首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The action of specific benzodiazepine (BD) antagonist R015-1788 and peripheral benzodiazepine receptor (BDR) ligand R05-4864 on the evoked activity of hippocampal neurons was studied using brain slice method. The extracellular activity was registered in CAI area upon single and paired pulse stimulation of Schaffer collaterals. R015-1788 application (5 microM, for 3-6 min) reduced paired pulse inhibition (PPI). More prolonged application produced a depression of the population spike (PS). R015-1788 (5 microM) blocked diazepam (2 microM), hexobarbital (10 microM) and GABA (40 microM) potentiation of PPI. Interaction of R015-1788 with endogenous BD-like ligand as a possible explanation for the effects under study is discussed. R05-4864 (10 microM) reduced PPI and decreased PS evoked by single pulse stimulation. Frequency stimulation revealed the generation of additional PS after drug application. The data presented suggest that suppression of hippocampal inhibitory circuits may be a general feature of anxiogenic BDR ligands.  相似文献   

2.
The effects of benzodiazepine receptor agonist, diazepam, and inverse agonist, FG 7142, were examined. Strong antagonism between FG 7142 (10 mg/kg) and diazepam (1 mg/kg) activity was revealed in the open field test. On the other hand, both FG 7142 and diazepam inhibited isolation-induced intraspecies aggressive behaviour of rats. FG 7142 also reduced interspecies aggression of mouse-killing rats. The findings suggest that both diazepam and FG 7142 have antiaggressive properties in the isolation-induced aggression model, which are mediated by benzodiazepine receptors of the central nervous system.  相似文献   

3.
Influence of 4-E-BPE on the amplitude of population spices (PS) evoked in CA1 area by Shaffer collateral stimulation in hippocampal slices were analysed. Bath application of 4-E-BPE (10(-6)-10(-5) M) led to a pronounced increase in the amplitude of the PS, the appearance of secondary PS and then introduction of GABA led to restoring original state. The 4-E-BPE was more potent than picrotoxin. These findings suggest that 4-E-BPE suppress inhibitory synaptic transmission in the CA1 region of hippocampus.  相似文献   

