low pH, the E1 proteins on the virus membrane undergo a series of conformational changes, resulting in the formation of a stable E1 homotrimer. Little is known about the structural basis of either the E1 conformational changes or the resulting homotrimer or about the mechanism of action of the homotrimer in fusion. Here, the E1 homotrimer was formed in vitro from either virus or soluble E1 ectodomain and then probed by various perturbants, proteases, or glycosidase. The preformed homotrimer was extremely stable to moderately harsh conditions and proteases. By contrast, mild reducing conditions selectively disrupted the N-terminal region of trimeric E1, making it accessible to proteolytic cleavage and producing E1 fragments that retained trimer interactions. Trypsin digestion produced a fragment missing a portion of the N terminus just proximal to the putative fusion peptide. Digestion with elastase produced several fragments with cleavage sites between residues 78 and 102, resulting in the loss of the putative fusion peptide and the release of membrane-bound E1 ectodomain as a soluble trimer. Elastase also cleaved the homotrimer within an E1 loop located near the fusion peptide in the native E1 structure. Mass spectrometry was used to map the C termini of several differentially produced and fully functional E1 ectodomains. Together, our data identify two separate regions of the SFV E1 ectodomain, one responsible for target membrane association and one necessary for trimer interactions.  相似文献   

7.
The spike glycoproteins of Semliki Forest virus mediate membrane fusion between the viral envelope and cholesterol-containing target membranes under conditions of mildly acidic pH (pH less than 6.2). The fusion reaction is critical for the infectious cycle, catalyzing virus penetration from the acidic endosome compartment. To define the role of the viral spike glycoproteins in the fusion reaction, conformational changes in the spikes at acid pH were studied using protease digestion and binding assays to liposomes and nonionic detergent. A method was also developed to prepare fragments of both transmembrane subunit glycopolypeptides of the spike, E1 and E2, which lacked the hydrophobic anchor peptides. Unlike the intact spikes the fragments were monomeric and therefore useful for obtaining information on conformational changes in individual subunits. The results showed that both E1 and E2 undergo irreversible conformational changes at the pH of fusion, that the conformational change of E1 depends, in addition to acidic pH, on the presence of cholesterol, and that no major changes in the solubility properties of the spikes takes place. On the basis of these findings it was concluded that fusion involves both subunits of the spike and that E1 confers the stereo-specific sterol requirement. The results indicated, moreover, that acid-induced fusion of Semliki Forest virus differs in important respects from that of influenza virus, another well-defined model system for protein-mediated membrane fusion.  相似文献   

8.
We have obtained biochemical and electron microscopic evidence of conformational changes at pH 8.0 and 37 degrees C in the coronavirus spike glycoprotein E2 (S). The importance of these changes is reflected in the loss of virus infectivity, the aggregation of virions, and increased virus-induced cell fusion at the same pH. Coronavirus (MHV-A59) infectivity is exquisitely sensitive to pH. The virus was quite stable at pH 6.0 and 37 degrees C (half-life, approximately 24 h) but was rapidly and irreversibly inactivated by brief treatment at pH 8.0 and 37 degrees C (half-life, approximately 30 min). Virions treated at pH 8.0 and 37 degrees C formed clumps and large aggregates. With virions treated at pH 8.0 and 37 degrees C, the amino-terminal peptide E2N (or S1) was released from virions and the remaining peptide, E2C (S2), was aggregated. Viral spikes isolated from detergent-treated virions also aggregated at pH 8.0 and 37 degrees C. Loss of virus infectivity and E2 (S) aggregation at pH 8.0 and 37 degrees C were markedly enhanced in the presence of dithiothreitol. On the basis of the effects of dithiothreitol on the reactions of the peplomer, we propose that release of E2N (S1) and aggregation of E2C (S2) may be triggered by rearrangement of intramolecular disulfide bonds. The aggregation of virions and the isolated E2 (S) glycoprotein at pH 8.0 and 37 degrees C or following treatment with guanidine and urea at pH 6.0 and 37 degrees C indicate that an irreversible conformational change has been induced in the peplomer glycoprotein by these conditions. It is interesting that coronavirus-induced cell fusion also occurred under mildly alkaline conditions and at 37 degrees C. Some enveloped viruses, including influenza viruses and alphaviruses, show conformational changes of spike glycoproteins at a low pH, which correlates with fusion and penetration of those viruses in acidified endocytic vesicles. For coronavirus MHV-A59, comparable conformational change of the spike glycoprotein E2 (S) and cell fusion occurred at a mildly alkaline condition, suggesting that coronavirus infection-penetration, like that of paramyxoviruses and lentiviruses, may occur at the plasma membrane, rather than within endocytic vesicles.  相似文献   

