首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
有丝分裂是真核生物进行细胞增殖的基本方式,其根本目的是准确无误地将复制好的染色体平均分配到两个子细胞中。在细胞有丝分裂过程中,纺锤体组装检验点的作用是产生"等待"信号,直至所有的染色体都排列到赤道板上并建立正确的双极定向,以确保染色体的均等分配。在高等动物中,细胞的纺锤体组装检验点功能行使异常,染色体分离将出现错误,导致子代细胞的染色体数量不稳定,进而诱发肿瘤或导致其他疾病的发生。纺锤体组装检验点一直以来都是细胞生物学家研究的热点,然而其作用的分子基础和调控因素还不是十分明了,该文将对近年来关于纺锤体检验点的研究进展进行总结和探讨。  相似文献   

2.
核仁纺锤体相关蛋白1(nucleolar and spindle-associated protein 1, NUSAP1)是一种微管结合蛋白,它与微管结合后稳定微管并参与细胞分裂,与染色体结合后,促进有丝分裂纺锤体微管的形成;因此NUSAP1与细胞有丝分裂进程、纺锤体的形成有密切关系。NUSAP1的一个关键功能是在有丝分裂早期和晚期起调节作用。NUSAP1在许多恶性肿瘤中高表达,因此通过NUSAP1的靶向作用机制的研究筛选出合适的靶向药物对于恶性肿瘤的治疗具有潜在的应用前景。本文就NUSAP1在恶性肿瘤中的作用机制及其在恶性肿瘤治疗中的价值进行分析与总结。  相似文献   

3.
驱动蛋白(kinesin)是分子马达蛋白质超家族成员,主要参与囊泡与细胞器的运输、纺锤体组装、有丝分裂和减数分裂等过程。在减数分裂期,不同驱动蛋白发挥功能的调控机制并不十分清楚。嗜热四膜虫(Tetrahymena thermophila)中含有14个驱动蛋白家族成员。其中,kinesin-6家族的唯一成员Kin11(TTHERM_00637750),在营养生长期低表达,饥饿期不表达,有性生殖期表达上调。Kin11编码1608个氨基酸,包含1个N端保守的马达蛋白结构域,C端卷曲螺旋(coiled-coil)结构域,并在N端和C端分别含有核定位信号NLS1和NLS2。Kin11在营养生长期和有性生殖期,定位在有丝分裂和减数分裂的小核和纺锤体上,并在有性生殖后期alignment阶段定位于小核上。Kin11与微管蛋白共定位于有丝分裂和减数分裂的纺锤体上。将Kin11的N端含有NLS1的1~400位氨基酸序列截短后,截断突变体定位在有性生殖减数分裂期的小核和纺锤体上。而将其C端含有NLS2的1008~1608位氨基酸残基截短后,截断突变体只能定位在有丝分裂和减数分裂后期的小核及有丝分裂的纺锤体上。敲除KIN11导致减数分裂过程中的纺锤体结构发生异常变化,小核染色体不均等分离与丢失,有性生殖发育停滞。结果表明,嗜热四膜虫驱动蛋白Kin11通过影响纺锤体结构,参与调控四膜虫生殖系小核在减数分裂过程中的正常分离。  相似文献   

4.
小分子的单体G蛋白Ran具有鸟苷三磷酸酶活性,其结合形式Ran-GTP作为区分间期细胞的核质和胞质的一个分子标记,并参与调控核质运输、指导纺锤体形成以及引导核膜解体与装配。现就Ran在真核细胞核质运输、有丝分裂纺锤体组装与核膜动力学中的功能作一综述。  相似文献   

5.
细胞有丝分裂过程中,纺锤体组装检控点监控着染色体在赤道板的队列和向纺锤体两极的分离,确保动粒-微管的黏附和有丝分裂器的完整,使所有的染色体都置于赤道板并双极定向后才进入后期,保证遗传物质均等地分配给两个子代细胞。纺锤体组装检控点缺陷将导致非整倍体的出现,并与一些肿瘤的发生密切相关。现就近年来纺锤体组装检控点蛋白以及纺锤体组装检控点功能缺陷与肿瘤的关系方面的研究进展作一简要综述。  相似文献   

6.
研究香兰素衍生物中的6.溴异香兰素(BVAN08)对细胞纺锤体结构的影响及诱发灾变死亡的相关机制,为开发该化合物为新的抗癌药物提供理论依据.通过光学显微镜观察BvAN08作用后细胞形态学变化,流式细胞术检测细胞周期,纺锤体功能检测点实验和原位免疫荧光杂交实验分析细胞有丝分裂进程和纺锤体结构.western印记检测BVAN08作用后相关蛋白质的变化.结果表明20~60 μmol/L BVAN08作用后,HepG2细胞变圆不再贴壁生长、随后脱落死亡,具有浓度依赖性量效关系;明显诱导细胞G2/M期阻滞、导致细胞有丝分裂指数升高,并出现大量的非二倍体和多倍体细胞;破坏细胞纺锤体的结构,多中心体细胞显著增加;该化合物促使细胞周期转录调节因子FoxM1及其下游靶分子细胞周期蛋白B1和CdK1的降解、阻止有丝分裂过程而导致有丝分裂灾变死亡.研究揭示BVAN08通过破坏纺锤体结构、诱发M期阻滞,导致细胞有丝分裂灾变死亡,FoxM1失活可能参与其作用机制.  相似文献   