4.
The effects of treatment of brain membranes with diethyl pyrocarbonate (DEP), a histidine-modifying reagent, on the binding of 3H-labeled Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a]- [1,4]benzodiazepine-3-carboxylate) and [3H]diazepam were compared. DEP pretreatment produced a dose-dependent decrease in [3H]diazepam binding, whereas low DEP concentrations enhanced the binding of [3H]Ro 15-4513. These effects were reversed by incubation with hydroxylamine after the treatment. The enhancement of [3H]Ro 15-4513 binding was due to an increase in the affinity of the binding sites (KD), without any effect on binding capacity (Bmax). The enhancement was perceived in cerebral cortical, cerebellar, and hippocampal membranes. DEP treatment decreased the displacement of [3H]Ro 15-4513 binding by diazepam and FG 7142 (N-methyl-beta-carboline-3-carboxamide) but not by Ro 15-4513 and Ro 19-4603 (tert-butyl-5,6-dihydro-5-methyl-6-oxo-4H-imidazol[1,5- a]thieno[2,3-f][1,4]diazepine-3-carboxylate). Although the stimulating effect of gamma-aminobutyric acid (GABA) on [3H]-diazepam binding was not affected by DEP treatment, such treatment reduced the inhibitory effect of GABA on [3H]Ro 15-4513 binding. The enhancement of [3H]Ro 15-4513 binding was observed in membranes pretreated with DEP in the presence of flunitrazepam, whereas such pretreatment reduced significantly the inhibitory effect of DEP on [3H]-diazepam binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effect of foot-shock stress on t-[35S]butylbicyclophosphorothionate [( 35S]TBPS) binding to fresh unwashed membrane preparations from rat cerebral cortex was studied and was compared to those of GABAA receptor agonists and antagonists and to positive and negative modulators of the GABAergic transmission. [35S]TBPS binding was increased in the cerebral cortex of rats exposed to foot shock compared to that of nonstressed rats. Scatchard analysis revealed that the effect of foot shock was due to an increase in the total number of [35S]TBPS binding sites. In contrast, the in vitro addition of muscimol or GABA induced a dose-dependent inhibition of [35S]TBPS binding, an effect abolished by the concomitant addition of the GABA receptor antagonist, bicuculline, which, per se, enhanced [35S]TBPS binding by 73%. Thus, bicuculline, similar to stress, increased [35S]TBPS binding in the same membrane preparation. In contrast to stress, the anxiolytic and positive modulators of the GABAergic transmission (ZK 93423, ZK 91296, and diazepam) inhibited the specific binding of [35S]TBPS in a concentration-dependent manner. The greatest inhibitory effect was produced by ZK 93423 at 30 microM (31% of control), followed by diazepam (54% of control) and by the partial agonist ZK 91296 (61% of control). Scatchard plot analysis indicated that the inhibition induced by ZK 93423 and diazepam was due to a decrease in the density of [35S]TBPS recognition sites. On the other hand, the anxiogenic beta-carbolines DMCM and FG 7142 mimicked the effect of stress. Thus, at a 10 microM concentration, DMCM and FG 7142 increased [35S]TBPS binding by 22% and 26%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The possible contribution of Ca2+-activated Cl- channel [I(Cl(Ca))] and myosin light-chain kinase (MLCK) to nonadrenergic, noncholinergic slow inhibitory junction potentials (sIJP) was studied using conventional intracellular microelectrode recordings in circular smooth muscle of opossum esophageal body and guinea pig ileum perfused with Krebs solution containing atropine (3 microM), guanethidine (3 microM), and substance P (1 microM). In opossum esophageal circular smooth muscle, resting membrane potential (MP) was -51.9 +/- 0.7 mV (n = 89) with MP fluctuations of 1-3 mV. A single square-wave nerve stimulation of 0.5 ms duration and 80 V induced a sIJP with amplitude of 6.3 +/- 0.2 mV, half-amplitude duration of 635 +/- 19 ms, and rebound depolarization amplitude of 2.4 +/- 0.1 mV (n = 89). 9-Anthroic acid (A-9-C), niflumic acid (NFA), wortmannin, and 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-9) abolished MP fluctuations, sIJP, and rebound depolarization in a concentration-dependent manner. A-9-C and NFA but not wortmannin and ML-9 hyperpolarized MP. In guinea pig ileal circular smooth muscle, nerve stimulation elicited an IJP composed of both fast (fIJP) and slow (sIJP) components, followed by rebound depolarization. NFA (200 microM) abolished sIJP and rebound depolarization but left the fIJP intact. These data suggest that in the tissues studied, activation of I(Cl(Ca)), which requires MLCK, contributes to resting MP, and that closing of I(Cl(Ca)) is responsible for sIJP.  相似文献   

7.
The effects of GABA, bicuculline and 5-HT on primary afferents in the isolated spinal cord of the frog Rana ridibunda were studied. Bath application of GABA (1 mM) reduced the primary afferent depolarisation (PAD) in IX segment of the spinal cord evoked by X dorsal root stimulation (57 +/- 8% of initial level, n = 5, p < 0.05). The action potentials (AP) recorded in dorsal root afferents was also suppressed under the GABA action (74 +/- 9%, p < 0.05). Bath application of bicuculline (50 microM) reduced the PAD (21 +/- 7%), n = 6, p < 0.05), meanwhile the AP in dorsal root afferents was resistant against the bicuculline action. Bath application of 5-HT (25 microM) depressed the PAD (34 +/- 7%, n = 7, p < 0.05) and the amplitude of the AP recorded from the single afferent fibre in dorsal column (76 +/- 6%, n = 7, p < 0.05). In contrast to GABA, 5-HT more effectively suppressed the late phase of the PAD evoked by X dorsal root stimulation and caused (76 +/- 6%, n = 7, p < 0.05) an alteration of the AP shape. All effects induced by these drugs were reversible. The mechanisms of GABA and 5-HT modulation of spinal cord afferent income are discussed.  相似文献   