9.
The spike glycoprotein E2 of Sindbis virus (SIN) is synthesized in the infected cell as a PE2 precursor protein, which matures through cleavage by a cellular furin-like protease. Previous work has shown that SIN mutants impaired in PE2 cleavage are noninfectious on BHK-21 cells, the block in infection being localized at a step after virus-receptor interaction but prior to RNA replication. Here, we studied the membrane fusion properties of SIN PE2 cleavage mutants and observed that these viruses are impaired in their ability to form an E1 homotrimer and to fuse with liposomes at a mildly acidic pH. The block in spike rearrangement and fusion could be overridden by exposure of the mutant viruses to very low pH (<4.5). Cleavage mutants with second-site resuscitating mutations in PE2 were highly infectious for BHK-21 cells. The ability of these viruses to form E1 homotrimers and to fuse at a mildly acidic pH was completely restored despite a sustained lack of PE2 cleavage.  相似文献   

10.
Semliki Forest virus (SFV), an enveloped alphavirus, is a well-characterized paradigm for viruses that infect cells via endocytic uptake and low-pH-triggered fusion. The SFV spike protein is composed of a dimer of E1 and E2 transmembrane subunits, which dissociate upon exposure to low pH, liberating E2 and the fusogenic E1 subunit to undergo independent conformational changes. SFV fusion and infection are blocked by agents such as ammonium chloride, which act by raising the pH in the endosome and inhibiting the low-pH-induced conformational changes in the SFV spike protein. We have previously isolated an SFV mutant, fus-1, that requires more acidic pH to trigger its fusion activity and is therefore more sensitive to inhibition by ammonium chloride. The acid shift in the fusion activity of fus-1 was here shown to be due to a more acidic pH threshold for the initial dissociation of the fus-1 spike dimer, thereby resulting in a more acidic pH requirement for the subsequent conformational changes in both fus-1 E1 and fus-1 E2. Sequence analysis demonstrated that the fus-1 phenotype was due to a mutation in the E2 spike subunit, threonine 12 to isoleucine. fus-1 revertants that have regained the parental fusion phenotype and ammonium chloride sensitivity were shown to have also regained E2 threonine 12. Our results identify a region of the SFV E2 spike protein subunit that regulates the pH dependence of E1-catalyzed fusion by controlling the dissociation of the E1/E2 dimer.  相似文献   

11.
The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a low-pH-triggered membrane fusion reaction that requires cholesterol and sphingolipid in the target membrane. Cholesterol-depleted insect cells are highly resistant to alphavirus infection and were used to select srf-3, an SFV mutant that is approximately 100-fold less cholesterol dependent for infection due to a single amino acid change in the E1 spike subunit, proline 226 to serine. Sensitive lipid-mixing assays here demonstrated that the in vitro fusion of srf-3 and wild-type (wt) virus with cholesterol-containing liposomes had comparable kinetics, activation energies, and sphingolipid dependence. In contrast, srf-3 fusion with sterol-free liposomes was significantly more efficient than that of wt virus. Thus, the srf-3 mutation does not affect its general fusion properties with purified lipid bilayers but causes a marked and specific reduction in cholesterol dependence. Upon exposure to low pH, the E1 spike subunit undergoes distinct conformational changes, resulting in the exposure of an acid conformation-specific epitope and formation of an E1 homotrimer. These conformational changes were strongly cholesterol and sphingolipid dependent for wt SFV and strikingly less cholesterol dependent for srf-3. Our results thus demonstrate the functional importance of fusogenic E1 conformational changes in the control of SFV cholesterol dependence.  相似文献   

