首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A glucan elicitor from cell walls of the fungus Phytophthora megasperma f. sp. glycinea, a pathogen of soybean (Glycine max), induced large and rapid increases in the activities of enzymes of general phenylpropanoid metabolism, phenylalanine ammonia-lyase, and of the flavonoid pathway, acetyl-CoA carboxylase and chalcone synthase, in suspension-cultured soybean cells. The changes in phenylalanine ammonia-lyase and chalcone synthase activities were correlated with corresponding changes in the mRNA activities encoding these enzymes, as determined by enzyme synthesis in vitro in a mRNA-dependent reticulocyte lysate. The time courses of the elicitor-induced changes in mRNA activities for both enzymes were very similar with respect to each other. Following the onset of induction, the two mRNA activities increased significantly at 3 h, reached highest levels at 5 to 7 h, and subsequently returned to low values at 10 h. Similar degrees of induction of mRNA activities and of the catalytic activities of phenylalanine ammonia-lyase and chalcone synthase were observed in response to three diverse microbial compounds, the glucan elicitor from P. megasperma, xanthan, an extracellular polysaccharide from Xanthomonas campestris, and endopolygalacturonase from Aspergillus niger. However, whereas the glucan elicitor induced the accumulation of large amounts of the phytoalexin, glyceollin, in soybean cells, endopolygalacturonase induced only low, albeit significant, amounts; xanthan did not enhance glyceollin accumulation under the conditions of this study. This result might imply that enzymes other than phenylalanine ammonia-lyase or chalcone synthase exert an important regulatory function in phytoalexin synthesis in soybean cells.  相似文献   

2.
Suspension-cultured carrot cells and intact leaves respond to crude and purified protein elicitors from the non-host fungus Pythium aphanidermatum by activating the general phenylpropanoid pathway and incorporating de-novo-synthesized 4-hydroxybenzoic acid (4-HBA) into the cell wall. The cultured cells undergo a very rapid elicitor-induced cell death. Both reactions are directly correlated in their time course and their dose dependency. Cell death in elicitor-treated protoplasts resulted in early membrane damage and the digestion of DNA into oligonucleosomal fragments. The same pattern of DNA degradation could be induced in protoplasts by the G-protein activators Mas-7 or mastoparan. In cell cultures, both activators induced a rapid loss of viability without the activation of the general phenylpropanoid pathway. The elicitor-induced reactions, the loss of viability and the induction of 4-HBA biosynthesis were blocked by the calcium-channel blocker nifedipine. Neomycin and U73122, two inhibitors of phospholipase C, blocked the induction of 4-HBA biosynthesis but did not affect the loss in viability. The injection of the elicitor into the leaves of intact carrot plants confirmed the results obtained with cell cultures with regard to the induction of the hypersensitive response. The purification of the active compound revealed a 25-kDa protein which triggers both cell death and 4-HBA synthesis. The signalling pathways to both reactions could be independently blocked or induced. Received: 27 February 1998 / Accepted: 25 May 1998  相似文献   

3.
Benzyladenine-induced changes in the translatable mRNA population in excised cucumber cotyledons were studied. Poly (A)+ RNA was prepared from etiolated cotyledons incubated with or without benzyladenine (BA) for various periods in the dark. Using nonequilibrium pH gradient electrophoresis-SDS polyacrylamide gel electrophoresis and isoelectric focusing-SDS polyacrylamide gel electrophoresis, both basic and neutral proteins translated in vitro were separated. About 240 spots were detected and 16 of them changed within 6 h after BA application. Some spots changed quickly (within 1–2 h). Among them, three were repressed markedly  相似文献   

4.
5.
In vitro translation products of polyadenylated RNA from untreated and auxin-treated elongating sections of soybean (Glycine max var. Wayne) hypocotyl were analyzed by two-dimensional polyacrylamide gel electrophoresis. The levels of translatable messenger RNA for at least ten in vitro translation products are increased by auxin treatment. The induction by auxin occurs rapidly (within 15 minutes), and the amounts of the induced in vitro translation products increase with time of auxin treatment. Indoleacetic acid has the same effect on the population of translatable messenger RNA as 2,4-dichlorophenoxyacetic acid. The auxin-induced in vitro translation products disappear rapidly when Actinomycin D is present during the last two hours of a three-hour auxin treatment.  相似文献   

6.
In vitro translation products of polyadenylated RNA from untreated and auxin-treated basal sections of soybean (Glycine max var. Wayne) hypocotyl were analyzed by two-dimensional polyacrylamide gel electrophoresis. Within one hour of 2,4-dichlorophenoxyacetic acid treatment, the translatable messenger RNAs for at least twelve in vitro translation products are modulated upward. In vitro translation products of polyadenylated RNA from untreated, auxin-treated and Ethephon-treated intact soybean hypocotyl were also analyzed. Within two hours of treatment with either 2,4-dichlorophenoxyacetic acid or Ethephon, the translatable messenger RNAs for a group of high molecular weight in vitro translation products are modulated upward. There is a particular set of translatable messenger RNA, encoding in vitro translation products in the 24,000 to 32,000 molecular weight range, that is specifically modulated upward by auxin treatment in intact soybean hypocotyl and in hypocotyl sections.  相似文献   

