首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nijmegen breakage syndrome (NBS), a rare autosomal recessive chromosomal instability disorder, is caused by mutations in theNBN gene. Most patients known so far are of Slavic origin and carry the major founder mutation c.657-661del5. Due to an unexpectedly high incidence of NBS patients (homozygous for the c.657-661del5 mutation) in a Northeast Bavarian region in Southeast Germany, we estimated the prevalence of this mutation in this area and compared it to another German region. We found a high carrier frequency of 1/176 for the c.657-661del5 mutation among newborns in Northeast Bavaria, while the frequency of the mutation in Berlin was 1/990. We further studied families from a Slavic population isolate, the Sorbs, in the Lusatian region in Northeast Saxony, and revealed a prevalence of the c.657-661del5 mutation of 1/34. Whereas the Slavic origin of the Sorbs has been known, we attribute the surprisingly high frequencies of c.657-661del5 mutation in Bavaria (similar to frequencies of this mutation in various Eastern European countries) to a high percentage of people of Slavic origin in Northeast Bavaria.  相似文献   

2.
Nijmegen breakage syndrome (NBS) is a genetic disorder characterized by chromosomal instability and hypersensitivity to ionising radiation. Compound heterozygous 657del5/R215W NBS patients display a clinical phenotype more severe than the majority of NBS patients homozygous for the 657del5 mutation. The NBS1 protein, mutated in NBS patients, contains a FHA/BRCT domain necessary for the DNA-double strand break (DSB) damage response. Recently, a second BRCT domain has been identified, however, its role is still unknown. Here, we demonstrate that the R215W mutation in NBS1 impairs histone γ-H2AX binding after induction of DNA damage, leading to a delay in DNA-DSB rejoining. Molecular modelling reveals that the 215 residue of NBS1 is located between the two BRCT domains, affecting their relative orientation that appears critical for γ-H2AX binding. Present data represent the first evidence for the role of NBS1 tandem BRCT domains in γ-H2AX recognition, and could explain the severe phenotype observed in 657del5/R215W NBS patients.  相似文献   

3.
The 657del5 mutation of the NBS1 gene has been demonstrated in most patients with Nijmegen breakage syndrome (NBS). We identified four Turkish families in which probands were diagnosed as having NBS and found to be homozygous for the 657del5 mutation. The 657del5 allele in the four Turkish families had a single origin.  相似文献   

4.
Biallelic mutations in the NBS1 gene are responsible for the Nijmegen breakage syndrome (NBS), a rare autosomal recessive disorder characterized by chromosome instability and hypersensitivity to ionising radiation (IR). Epidemiological data evidence that the NBS1 gene can be considered a susceptibility factor for cancer development, as demonstrated by the fact that almost 40% of NBS patients have developed a malignancy before the age of 21. Interestingly, also NBS1 heterozygotes, which are clinically asymptomatic, display an elevated risk to develop some types of malignant tumours, especially breast, prostate and colorectal cancers, lymphoblastic leukaemia, and non-Hodgkin’s lymphoma (NHL). So far, nine mutations in the NBS1 gene have been found, at the heterozygous state, in cancer patients. Among them, the 657del5, the I171V and the R215W mutations are the most frequently described. The pathogenicity of these mutations is presumably connected with their occurrence in the highly conserved BRCT tandem domains of the NBS1 protein, which are present in a large superfamily of proteins, and are recognized as major mediators of processes related to cell-cycle checkpoint and DNA repair.This review will focus on the current state-of-knowledge regarding the correlation between carriers of NBS1 gene mutations and the proneness to the development of malignant tumours.Key Words: NBS1, 657del5 mutation, R215W mutation, I171V mutation, IVS11+2insT mutation, heterozygous, cancer predisposition, lymphoma, breast cancer, prostate cancer, colorectal cancer.  相似文献   