7.
昆虫孤雌生殖中中心体的组装和意义   总被引:2,自引:0,他引:2  
中心体是动物细胞主要的微管组织中心(microtubule organizing center, MTOC), 负责组织纺锤体.近年来, 关于昆虫卵母细胞减数分裂后中心体形成的深入研究对阐明昆虫孤雌生殖的过程和机制以及了解孤雌生殖的进化和形成具有重要意义.综述了第一次有丝分裂纺锤体的形成、中心体的装配以及中心体对于昆虫孤雌生殖的意义, 表明昆虫孤雌生殖的普遍模式就是在没有精子提供中心粒的情况下, 卵子通过新形成的中心体进行有丝分裂, 中心体自我组装限制的解除可能是进行孤雌生殖的转折点.  相似文献   

8.
目的目的探讨小鼠spindlin1蛋白在MII期卵母细胞中的作用。方法采用免疫荧光方法对spindlin1蛋白在小鼠卵母细胞中的定位进行研究。采用抗体显微注射实验对其在MII期卵母细胞中的功能进行了研究。结果免疫荧光结果显示在MII期,spindlin1蛋白定位于中期纺锤体,当卵母细胞进入分裂后期,spindlin1蛋白从纺锤体上消失。抗体注射实验显示在MII期卵母细胞中干扰spindlin1蛋白后,纺锤体形态明显异常且染色体排列发生紊乱。结论小鼠spin-dlin1蛋白在MII期卵母细胞中发挥作用,参与维持中期纺锤体的稳定,保障了染色体的正确分离。  相似文献   

9.
翟睿  霍立军 《生命科学》2012,(3):292-296
Aurora蛋白激酶A及Polo样蛋白激酶1(PLK在)作为重要的细胞周期调节蛋白可参与调控纺锤体组装、有丝分裂等细胞进程,但其激活机制及在有丝分裂中的作用机制仍然不是很清楚。Bora作为Aurora蛋白激酶A的结合蛋白,在果蝇和脊椎动物中功能高度保守,其主要通过结合Aurora蛋白激酶A从而调节Aurora蛋白激酶A的活性、促进PLK1的磷酸化、调节纺锤体的组装以及调控细胞周期进程等。随着对Bora研究的深入,人们对AuroraA和PLK1的激活机制以及Bora、Aurora蛋白激酶A、PLK1三者对细胞的调控也有了进一步的认识。主要综述Bora在细胞功能调控中的作用和研究机制。  相似文献   

10.
纺锤体与动粒相关复合物2(spindle and kinetochore associated 2,SKA2)是参与维持有丝分裂中期赤道板的稳定和适时关闭纺锤体检测点的重要蛋白质。早期研究发现,SKA2不仅调控细胞周期的进程而影响细胞增殖,还能通过其他分子机制参于肿瘤的发生。微小RNA(microRNA,miRNA)作为原癌基因或抑癌基因影响肿瘤细胞的增殖和迁移。新近研究显示,SKA2在其内含子区域miRNA的调节下,在一些肿瘤组织和细胞中异常高表达。由此可见,SKA2和miRNA之间存在密切联系。本文结合目前的研究成果,对SKA2与相关的miRNA在肿瘤发生发展中的作用及其分子机制作一综述。  相似文献   

11.
Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in yeast, modest overexpression of Drosophila Mps1 is sufficient to delay progression through mitosis during metaphase, even though chromosome congression and metaphase alignment do not appear to be affected. This delay in metaphase depends on the SAC component Mad2. Although Mps1 overexpression in mad2 mutants no longer causes a metaphase delay, it perturbs anaphase. Sister kinetochores barely move apart toward spindle poles. However, kinetochore movements can be restored experimentally by separase-independent resolution of sister chromatid cohesion. We propose therefore that Mps1 inhibits sister chromatid separation in a SAC-independent manner. Moreover, we report unexpected results concerning the requirement of Mps1 dimerization and kinase activity for its kinetochore localization in Drosophila. These findings further expand Mps1's significance for faithful mitotic chromosome segregation and emphasize the importance of its careful regulation.  相似文献   