12.
The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered membrane fusion reaction mediated by the E1 protein. E1 is a class II fusion protein that contains the hydrophobic fusion peptide loop and converts to a stable homotrimer during the fusion reaction. Intriguingly, the fusion loop is closely associated with a loop connecting the i and j beta-strands. This ij loop plays a role in the cholesterol dependence of membrane fusion and is specifically susceptible to proteolysis in the protease-resistant E1 homotrimer. The SFV ij loop contains a histidine residue at position 230. Sequence comparisons revealed that an analogous histidine is completely conserved in all alphavirus and flavivirus fusion proteins. An E1 H230A mutant was constructed using the SFV infectious clone. Although cells infected with H230A RNA produced virus particles, these virions were completely noninfectious and were blocked in both cell-cell fusion and lipid mixing assays. The H230A virions efficiently bound to cell surface receptors and responded to low pH by undergoing acid-dependent conformational changes including dissociation of the E1/E2 dimer, exposure of the fusion loop, association with target liposomes, exposure of acid-conformation-specific epitopes, and formation of the stable E1 homotrimer. Studies with a soluble fragment of E1 showed that the mutant protein was defective in lipid-dependent conformational changes. Our results indicate that the E1 ij loop and the conserved H230 residue play a critical role in alphavirus-membrane fusion and suggest the presence of a previously undescribed late intermediate in the fusion reaction.  相似文献   

13.
The spike glycoprotein (S) of the murine coronavirus mouse hepatitis virus (MHV) binds to viral murine CEACAM receptor glycoproteins and causes membrane fusion. On virions, the 180-kDa S glycoprotein of the MHV-A59 strain can be cleaved by trypsin to form the 90-kDa N-terminal receptor-binding subunit (S1) and the 90-kDa membrane-anchored fusion subunit (S2). Incubation of virions with purified, soluble CEACAM1a receptor proteins at 37 degrees C and pH 6.5 neutralizes virus infectivity (B. D. Zelus, D. R. Wessner, R. K. Williams, M. N. Pensiero, F. T. Phibbs, M. deSouza, G. S. Dveksler, and K. V. Holmes, J. Virol. 72:7237-7244, 1998). We used liposome flotation and protease sensitivity assays to investigate the mechanism of receptor-induced, temperature-dependent virus neutralization. After incubation with soluble receptor at 37 degrees C and pH 6.5, virions became hydrophobic and bound to liposomes. Receptor binding induced a profound, apparently irreversible conformational change in S on the viral envelope that allowed S2, but not S1, to be degraded by trypsin at 4 degrees C. Various murine CEACAM proteins triggered conformational changes in S on recombinant MHV strains expressing S glycoproteins of MHV-A59 or MHV-4 (MHV-JHM) with the same specificities as seen for virus neutralization and virus-receptor activities. Increased hydrophobicity of virions and conformational change in S2 of MHV-A59 could also be induced by incubating virions at pH 8 and 37 degrees C, without soluble receptor. Surprisingly, the S protein of recombinant MHV-A59 virions with a mutation, H716D, that precluded cleavage between S1 and S2 could also be triggered to undergo a conformational change at 37 degrees C by soluble receptor at neutral pH or by pH 8 alone. A novel 120-kDa subunit was formed following incubation of the receptor-triggered S(A59)H716D virions with trypsin at 4 degrees C. The data show that unlike class 1 fusion glycoproteins of other enveloped viruses, the murine coronavirus S protein can be triggered to a membrane-binding conformation at 37 degrees C either by soluble receptor at neutral pH or by alkaline pH alone, without requiring previous activation by cleavage between S1 and S2.  相似文献   

14.
Fusion of influenza virus with the endosomal membrane of the host cell is mediated by the homotrimer-organized glycoprotein hemagglutinin (HA). Its fusion activity is triggered by a low pH-mediated conformational change affecting the structure of the HA1 and HA2 subunits. The HA2 subunits undergo a loop-to-helix transition leading to a coiled-coil structure, a highly conserved motif for many fusion mediating viral proteins. However, experimental studies showed that the HA2 coiled-coil structure is stable at neutral and low pH, implying that there is no direct relationship between low pH and the HA2 loop-to-helix transition. To interpret this observation, we used a computational approach based on the dielectric continuum solvent model to explore the influence of water and pH on the free energy change of the transition. The computations showed that the electrostatic interaction between HA2 fragments and water is the major driving force of the HA2 loop-to-helix transition leading to the coiled-coil structure, as long as the HA1 globular domain covering the HA2 subunits in the nonfusion competent conformation is reorganized and thereby allows water molecules to interact with the whole loop segments of the HA2 subunits. Moreover, we show that the energy released by the loop-to-helix transition may account for those energies required for driving the subsequent steps of membrane fusion. Such a water-driven process may resemble a general mechanism for the formation of the highly conserved coiled-coil motif of enveloped viruses.  相似文献   