5.
Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder characterized by a marked predisposition to lymphoreticular malignancies. The rarity of the disease and the presence, in several cases, of a mild clinical phenotype make diagnosis difficult. The underlying gene, NBS1, consists of 16 exons and encodes nibrin, a member of the hMRE11/hRAD50/hNBS1 protein complex. In addition to the "Slavic mutation," 657del5, identified in more than 100 patients with NBS, 9 other mutations have been found in families of different ethnic origin. We have developed a polymerase chain reaction (PCR) method to rapidly detect the private mutations, 742insGG and 835del4, in exon 7 and the 900del25 mutation in exon 8 of the NBS1 gene. In particular, we designed NBS1-specific primers for wild-type and mutated alleles, and optimized a specific PCR protocol for each mutation. We used this method to analyze 4 unrelated NBS families, 3 from Italy and 1 from Morocco. We believe it could be a useful tool for: (1) confirming the NBS diagnosis in the presence of clinical signs of the disease; (2) identifying NBS heterozygotes and performing prenatal diagnosis in families with affected members; and (3) screening selected populations in which the frequency of NBS might be higher because of a founder effect.  相似文献   

6.
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder characterized by microcephaly, immunodeficiency and high predisposition for malignancies, particularly B-lymphoma. Clinical and genealogical analysis has been conducted in 7 families with NBS. Eight children with NBS (5 boys and 3 girls) were observed at the age from 7 months to 11 years. All the children were homozygous carriers for mutation 657del5. Oncohematological complications developed in 5 cases (4 cases of lymphoma and one case of lymphohystiocytosis) at the age of 6-12 years. NBS in probands is often accompanied with birth defects, especially with kidney pathologies. Considerable reproductive losts in the families with NBS were noted mainly among males who died at the age less than one year (4-6 events in the families). The cases of digestive system cancers (stomach, rectum, duodenum) were revieled in the family-trees. Consanguineous couple was observed in 1 case (marriage between third cousins) and 2 children had developed NBS in this family. Genealogical analysis seems to be very informative to predict somatic and reproductive disturbances in NBS families.  相似文献   

7.
The MRN protein complex, consisting of MRE1, RAD50 and NBS1, plays a crucial role in sensing DNA double-strand breaks (DSBs), and it is involved in cell cycle control. This makes the MRN complex an important guard of genome stability. Hypomorphic mutations in NBS1 result in the Nijmegen breakage syndrome (NBS), which is characterized by, among other things, an increased predisposition to malignancies, especially leukemia/lymphoma. Relatives of NBS patients carrying heterozygous mutations are also more prone to cancer development. This review summarizes several studies searching for associations between heterozygous mutations in NBS1, MRE11, and RAD50 and cancer and examining the levels of expression of proteins coded by these genes in tumor tissues. The results indicate that both decreased and increased expression of NBS1 may contribute to tumorigenesis, whereas overexpressed RAD50 has an anti-tumoric effect. MRE11 and RAD50 are also affected in tumors with microsatellite instability. However, the outcomes of association studies, which concerned primarily lymphomas/leukemias and breast cancer, were inconclusive. Heterozygous NBS1 mutations and molecular variants 657del5, I171V, R215W and E185Q were most commonly analyzed. Among these, an association with cancer was found most frequently for 657del5 (in leukemia/lymphoma and breast cancer) and I171V (in leukemia, breast, head and neck and colorectal cancers); however, other studies gave contradictory results. For other NBS1 as well as MRE11 and RAD50 variants, too little data were available to assess their role in cancer risk. Overall, the results suggest that heterozygous MRN complex mutations and molecular variants may contribute only to a limited fraction of tumors. This may be caused by several factors: various frequencies of the variants in specific populations, different criteria used for selection of control groups, possible effects of environmental factors, and potential interactions with variants of other low-risk genes. These issues, as well as the impact of the alterations on protein function, need to be addressed in future studies.  相似文献   