8.
The effect of stretching from L0 to Lmax on the electrical activity was studied on human myocardial preparations from patients with heart disease and on strips of rabbit ventricular myocardium. Muscular deformation was shown to decrease the amplitude and velocity of depolarization in slow action potentials. The action potentials (AP) possessing a fast depolarization phase were not sensitive to physiological stretching. Antiarrhythmic drugs--ethmozin (2 X 10(-5) M) and ethacizin (2 X 10(-6) M)--caused a decrease in the rate of AP depolarization, thus increasing AP sensitivity to deformation. It is suggested that stretching under the action of ethmozin and ethacizin reduced cardiomyocyte excitability due to suppression of slow Ca-current.  相似文献   

9.
The creatine (Cr) and phosphocreatine (PCr) system is essential for the buffering and transport of high-energy phosphates. Although achievements made over the last years have highlighted the important role of creatine in several neurological diseases, the adaptive processes elicited by this guanidino compound in hippocampus are poorly understood. In the present study, we showed that creatine (0.5-25mM) gradually increases the amplitude of first population spike (PS) and elicits secondary PS in stratum radiatum of the CA1 region, in hippocampal slices. Creatine also decreased the intensity of the stimulus to induce PS, when compared with hippocampal slices perfused with artificial cerebrospinal fluid (ACSF). The competitive NMDA receptor antagonist, 2-amino-5-phosphonopentanoic acid (AP5; 100microM) attenuated creatine-induced increase of amplitude of PS and appearance of secondary PS, providing pharmacological evidence of the involvement of NMDA receptors in the electrophysiological effects of creatine. Accordingly, creatine (0.01-1mM) increased [3H]MK-801 binding to hippocampal membranes by 55%, further indicating that this compound modulates NMDA receptor function. These results implicate the NMDA receptor in amplitude and population spike increase elicited by creatine in hippocampus. Furthermore, these data suggest that this guanidino compound may also play a putative role as a neuromodulator in the brain, and that at least some of its effects may be mediated by an increase in glutamatergic function.  相似文献   

10.
The effect of the anxiogenic beta-carboline methyl-beta-carboline-3-carboxyamide (FG 7142) on dopamine release in prefrontal cortex and striatum in the awake freely moving rat was determined using the technique of microdialysis. FG 7142 (25 mg/kg, i.p.) caused a time-dependent increase in dopamine release in prefrontal cortex which was statistically significantly greater than the response to vehicle administration. Dopamine release in striatum was unaltered by FG 7142. Pretreatment of animals with the benzodiazepine antagonist Ro 15-1788 (30 mg/kg, i.p., 15 min prior to FG 7142 administration) completely abolished the increase in dopamine release caused by FG 7142 in prefrontal cortex. These data indicate that the anxiogenic benzodiazepine inverse agonist FG 7142 can selectively increase dopamine release in prefrontal cortex, and that this effect appears to be mediated via the gamma-aminobutyric acid/benzodiazepine receptor complex.  相似文献   

11.
R G Lister 《Life sciences》1987,41(12):1481-1489
The intrinsic effect of the benzodiazepine receptor inverse agonists RO 15-4513 and FG 7142 on the behavior of mice in a holeboard were investigated. Both drugs caused dose-related decreases in exploratory head-dipping. The highest dose of FG 7142 (40 mg/kg) also reduced locomotor activity. RO 15-4513 (1.5 and 3.0 mg/kg) and FG 7142 (10 and 20 mg/kg) reversed the reductions in the number of head-dips caused by ethanol (2 g/kg). The higher doses of these two drugs also partially reversed the locomotor stimulant action of ethanol. Animals that received ethanol in combination with either inverse agonist spent less time head-dipping than vehicle-treated controls. These data indicate that FG 7142 and RO 15-4513 can reverse, at least in part, some of the behavioral effects of ethanol. Neither drug significantly altered blood alcohol concentrations suggesting that the antagonism does not result from pharmacokinetic changes.  相似文献   