7.
Metabolic labelling with [35S]-methionine demonstrated that generative cells ofLilium longiflorum possess their own set of mRNA and are capable of synthesising proteins independently from the vegetative cell. The isolated generative cells synthesised ten proteins, of which six were unique to these specialised cells. Isolation of generative cells from pollen grains after [35S]-methionine labelling resulted in an identical protein profile, therefore the synthesis of these proteins was not due to isolation shock. Addition of cycloheximide, abolished TCA-precipitable counts, whilst actinomycin D had no qualitative effect on the observed protein profile, indicating active translation of pre-existing mRNAs by the generative cells.  相似文献   

8.
The differential regulation of the activities and amounts of mRNAs for two enzymes involved in isoflavonoid phytoalexin biosynthesis in soybean was studied during the early stages after inoculation of primary roots with zoospores from either race 1 (incompatible, host resistant) or race 3 (compatible, host susceptible) of Phytophthora megasperma f.sp. glycinea, the causal fungus of root rot disease. In the incompatible interaction, cloned cDNAs were used to demonstrate that the amounts of phenylalanine ammonia-lyase and chalcone synthase mRNAs increased rapidly at the time of penetration of fungal germ tubes into epidermal cell layers (1–2 h after inoculation) concomitant with the onset of phytoalxxin accumulation; highest levels were reached after about 7 h. In the compatible interaction, only a slight early enhancement of mRNA levels was found and no further increase occurred until about 9 h after inoculation. The time course for changes in the activity of chalcone synthase mRNA also showed major differences between the incompatible and compatible interaction. The observed kinetics for the stimulation of mRNA expression related to phytoalexin synthesis in soybean roots lends further support to the hypothesis that phytoalexin production is an early defense response in the incompatible plant-fungus interaction. The kinetics for the enhancement of mRNA expression after treatment of soybean cell suspension cultures with a glucan elicitor derived from P. megasperma cell walls was similar to that measured during the early stages of the resistant response of soybean roots.Abbreviations cDNA copy DNA - CHS chalcone synthase - PAL phenylalanine ammonia-lyase  相似文献   

9.
Cell wall preparations (elicitors) from Phytophthora megasperma var. sojae increase C2H4 formation, phenylalanine ammonia lyase activity, and glyceollin accumulation in soybean cotyledons within about 1.5, 3, and 6 hours after treatment, respectively. The immediate precursor of C2H4, 1-aminocyclopropane-1-carboxylic acid, stimulates C2H4 formation like the elicitor within 1.5 hours after administration, whereas phenylalanine ammonia lyase activity and glyceollin concentration remain unchanged. Aminoethoxyvinylglycine, a specific inhibitor of C2H4 formation in higher plants, inhibits elicitor-induced C2H4 formation by about 95% but has no effects on phenylalanine ammonia lyase or glyceollin accumulation. It was concluded that C2H4 is a signal accompanying the specific recognition process which finally leads to the induction of phytoalexin formation, but it is not functioning as a link or messenger in the induction sequence of glyceollin accumulation.  相似文献   

10.
Chalcone synthase (CHS), the key enzyme in the flavonoid biosynthesis pathway, is encoded by a multigene family, CHS1–CHS8 and dCHS1 in soybean. A tandem repeat of CHS1, CHS3 and CHS4, and dCHS1 that is believed to be located in the vicinity comprises the I locus that suppresses coloration of the seed coat. This study was conducted to determine the location of all CHS members by using PCR-based DNA markers. Primers were constructed based on varietal differences in either the nucleotide sequence of the 5-upstream region or the first intron of two cultivars, Misuzudaizu, with a yellow seed coat (II), and Moshidou Gong 503, with a brown seed coat (ii). One hundred and fifty recombinant inbred lines that originated from a cross between these two cultivars were used for linkage mapping together with 360 markers. Linkage mapping confirmed that CHS1, CHS3, CHS4, dCHS1, and the I locus are located at the same position in molecular linkage group (MLG) A2. CHS5 was mapped at a distance of 0.3 cM from the gene cluster. CHS2 and CHS6 were located in the middle region of MLGs A1 and K, respectively, while CHS7 and CHS8 were found at the distal end of MLGs D1a and B1, respectively. Phylogenetic analysis indicated that CHS1, CHS3, CHS4, and CHS5 are closely related, suggesting that gene duplication may have occurred repeatedly to form the I locus. In addition, CHS7 and CHS8 located at the distal end and CHS2, CHS6, and CHS members around the I locus located around the middle of the MLG are also related. Ancient tetraploidization and repeated duplication may be responsible for the evolution of the complex genetic loci of the CHS multigene family in soybean.  相似文献   