15.
Entry of enveloped animal viruses into their host cells always depends on a step of membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. VSV-induced membrane fusion occurs at a very narrow pH range, between 6.2 and 5.8, suggesting that His protonation is required for this process. To investigate the role of His in VSV fusion, we chemically modified these residues using diethylpyrocarbonate (DEPC). We found that DEPC treatment inhibited membrane fusion mediated by VSV in a concentration-dependent manner and that the complete inhibition of fusion was fully reversed by incubation of modified virus with hydroxylamine. Fluorescence measurements showed that VSV modification with DEPC abolished pH-induced conformational changes in G protein, suggesting that His protonation drives G protein interaction with the target membrane at acidic pH. Mass spectrometry analysis of tryptic fragments of modified G protein allowed the identification of the putative active His residues. Using synthetic peptides, we showed that the modification of His-148 and His-149 by DEPC, as well as the substitution of these residues by Ala, completely inhibited peptide-induced fusion, suggesting the direct participation of these His in VSV fusion.  相似文献   

16.
The fusion proteins of the alphaviruses and flaviviruses have a similar native structure and convert to a highly stable homotrimer conformation during the fusion of the viral and target membranes. The properties of the alpha- and flavivirus fusion proteins distinguish them from the class I viral fusion proteins, such as influenza virus hemagglutinin, and establish them as the first members of the class II fusion proteins. Understanding how this new class carries out membrane fusion will require analysis of the structural basis for both the interaction of the protein subunits within the homotrimer and their interaction with the viral and target membranes. To this end we report a purification method for the E1 ectodomain homotrimer from the alphavirus Semliki Forest virus. The purified protein is trimeric, detergent soluble, retains the characteristic stability of the starting homotrimer, and is free of lipid and other contaminants. In contrast to the postfusion structures that have been determined for the class I proteins, the E1 homotrimer contains the fusion peptide region responsible for interaction with target membranes. This E1 trimer preparation is an excellent candidate for structural studies of the class II viral fusion proteins, and we report conditions that generate three-dimensional crystals suitable for analysis by X-ray diffraction. Determination of the structure will provide our first high-resolution views of both the low-pH-induced trimeric conformation and the target membrane-interacting region of the alphavirus fusion protein.  相似文献   

17.
The Semliki Forest virus spike protein has a potent membrane fusion activity which is activated in vivo by the low pH of endocytic vacuoles. The spike protein is composed of two transmembrane subunits, E1 and E2, plus E3, a peripheral polypeptide. Acid-induced conformational changes in the E1 or E2 subunits were analyzed by using monoclonal antibodies specific for the acid-treated spike protein. E1 and E2 reacted with the antibodies after treatment of wild-type or mutant virus at the pH of fusion. The E1 conformational change resembled fusion in its requirement for both low pH and cholesterol. Pulse-chase analysis and intracellular pH treatment were then used to determine the ability of the newly synthesized spike to undergo acid-induced conformational changes. p62, the precursor to E2 and E3, was shown to undergo a pH-dependent conformational change similar to that of E2 and was sensitive to acid very soon after biosynthesis. In contrast, a posttranslational maturation event was required for the conversion of E1 to the pH-sensitive form. E1 maturation occurred fairly late in the exocytic pathway, after the virus spike had passed the medial Golgi but before incorporation of the spike into a new virus particle.  相似文献   