12.
CM6804 effect has been studied about some parameters of the intracellular action potential (AP) of guinea pig autorythmic auricle. Auricle was preserved alive under Tyrode oxygenated solution at 37 degrees C. AP is measured by a fluctuating intracellular glass microelectrode. At a concentration of 5 . 10(-5) M, CM doesn't alter the resting membrane potential, it causes a small overshoot reduction, it decreases the maximum depolarization rate and the heart rate, it increases the action potential duration. Overshoot and maximum depolarization rate decrease prove that CM modifies the membrane permeability probably by a diminution of the sodium rapid inward current. CM action is similar to others aryl-oxy-propyl propanolamine like propranolol.  相似文献   

13.
Satoh H 《Life sciences》2003,72(9):1039-1048
Effects of NS-7 (1 to 100 microM), a novel neuroprotective drug, on the action potentials in guinea pig ventricular muscles were investigated at different stimulation frequencies, different extracellular Ca(2+) concentrations ([Ca](o)) and in the presence of inhibitors for selective delayed rectifier K(+) channels. A conventional microelectrode technique was carried out. NS-7 caused inhibitory actions on the action potential configuration in a concentration-dependent manner. NS-7 at less concentrations than 30 microM did not affect, but at 100 microM decreased the action potential amplitude (APA) and the maximum rate of depolarization (V(max)) by 11.1 +/- 2.3% (n = 14, P < 0.05) and by 24.3 +/- 2.6% (n = 14, P < 0.01), respectively. NS-7 at 100 microM also prolonged the 75 and 90% repolarizations of action potential duration (APD(75) and APD(90)) by 14.5 +/- 2.2% (n = 14, P < 0.05) and 20.2 +/- 2.4% (n = 14, P < 0.01), respectively, but it at any concentrations failed to affect the 50% repolarization of action potential duration (APD(50)). The resting potential was unaffected. These responses were almost reversible after 10-to 20-min washout. The stronger inhibition was caused at higher frequencies of stimulation. NS-7 prolonged the APD at lower [Ca](o) than 3.6 mM. In the presence of 5 microM E-4031 or 30 microM 293B, NS-7 increased further the APD. These results indicate that NS-7 at relatively higher concentrations produced inhibitory actions on the cardiac muscles, and that the APD prolongation and the V(max) inhibition induced by NS-7 are dependent on stimulation frequencies, but are independent of [Ca](o) levels, resulting in exhibition of its cardioprotective action.  相似文献   

14.
F Marrosu  G Mereu  O Giorgi  M G Corda 《Life sciences》1988,43(25):2151-2158
The aim of the present study was to compare the ability of Ro 15-4513 and FG 7142, two inverse agonists for benzodiazepine recognition sites, to antagonize the EEG effects of ethanol in freely moving rats. Ethanol (2.5 g/kg, p.o.) induced sedation and ataxia associated with a progressive suppression of the fast cortical activities and an enhancement of low frequencies in both cortical and hippocampal tracings. In contrast, Ro 15-4513 (2 mg/kg, i.p.) and FG 7142 (10 mg/kg, i.p.) both caused a state of alertness associated with desynchronized cortical activity and theta hippocampal rhythm as well as spiking activity which was predominantly observed in the cortical tracings. When rats were treated with FG 7142 or RO 15-4513 either before or after ethanol, a reciprocal antagonism of the behavioral and EEG effects of ethanol and of the partial inverse agonists was observed. These data support the view that the anti-ethanol effects of Ro 15-4513 may be related to its partial inverse agonist properties.  相似文献   

15.
Measurements of resting potential and action potential in presynaptic branches of the excitatory motor axon to the crayfish opener muscle were made with intracellular microelectrodes during application of serotonin (10(-9)-10(-3) M). A 5-min exposure to 10(-6) M serotonin produced enhancement of excitatory junction potentials (EJPs) lasting about 1 h. The membrane potential of the presynaptic terminal was depolarized by about 5 mV; the depolarization subsided within 1/2 h. Concomitant reduction in amplitude of the presynaptic action potential, not accompanied by spike broadening, was observed. The presynaptic depolarization, and the enhancement of EJPs, were dependent on the presence of extracellular sodium but not extracellular calcium. A possible mechanism for serotonin's effect involves initial entry of sodium into the nerve terminal, with consequent increased availability of intracellular calcium. The subsequent long-lasting phase of EJP enhancement may result from an additional effect on the metabolism of the nerve terminal.  相似文献   