8.
Nijmegen Breakage Syndrome (NBS) is a very rare autosomal recessive chromosomal instability disorder characterized by microcephaly, growth retardation, immunodeficiency and a high incidence of malignancies. Cells from NBS patients are hypersensitive to ionizing radiation (IR) and display radioresistant DNA synthesis (RDS). NBS is caused by mutations in the NBS1 gene on chromosome 8q21 encoding a protein called nibrin. This protein is a component of the hMre11/hRad50 protein complex, suggesting a defect in DNA double-strand break (DSB) repair and/or cell cycle checkpoint function in NBS cells. We established SV40 transformed, immortal NBS fibroblasts, from primary cells derived from a Polish patient, carrying the common founder mutation 657del5. Immortalized NBS cells, like primary cells, are X-ray sensitive (2-fold) and display RDS following IR. They show an increased sensitivity to bleomycin (3.5-fold), etoposide (2.5-fold), camptothecin (3-fold) and mitomycin C (1.5-fold), but normal sensitivity towards UV-C. Despite the clear hypersensitivity towards DSB-inducing agents, the overall rates of DSB-rejoining in NBS cells as measured by pulsed field gel electrophoresis were found to be very similar to those of wild type cells. This indicates that the X-ray sensitivity of NBS cells is not directly caused by an overt defect in DSB repair.  相似文献   

9.
Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder, characterized by progressive microcephaly, growth retardation, immunodeficiency, and pre-disposition to tumor formation. To investigate the functions of the NBS gene product, NBS1, on neurons, PC12 cells overexpressing NBS1 and related mutants and primary cortical neuronal culture were used in the present study. Small interfering RNA (siRNA) was applied to repress the expression of endogenous Nbs1 in PC12 cells and primary cortical neurons. We demonstrated that overexpression of NBS1 increases cellular proliferation and decreases the apoptosis of PC12 cells in serum withdrawal and ionizing irradiation, through the activation of phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathway. Overexpression of NBS1 also decreases neurite elongation on PC12 cells under nerve growth factor stimulation. Transfection of NBS1-overexpressing PC12 cells with a dominant negative Akt mutant attenuates the neuroprotection and cellular proliferation effects of NBS1 while having no effect on neurite elongation. PC12 cells overexpressing NBS657del5 and NBS653 mutants, in which the major NBS1 protein in cells are truncated proteins, have decreased cellular proliferation, increased cell death, and decreased neurite elongation compared with those of control PC12 cells. Repression of Nbs1 by siRNA decreases the PI 3-kinase activity and Akt phosphorylation levels, and induces neurite elongation in PC12 cells even without nerve growth factor stimulation. Repression of Nbs1 by siRNA in primary cortical neurons also increased neurite elongation, but increased neuronal death. We conclude that NBS1 can regulate neuronal proliferation and neuroprotection via PI 3-kinase/Akt pathway while regulating neuronal differentiation in a different pathway. Excessive accumulation of truncated protein secondary to 657del5 mutation may be detrimental to neurons, leading to defective neuronal proliferation and differentiation.  相似文献   

10.
The purpose of our study was to establish the frequency and distribution of the four most common BRCA1 mutations in Polish general population and in a series of breast cancer patients. Analysis of the population frequency of 5382insC (c.5266dupC), 300T >G (p.181T >G), 185delAG (c.68_69delAG) and 3819del5 (c.3700_3704del5) mutations of the BRCA1 gene were performed on a group of respectively 16,849, 13,462, 12,485 and 3923 anonymous samples collected at birth in seven Polish provinces. The patient group consisted of 1845 consecutive female breast cancer cases. The most frequent BRCA1 mutation in the general population was 5382insC found in 29 out of 16,849 samples (0.17%). 300T >G and 3819del5 mutations were found in respectively 11 of 13,462 (0.08%) and four of 3923 (0.1%) samples. The population prevalence for combined Polish founder 5382insC and 300T >G mutations was 0.25% (1/400). The frequencies of 5382insC and 300T >G carriers among consecutive breast cancer cases were, respectively, 1.9% (35/1845) and 1.2% (18/1486). Comparing these data with the population frequency, we calculated the relative risk of breast cancer for 5382insC mutation at OR = 17 and for 300T >G mutation at OR = 26. Our results, based on large population studies, show high frequencies of founder 5382insC and 300T >G BRCA1 mutations in Polish general population. Carriage of one of these mutations is connected with a very high relative risk of breast cancer.  相似文献   

11.

Background

Recently, we showed that the c.40_42delAGA (p.Arg14del) mutation in the phospholamban (PLN) gene can be identified in 10–15 % of Dutch patients with dilated cardiomyopathy or arrhythmogenic cardiomyopathy. The arrhythmogenic burden of the p.Arg14del mutation was illustrated by the high rate of appropriate ICD discharges and a positive family history for sudden cardiac death.