11.
The gib1 mutant of tomato (Lycopersicon esculentum Mill.) is deficient in endogenous gibberellins and exhibits phenotypes including extreme dwarfism, reduced germination, and abnormal flower development, which are reversed by the application of gibberellic acid (GA3). Previous work has demonstrated that, in stamens of the gib1 mutant, pollen mother-cell development arrests at the premeiotic G1 stage (Jacobsen and Olszewski 1991, Plant Physiol. 97, 409–414). Following GA3 treatment of developmentally arrested flowers, pollen mother-cell development resumes and is synchronous. The present study examines gibberellin-induced changes in the translatable mRNA populations of developmentally arrested stamens and of vegetative shoots of the gib1 mutant. Following rescue of developmentally arrested stamens by treatment with GA3, we consistently detected increases and decreases in the abundance of 14 and 20 in-vitro translation products, respectively. Some of these changes were first detected 8 h post treatment and therefore represent the first changes observed in stamens whose development has been rescued by GA3 treatment. In vegetative gib1 shoots, the abundance of 13 in-vitro translation products decreased within 6–24 h after GA3 treatment. However, no in-vitro translation products that increased in abundance after GA3 treatment were detected.  相似文献   

12.
In this paper studies on the role of flavonoids in pea root nodule development are reported. Flavonoid synthesis was followed by localizing chalcone synthase (CHS) mRNA in infected pea roots and in root nodules. In a nodule primordium, CHS mRNA is present in all cells of the primordium. Therefore it is hypothesized that the Rhizobium Nod factor induces cell division in the root cortex by stimulating the production of flavonoids that function as auxin transport inhibitors. In nodules CHS mRNA is predominantly present in a region at the apex of the nodule consisting of meristematic and cortical cells. These cells are not infected by Rhizobium. Therefore it is postulated that CHS plays a role in nodule development rather than in a defence response. In roots CHS mRNA is located at a similar position as in nodules, suggesting that CHS has the same function in both root and nodule development. When nodules are formed by mutants of Rhizobium leguminosarum bv. viciae that are unable to secrete β(1-2) glucan and to synthesize the O-antigen containing LPS I, CHS genes are also expressed in regions of the nodule that are infected by Rhizobium. It is postulated that the impaired development of nodules formed by these mutants is due to an induction of a plant defence response.  相似文献   

13.
Suspension-cultured barley cells responded to treatments with crude yeast extract and purified glucan preparation by rapidly and transiently (4 h postelicitation) inducing L-phenylalanine ammonia-lyase activity. Similarly, treatment of cell cultures with chitosan resulted in increased phenylalanine ammonia-lyase activity 2–4 h after elicitation, whereas a mycelium preparation of a fungal pathogen, Bipolaris sorokiniana, and purified chitin caused a more delayed induction of phenylalanine ammonia-lyase (8 h postelicitation). The most abundant of the plant cell wall degrading enzymes produced by Bipolaris sorokiniana, β-1,4-xylanase, had only a weak elicitor activity in barley cells suggesting that fungal cell wall components rather than the hydrolytic enzymes secreted by the fungus function as recognizable components that cause barley cells to induce defences. Treatment of the elicited cells with a phenylalanine ammonia-lyase inhibitor, α-aminooxy-β-phenylpropionic acid, resulted in the superinduction of the enzyme indicating the blocking of the feedback regulation mechanisms, whereas in the presence of 1 mM trans-cinnamic acid the elicitor-induction of phenylalanine ammonia-lyase was completely inhibited. Elicitor treatments increased the accumulation of wall-bound phenolics as evidenced by phloroglucinol-HCl staining and thioglycolic acid methods. However, α-aminooxy-β-phenylpropionic acid applied in combination with the elicitor did not prevent the accumulation of phenolics in barley cell walls. This suggested that phenylalanine ammonia-lyase might not play an important role in the synthesis wall-bound phenolic compounds in barley. However, cinnamic acid, whether applied alone or together with the elicitor, increased the amount of wall-bound phenolics in suspension-cultured barley cells. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
15.
Addition of an elicitor preparation from Verticillium dahliae to soybean or cotton cell suspension cultures induces the formation of the phytoalexins, glycelollin or sesquiterpene aldehydes, respectively. Recent work (PS Low, PF Heinstein 1986 Arch Biochem Biophys 249: 472-479) has shown that the induction of phytoalexin biosynthesis in these cells is preceded by rapid changes in the plant cell membrane which can be conveniently monitored by membrane associated fluorescent probes. Using this elicitation assay, we have found that citrate, a common metabolite of higher plants, acts as a potent inhibitor of elicitation when added prior to treatment with elicitor. The citrate concentration required to obtain a 50% inhibition of the elicitor-induced fluorescence transition in cultured cotton cells was found to be about 2 millimolar, while the concentration of citrate observed to inhibit elicitor-induced sesquiterpene aldehyde formation in the same cell suspensions was also 2 millimolar. Curiously, in the presence of elicitor, citrate at less than ID50 concentrations increased cell mass accumulation significantly above control incubations without elicitor. A similar inhibition of glyceollin formation with an increase in cell mass accumulation was also observed upon addition of 1 to 5 millimolar citrate to soybean cell suspension cultures. The physiological significance of the inhibition by citrate of phytoalexin formation in plant cell suspensions was supported by the observation that a similar inhibition of sesquiterpene aldehyde formation occurs in cotton plantlets elicited by cold shock or V. dahliae stress. The specificity of citrate as an inhibitor of phytoalexin formation was demonstrated by data showing that other di- and tricarboxylic-hydroxy acids did not inhibit, with the exception of malate which inhibited phytoalexin formation in soybean cells with roughly half the potency of citrate. These experiments not only demonstrate that citrate can act as a specific inhibitor of elicitation, but they further confirm the validity of monitoring elicitation and its modulation with fluorescent probes.  相似文献   