16.
The effects of diazepam on potassium contractures, contraction threshold, and resting tension have been examined in rat soleus muscle fibres. Two actions of the drug were defined that could not be attributed to changes in the resting membrane potential or depolarization in high potassium solutions. The major effect was an increase in the amplitude of submaximal tension during either twitches or potassium contractures and an increase in resting tension. At 400 microM diazepam, there was (a) a fourfold increase in 40 mM potassium contracture tension, (b) a negative shift of 8 mV in the membrane potential for half maximum tension estimated from the best fit of a Boltzmann-type equation to average potassium contracture data, (c) a negative shift of 8 mV in the threshold for contraction measured under voltage clamp conditions, and (d) a contracture of variable amplitude to a level that was occasionally equivalent to maximum tetanic tension. These potentiating actions of diazepam depended on drug concentration within the range of 100-800 microM. In contrast, the second effect of diazepam, depression of maximum tension by 10-15%, was independent of drug concentration between 100 and 400 microM. The results support the idea that diazepam produces an increase in resting myoplasmic calcium concentrations.  相似文献   

17.
[Arg(8)]-vasopressin (AVP), at low concentrations (10-500 pM), stimulates oscillations in intracellular Ca(2+) concentration (Ca(2+) spikes) in A7r5 rat aortic smooth muscle cells. Our previous studies provided biochemical evidence that protein kinase C (PKC) activation and phosphorylation of voltage-sensitive K(+) (K(v)) channels are crucial steps in this process. In the present study, K(v) currents (I(Kv)) and membrane potential were measured using patch clamp techniques. Treatment of A7r5 cells with 100 pM AVP resulted in significant inhibition of I(Kv). This effect was associated with gradual membrane depolarization, increased membrane resistance, and action potential (AP) generation in the same cells. The AVP-sensitive I(Kv) was resistant to 4-aminopyridine, iberiotoxin, and glibenclamide but was fully inhibited by the selective KCNQ channel blockers linopirdine (10 microM) and XE-991 (10 microM) and enhanced by the KCNQ channel activator flupirtine (10 microM). BaCl(2) (100 microM) or linopirdine (5 microM) mimicked the effects of AVP on K(+) currents, AP generation, and Ca(2+) spiking. Expression of KCNQ5 was detected by RT-PCR in A7r5 cells and freshly isolated rat aortic smooth muscle. RNA interference directed toward KCNQ5 reduced KCNQ5 protein expression and resulted in a significant decrease in I(Kv) in A7r5 cells. I(Kv) was also inhibited in response to the PKC activator 4beta-phorbol 12-myristate 13-acetate (10 nM), and the inhibition of I(Kv) by AVP was prevented by the PKC inhibitor calphostin C (250 nM). These results suggest that the stimulation of Ca(2+) spiking by physiological concentrations of AVP involves PKC-dependent inhibition of KCNQ5 channels and increased AP firing in A7r5 cells.  相似文献   

18.
蝎毒耐热蛋白对大鼠急性分离海马神经元兴奋性的影响   总被引:4,自引:0,他引:4  
Wang Y  Zhang XY  Li S  Zhang J  Zhao J  Zhang WQ 《生理学报》2007,59(1):87-93
应用全细胞膜片钳记录技术在电流钳模式下观察经持续高温等特殊处理后分离纯化的30~50 kDa蝎毒耐热蛋白(scorpion venom heat resistant protein,SVHRP)(国家发明专利,专利号ZL01 106166.92)对急性分离大鼠海马神经元兴奋性的影响.结果发现SVHRP可致海马神经元兴奋性降低.神经元经1×10-2 μg/mL SVHRP处理后动作电位发放模式改变,发放频率减少.在52个受检细胞中,有45个细胞产生位相放电(占86.54%);7个细胞产生重复放电(占13.46%).在产生位相放电的45个细胞中,有8个细胞在SVHRP处理后仍可以诱发出位相放电(占17.78%);37个细胞在SVHRP处理后无法诱导出位相放电(占82.22%),SVHRP处理后动作电位的产生与处理前相比,有显著差异(P<0.01,n=45);在产生重复放电的7个细胞中,在1×10-2μg/mL SVHRP作用后均不能再次诱发出重复放电,而是产生一个动作电位或不再产生动作电位,药物处理前产生的动作电位个数为14.57±1.00,SVHRP处理后产生动作电位的个数为0.57±0.20,二者之间有显著性差异(P<0.01,n=7).1×10-4 μg/mLSVHRP处理后,诱发动作电位产生的基强度由(75.10±8.99)pA增加到(119.85±12.73)pA(P<0.01,n=8);阈电位由(-41.17±2.15)mV升至(-32.40±1.48)mV(P<0.01,n=8);动作电位峰值由(68.49±2.33)mV下降至(54.71±0.81)mV(P<0.01,n=8).由于神经元超兴奋性被认为是癫痫发作的基本机制之一,因此上述结果表明SVHRP有可能通过降低海马神经元兴奋性发挥其抗癫痫作用,这为蝎毒药物的进一步开发提供理论依据.  相似文献   