Methods

Our goal was to evaluate the geographical distribution and the origin of this specific mutation in the Netherlands and to get an estimation of the prevalence in a Dutch population cohort. Therefore, we investigated the postal codes of the places of residence of PLN p.Arg14del mutation carriers and places of birth of their ancestors. In addition, a large population-based cohort (PREVEND) was screened for the presence of this mutation.

Results

By April 2012, we had identified 101 probands carrying the PLN p.Arg14del mutation. A total of 358 family members were also found to carry this mutation, resulting in a total of 459 mutation carriers. The majority of mutation carriers live in the northern part of the Netherlands and analysing their grandparents’ places of birth indicated that the mutation likely originated in the eastern part of the province of Friesland. In the PREVEND cohort we identified six heterozygous PLN p.Arg14del mutation carriers out of 8,267 subjects (0.07 %).

Conclusion

The p.Arg14del mutation in the PLN gene is the most frequently identified mutation in Dutch cardiomyopathy patients. The mutation that arose 575–825 years ago is likely to have originated from the eastern part of the province of Friesland and is highly prevalent in the general population in the northern part of the Netherlands.  相似文献   

12.
The F508del mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common cause of cystic fibrosis (CF). Both CF patients and F508del carriers have decreased blood pressure. While this has been attributed to salt depletion, recent studies have shown F508del expression interferes with smooth muscle cell calcium mobilization. We tested the hypothesis that carriers of the F508del mutation have lower adult blood pressures and reduced aortic contractility without a reduction in circulating blood volume. By radiotelemetry, F508del heterozygous mice had significantly lower arterial pressures than wild-type C57BL/6 controls, with the greatest effect seen at the time of dark-to-light cycle transition (mean difference of 10 mmHg). To replicate the vascular effects of sympathetic arousal, isoproterenol and epinephrine were co-infused, and F508del mice again had significantly reduced arterial pressures. Aortas isolated from F508del heterozygous mice had significantly decreased constriction to noradrenaline (0.9±0.2 versus 2.9±0.7 mN). Inhibition of wild-type CFTR or the inositol triphosphate receptor replicated the phenotype of F508del aortas. CFTR carrier status did not alter circulating blood volume. We conclude the CFTR-F508del mutation decreases aortic contractility and lowers arterial pressures. As a cAMP-activated chloride channel that facilitates calcium mobilization, we speculate wild-type CFTR co-activation during adrenergic receptor stimulation buffers the vasodilatory response to catecholamines, and loss of this compensatory vasoconstrictor tone may contribute to the lower arterial pressures seen in heterozygote carriers of a CFTR-F508del mutation.  相似文献   

13.
Germ-line changes in the cancer-predisposition gene BRCA2 are found in a small proportion of breast cancers. Mutations in the BRCA2 gene have been studied mainly in families with high risk of breast cancer in females, and male breast cancer also has been associated with BRCA2 mutations. The importance of germ-line BRCA2 mutations in individuals without a family history of breast cancer is unknown. The same BRCA2 mutation has been found in 16/21 Icelandic breast cancer families, indicating a founder effect. We determined the frequency of this mutation, 999del5, in 1,182 Icelanders, comprising 520 randomly selected individuals from the population and a series of 632 female breast cancer patients (61.4% of patients diagnosed during the study period) and all male breast cancer patients diagnosed during the past 40 years. We detected the 999del5 germ-line mutation in 0.6% of the population, in 7.7% of female breast cancer patients, and in 40% of males with breast cancer. The mutation was strongly associated with onset of female breast cancer at age <50 years, but its penetrance and expression are varied. A number of cancers other than breast cancer were found to be increased in relatives of mutation carriers, including those with prostate and pancreatic cancer. Furthermore, germ-line BRCA2 mutation can be present without a strong family history of breast cancer. Comparison of the age at onset for mother/daughter pairs with the 999del5 mutation and breast cancer indicates that age at onset is decreasing in the younger generation. Increase in breast cancer incidence and lower age at onset suggest a possible contributing environmental factor.  相似文献   