16.
Soybean hairy roots, transformed with the soybean chalcone synthase (CHS6) or isoflavone synthase (IFS2) genes, with dramatically decreased capacity to synthesize isoflavones were produced to determine what effects these changes would have on susceptibility to a fungal pathogen. The isoflavone and coumestrol concentrations were decreased by about 90% in most lines apparently due to gene silencing. The IFS2 transformed lines had very low IFS enzyme activity in microsomal fractions as measured by the conversion of naringenin to genistein. The CHS6 lines with decreased isoflavone concentrations had 5 to 20-fold lower CHS enzyme activities than the appropriate controls. Both IFS2 and CHS transformed lines accumulated higher concentrations of both soluble and cell wall bound phenolic acids compared to controls with higher levels found in the CHS6 lines indicating alterations in the lignin biosynthetic branch of the pathway. Induction of the soybean phytoalexin glyceollin, of which the precursor is the isoflavone daidzein, by the fungal pathogen Fusarium solani f. sp. glycines (FSG) that causes soybean sudden death syndrome (SDS) showed that the low isoflavone transformed lines did not accumulate glyceollin while the control lines did. The (iso)liquritigenin content increased upon FSG induction in the IFS2 transformed roots indicating that the pathway reactions before this point can control isoflavonoid synthesis. The lowest fungal growth rate on hairy roots was found on the FSG partially resistant control roots followed by the SDS sensitive control roots and the low isoflavone transformants. The results indicate the importance of phytoalexin synthesis in root resistance to the pathogen. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

17.
We have used conserved and nonconserved regions of cDNA clones for phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) isolated from a soybean-nodule cDNA library to monitor the expression of members of the two gene families during the early stages of the soybean-Bradyrhizobium japonicum symbiosis. Our results demonstrate that subsets of the PAL and CHS gene families are specifically induced in soybean roots after infection with B. japonicum. Furthermore, by analyzing a supernodulating mutant line of soybean that differs from the wild-type parent in the number of successful infections, we show that the induction of PAL and CHS is related to postinfection events. Nodulated roots formed by a Nod+ Fix- strain of B. japonicum, resembling a pathogenic association, display induction of another distinct set of PAL and CHS genes. Our results suggest that the symbiosis-specific PAL and CHS genes in soybean are not induced by stress or pathogen interaction.  相似文献   

18.
B. Bruns  K. Hahlbrock  E. Schäfer 《Planta》1986,169(3):393-398
The fluence dependence of the time course of accumulation of chalcone synthase mRNA in ultraviolet (UV)-light-irradiated cell suspension cultures of parsley (Petroselinum crispum) and the additional effects of blue and far-red light have been investigated. Variations of the UV fluence had no detectable influence on the initial rate of increase in mRNA amount or translational activity, nor on the preceding lag period of approximately 3 h, but strongly influenced the duration of the transient increase. The effects were the same whether the fluence rate or the time of irradiation was varied to obtain a given fluence. Blue-light pretreatment of the cells resulted in increased amounts of mRNA and abolished the apparent lag period. This effect remained cryptic without the subsequent UV-light treatment. Irradiation with long-wavelength far-red light following UV-light pulses shortened the duration of the mRNA accumulation period. This effect was not altered by a preceding blue-light treatment. Thus, three photoreceptors, a UV-B receptor, a blue-light receptor and phytochrome, participate in the regulation of chalcone synthase mRNA accumulation in this system.Abbreviations cDNA complementary DNA - UV ultraviolet - Pfr fai-red-absorbing form of phytochrome  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号