19.
Rats were exposed to a two-layer drug discrimination procedure using the benzodiazepine (BZ) receptor inverse agonists N′-methyl-β-carboline-3-carboxamide (FG 7142) or methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM). FG 7142 (30 mg/kg) failed to acquire discriminative stimulus control, although it did suppress responding. The same group of animals was trained successfully to discriminate diazepam (DZP, 2.5 mg/kg) from vehicle. The DZP cue was potentiated by the GABA agonist 4,5,6,7-tetrahydro-isoxazolo [5, 4-c] pyridin-3-ol (THIP, 1–3 mg/kg); THIP alone produced vehicle-appropriate responding. In addition, clonazepam (0.2 mg/kg) and chlordiazepoxide (5 mg/kg) substituted for DZP (with potencies of 7.5 and 0.25 times that of DZP, respectively). In antagonism tests, FG 7142 (5–17.5 mg/kg), methyl-β-carboline-3-carboxylate (β-CCM, 2.5 mg/kg), nicotine (0.3 mg/kg), harmaline (5 mg/kg) and naltrexone (10 mg/kg) did not effect, bicuculine (2 mg/kg) and DMCM (1 mg/kg) partially blocked, and the BZ receptor antagonist Ro 15–1788 (40 mg/kg) completely blocked the discriminative stimulus effects of DZP. In animals trained to discriminate DMCM (0.2 mg/kg) from vehicle, 95% substitution occured with bicuculline (2 mg/kg); DZP (1–5 mg/kg) completely antagonized DMCM. These results indicate that the DZP cue is mediated by GABA-coupled BZ receptors and that GABA may modulate the efficacy of a BZ at its receptor site. However, since inverse BZ receptor agonists (FG 7142, DMCM and β-CCM) were, at best, only marginally effective in antagonizing DZP, the DZP cue may be mediated by a distinct subclass of BZ receptors.  相似文献   

20.
The purpose of this study was to elucidate the mechanisms by which ATP increases guinea pig gallbladder smooth muscle (GBSM) excitability. We evaluated changes in membrane potential and action potential (AP) frequency in GBSM by use of intracellular recording. Application of ATP (100 microM) caused membrane depolarization and a significant increase in AP frequency that were not sensitive to block by tetrodotoxin (0.5 microM). The nonselective P2 antagonist, suramin (100 microM), blocked the excitatory response, resulting in decreased AP frequency in the presence of ATP. The excitatory response to ATP was not altered by pyridoxal-phosphate-6-azophenyl-2,4-disulfonic acid (30 microM), a nonselective P2X antagonist. UTP also caused membrane depolarization and increased AP frequency, with a similar dose-response relationship as ATP. RT-PCR demonstrated that the P2Y(4), but not P2Y(2), receptor subtype is expressed in guinea pig gallbladder muscularis. ATP induced excitation was blocked by indomethacin (10 microM) and the cyclooxygenase (COX)-1 inhibitor SC-560 (300 nM), but not the COX-2 inhibitor nimesulide (500 nM). These data suggest that ATP stimulates P2Y(4) receptors within the gallbladder muscularis and, in turn, stimulate prostanoid production via COX-1 leading to increased excitability of GBSM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号