14.
Blood samples from 44 unrelated cystic fibrosis (CF) patients from Rio de Janeiro, Brazil, were analyzed for the 8 European CF mutations. Six homozygous and 15 heterozygous carriers of the DF508 mutation were found, corresponding to 47.7% of CF patients (allele frequency 0.3068). The G542X and G551D mutations were also observed with allele frequencies of 0.0227 and 0.0114, respectively. An analysis of the DF508 mutation in 291 randomly chosen, healthy individuals was performed, and only 3 heterozygous carriers were identified. These results show that the frequency of the DF508 allele in Rio de Janeiro is much lower than the world average; this may be due to the extremely heterogeneous ethnic admixture of the study population. By combining the results of these 2 different samples (CF patients and random population) and admixture data from Rio de Janeiro, we can estimate the CF incidence in this population to be 1:3542 individuals. However, taking into account the Rio de Janeiro ethnic admixture, we can find an estimate of 1:6902 individuals.  相似文献   

15.
Nibrin (also named NBN or NBS1) is a component of the MRE11/RAD50/NBN complex, which is involved in early steps of DNA double strand breaks sensing and repair. Mutations within the NBN gene are responsible for the Nijmegen breakage syndrome (NBS). The 90% of NBS patients are homozygous for the 657del5 mutation, which determines the synthesis of two truncated proteins of 26 kDa (p26) and 70 kDa (p70). Here, HEK293 cells have been exploited to transiently express either the full-length NBN protein or the p26 or p70 fragments, followed by affinity chromatography enrichment of the eluates. The application of an unsupervised proteomics approach, based upon SDS-PAGE separation and shotgun digestion of protein bands followed by MS/MS protein identification, indicates the occurrence of previously unreported protein interacting partners of the full-length NBN protein and the p26 fragment containing the FHA/BRCT1 domains, especially after cell irradiation. In particular, results obtained shed light on new possible roles of NBN and of the p26 fragment in ROS scavenging, in the DNA damage response, and in protein folding and degradation. In particular, here we show that p26 interacts with PARP1 after irradiation, and this interaction exerts an inhibitory effect on PARP1 activity as measured by NAD+ levels. Furthermore, the p26-PARP1 interaction seems to be responsible for the persistence of ROS, and in turn of DSBs, at 24 h from IR. Since some of the newly identified interactors of the p26 and p70 fragments have not been found to interact with the full-length NBN, these interactions may somehow contribute to the key biological phenomena underpinning NBS.  相似文献   

16.
Reliable estimates of the frequency of Gaucher disease-producing mutations are not available. The high frequency of Gaucher disease in the Ashkenazi Jewish population is due to the occurrence of a mutation at nucleotide (nt) 1226. We have screened 593 DNA samples from normal Ashkenazi Jews, as well as 62 DNA samples from all our Ashkenazi Jewish patients with Gaucher disease, for the presence of the 1226 mutation. In the 593 presumed normal Ashkenazi Jewish individuals the 1226 mutation was identified in the heterozygous state in 37 and in the homozygous state in two, giving a gene frequency of .035 for the mutation. This 1226 mutation represented 73% of the 124 Gaucher disease alleles in Jewish Gaucher disease patients. Accordingly we estimate that the gene frequency for Gaucher disease among the Ashkenazi Jewish population is .047, which is equivalent to a carrier frequency of 8.9% and a birth incidence of 1:450.  相似文献   

17.
Molecular genetic study of the CFTR gene in cystic fibrosis patients from the Chuvash Republic is presented. We found linkage disequilibrium of the disease with 22-7-16-13 haplotype using intragenic markers. Major mutation p.E92K was revealed in chromosomes carrying this haplotype. The frequency of this mutation in Chuvash patients was 66.6%. Population study of the distribution of two mutations (p.E92K and F508del) of the CFTR gene revealed that their population frequency in heterozygous carriers was one per 37 subjects while calculated cystic fibrosis frequency in Chuvashia is one per 5420 newborns.  相似文献   