18.
Semliki Forest virus (SFV), an alphavirus, infects cells via a low pH-triggered membrane fusion reaction that takes place within the cellular endocytic pathway. Fusion is mediated by the heterotrimeric virus spike protein, which undergoes conformational changes upon exposure to low pH. The SFV E1 spike subunit contains a hydrophobic domain of 23 amino acids that is highly conserved among alphaviruses. This region is also homologous to a domain of the rotavirus outer capsid protein VP4. Mutagenesis of an SFV spike protein cDNA was used to evaluate the role of the E1 domain in membrane fusion. Mutant spike proteins were expressed in COS cells and assayed for cell-cell fusion activity. Four mutant phenotypes were identified: (i) substitution of Gln for Lys-79 or Leu for Met-88 had no effect on spike protein fusion activity; (ii) substitution of Ala for Asp-75, Ala for Gly-83, or Ala for Gly-91 shifted the pH threshold of fusion to a more acidic range; (iii) mutation of Pro-86 to Asp, Gly-91 to Pro, or deletion of amino acids 83 to 92 resulted in retention of the E1 subunit within the endoplasmic reticulum; and (iv) substitution of Asp for Gly-91 completely blocked cell-cell fusion activity without affecting spike protein assembly or transport. These results argue that the conserved hydrophobic domain of SFV E1 is closely involved in membrane fusion and suggest that the homologous region in rotavirus VP4 may be involved in the entry pathway of this nonenveloped virus.  相似文献   

19.
Marburg virus (MARV) and Ebola virus (EBOV) constitute the family Filoviridae of enveloped viruses (filoviruses) that cause severe hemorrhagic fever. Infection by MARV requires fusion between the host cell and viral membranes, a process that is mediated by the two subunits of the envelope glycoprotein, GP1 (surface subunit) and GP2 (transmembrane subunit). Upon viral attachment and uptake, it is believed that the MARV viral fusion machinery is triggered by host factors and environmental conditions found in the endosome. Next, conformational rearrangements in the GP2 ectodomain result in the formation of a highly stable six-helix bundle; this refolding event provides the energetic driving force for membrane fusion. Both GP1 and GP2 from EBOV have been extensively studied, but there is little information available for the MARV glycoproteins. Here we have expressed two variants of the MARV GP2 ectodomain in Escherichia coli and analyzed their biophysical properties. Circular dichroism indicates that the MARV GP2 ectodomain adopts an α-helical conformation, and one variant sediments as a trimer by equilibrium analytical ultracentrifugation. Denaturation studies indicate the α-helical structure is highly stable at pH 5.3 (unfolding energy, ΔG(unf,H(2)O), of 33.4 ± 2.5 kcal/mol and melting temperature, T(m), of 75.3 ± 2.1 °C for one variant). Furthermore, we found the α-helical stability to be strongly dependent on pH, with higher stability under lower-pH conditions (T(m) values ranging from ~92 °C at pH 4.0 to ~38 °C at pH 8.0). Mutational analysis suggests two glutamic acid residues (E579 and E580) are partially responsible for this pH-dependent behavior. On the basis of these results, we hypothesize that the pH-dependent folding stability of the MARV GP2 ectodomain provides a mechanism for controlling conformational preferences such that the six-helix bundle "postfusion" state is preferred under conditions of appropriately matured endosomes.  相似文献   

20.
A prevailing model for virus membrane fusion proteins has been that the hydrophobic fusion peptide is hidden in the prefusion conformation, becomes exposed once the fusion reaction is triggered, and then either inserts into target membranes or is rapidly inactivated. This model is in general agreement with the structure and mechanism of class I fusion proteins, such as the influenza virus hemagglutinin. We here describe studies of the class II fusion protein E1 from the alphavirus Semliki Forest virus (SFV). SFV fusion is triggered by low pH, which releases E1 from its heterodimeric interaction with the E2 protein and induces the formation of a stable E1 homotrimer. The exposure and target membrane interaction of the E1 fusion peptide (residues 83 to 100) were followed using a monoclonal antibody (MAb E1f) mapping to E1 residues 85 to 95. In agreement with the known structure of SFV and other alphaviruses, the fusion peptide was shielded in native SFV particles and exposed when E1-E2 dimer dissociation was triggered by acidic pH. In contrast, the fusion peptide on purified E1 ectodomains (E1(*)) was fully accessible at neutral pH. Functional assays showed that MAb E1f binding at neutral pH prevented subsequent low-pH-triggered E1(*) interaction with target membranes and trimerization. E1(*) was not inactivated by low pH when treated either in the absence of target membranes or in the presence of fusion-inactive cholesterol-deficient liposomes. Thus, the membrane insertion of the E1 fusion peptide is regulated by additional low-pH-dependent steps after exposure, perhaps involving an E1-cholesterol interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号