18.
A three-color chromosome painting technique was used to examine the spontaneous and radiation-induced chromosomal damage in peripheral lymphocytes and lymphoblastoid cells from 11 patients with ataxia telangiectasia (AT) and from 14 individuals heterozygous for an AT allele. In addition, cells from two homozygous and six obligate heterozygous carriers of mutations in the Nijmegen breakage syndrome gene (NBS) were investigated. The data were compared to those for chromosome damage in 10 unaffected control individuals and 48 cancer patients who had not yet received therapeutic treatment. Based on the well-documented radiation sensitivity of AT and NBS patients, it was of particular interest to determine whether the FISH painting technique used in these studies allowed the reliable detection of an increased sensitivity to in vitro irradiation of cells from heterozygous carriers. Peripheral blood lymphocytes and lymphoblastoid cells from both the homozygous AT and NBS patients showed the highest cytogenetic response, whereas the cells from control individuals had a low number of chromosomal aberrations. The response of cells from heterozygous carriers was intermediate and could be clearly differentiated from those of the other groups in double-coded studies. AT and NBS heterozygosity could be distinguished from other genotypes by the total number of breakpoints per cell and also by the number of the long-lived stable aberrations in both AT and NBS. Only AT heterozygosity could be distinguished by the fraction of unstable chromosome changes. The slightly but not significantly increased radiosensitivity that was found in cancer patients was apparently due to a higher trend toward rearrangements compared to the controls. Thus the three-color painting technique presented here proved to be well suited as a supplement to conventional cytogenetic techniques for the detection of heterozygous carriers of these diseases, and may be superior method.  相似文献   

19.
The G2019S mutation in exon 41 of the leucine-rich repeat kinase 2 (LRRK2) gene accounts for 3-6% of familial dominant Parkinson's disease (PD) and for 1-2% of sporadic PD. It seems that there is a north-south gradient of G2019S frequency in Europe in PD patients, and the frequency of the mutation is up to 41% in North African cases. To obtain a precise estimate of G2019S frequency in populations with relatively elevated incidence of mutation carriers, we have tested for the presence of the G2019S in the south Mediterranean countries. Three thousand one hundred healthy European subjects were compared for the G2019S incidence with 597 healthy Arab subjects originating from five populations in North Africa and with 361 healthy Sephardi Jews from five other populations. The main incidence of G2019S carriers is 1/46 in our sample of North African Arabs, the most elevated carrier incidence (1/30) being found in Moroccan Berbers. An elevated incidence (1/72) is also found in our sample of Sephardi Jews. These results contrast with the ones we found (1/1550) in a sample of 3100 healthy subjects originating from 15 populations of southern Europe. Six microsatellite markers were used in the 20 G2019S carriers we found, to conduct a haplotype analysis. Our finding on the elevated incidence of the G2019S mutation in North African Arabs and in Sephardi Jews, Berbers being the people where the mutation probably originates from, has some important consequences for future genetic diagnosis and counseling for PD in these populations.  相似文献   

20.
Cystic fibrosis (CF) is the most common autosomal recessive disease in the European (Caucasian) population, with an incidence of 1:2000 to 1:8000. The deltaF508 mutation (66%) is predominant among more than 1300 different mutations of the CFTR gene. The population of the state of Bahia, in northeastern Brazil, is highly admixed (mainly African and Portuguese descendants), and so far, no study has been carried out to assess the molecular basis of CF in this population. We determined the deltaF508 mutation frequency in 503 individuals from the general population of Salvador, the capital of the state of Bahia, and in 144 CF patients from several cities in Bahia. In the general population samples we found 4 individuals heterozygous for the deltaF508 mutation (allele frequency of 0.4%). This frequency was lower than that found in the state of Rio de Janeiro, in southeastern Brazil, and similar to that reported for the state of Paraná, in the far south. In the CF patients we found 9 heterozygous individuals and 8 homozygous individuals (allele frequency of 8.68%) for the deltaF508 mutation. This frequency is considerably lower than the average frequency of CF in the world population and in the Brazilian CF population of European ancestry (47%). These data could be explained by the intense admixture among the population in Bahia, and they suggest a heterogeneous molecular basis for CF in this area of Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号