12.
Accurate chromosome segregation depends on proper assembly and function of the kinetochore and the mitotic spindle. In the budding yeast, Saccharomyces cerevisiae, the highly conserved protein kinase Mps1 has well-characterized roles in spindle pole body (SPB, yeast centrosome equivalent) duplication and the mitotic checkpoint. However, an additional role for Mps1 is suggested by phenotypes of MPS1 mutations that include genetic interactions with kinetochore mutations and meiotic chromosome segregation defects and also by the localization of Mps1 at the kinetochore, the latter being independent of checkpoint activation. We have developed a new MPS1 allele, mps1-as1, that renders the kinase specifically sensitive to a cell-permeable ATP analog inhibitor, allowing us to perform high-resolution execution point experiments that identify a novel role for Mps1 subsequent to SPB duplication. We demonstrate, by using both fixed- and live-cell fluoresence techniques, that cells lacking Mps1 function show severe defects in mitotic spindle formation, sister kinetochore positioning at metaphase, and chromosome segregation during anaphase. Taken together, our experiments are consistent with an important role for Mps1 at the kinetochore in mitotic spindle assembly and function.  相似文献   

13.
The protein kinase Mps1 is, among others, essential for the spindle assembly checkpoint (SAC). We found that Saccharomyces cerevisiae Mps1 interacts physically with the N-terminal domain of Ndc80 (Ndc801−257), a constituent of the Ndc80 kinetochore complex. Furthermore, Mps1 effectively phosphorylates Ndc801−257 in vitro and facilitates Ndc80 phosphorylation in vivo. Mutating 14 of the phosphorylation sites to alanine results in compromised checkpoint signalling upon nocodazole treatment of mutants. Mutating the identical sites to aspartate (to simulate constitutive phosphorylation) causes a metaphase arrest with wild-type-like bipolar kinetochore–microtubule attachment. This arrest is due to a constitutively active SAC and consequently the inviable aspartate mutant can be rescued by disrupting SAC signalling. Therefore, we conclude that a putative Mps1-dependent phosphorylation of Ndc80 is important for SAC activation at kinetochores.  相似文献   

14.
The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase.  相似文献   

15.
Saccharomyces cerevisiae MPS1 encodes an essential protein kinase that has roles in spindle pole body (SPB) duplication and the spindle checkpoint. Previously characterized MPS1 mutants fail in both functions, leading to aberrant DNA segregation with lethal consequences. Here, we report the identification of a unique conditional allele, mps1-8, that is defective in SPB duplication but not the spindle checkpoint. The mutations in mps1-8 are in the noncatalytic region of MPS1, and analysis of the mutant protein indicates that Mps1-8p has wild-type kinase activity in vitro. A screen for dosage suppressors of the mps1-8 conditional growth phenotype identified the gene encoding the integral SPB component SPC42. Additional analysis revealed that mps1-8 exhibits synthetic growth defects when combined with certain mutant alleles of SPC42. An epitope-tagged version of Mps1p (Mps1p-myc) localizes to SPBs and kinetochores by immunofluorescence microscopy and immuno-EM analysis. This is consistent with the physical interaction we detect between Mps1p and Spc42p by coimmunoprecipitation. Spc42p is a substrate for Mps1p phosphorylation in vitro, and Spc42p phosphorylation is dependent on Mps1p in vivo. Finally, Spc42p assembly is abnormal in a mps1-1 mutant strain. We conclude that Mps1p regulates assembly of the integral SPB component Spc42p during SPB duplication.  相似文献   

16.
The spindle assembly checkpoint ensures accurate chromosome segregation by delaying anaphase initiation until all chromosomes are properly attached to the mitotic spindle. Here, we show that the previously reported c-Jun amino-terminal kinase (JNK) inhibitor SP600125 effectively disrupts spindle checkpoint function in a JNK-independent fashion. SP600125 potently inhibits activity of the mitotic checkpoint kinase monopolar spindle 1 (Mps1) in vitro and triggers efficient progression through a mitotic arrest imposed by spindle poisons. Importantly, expression of an Mps1 mutant protein refractory to SP600125-mediated inhibition restores spindle checkpoint function in the presence of SP600125, showing that its mitotic phenotype is induced by Mps1 inhibition in vivo. Remarkably, primary human cells are largely resistant to the checkpoint-inactivating action of SP600125, suggesting the existence of Mps1-independent checkpoint pathways that are compromised in tumour cells.  相似文献   

17.
Mps1 is an upstream component of the spindle assembly checkpoint, which, in human cells, is required for checkpoint activation in response to spindle damage but not apparently during an unperturbed mitosis. Mps1 also recruits Mad1 and Mad2 to kinetochores. However, whether the enzymatic activity of Mps1 is required for these processes is unclear. To address this question, we established an RNA interference (RNAi) complementation assay. Repression of Mps1 triggers premature anaphase, often with unaligned or maloriented chromosomes. This phenotype is rescued by an RNAi-resistant wild-type Mps1 transgene but not by a catalytically inactive mutant. An analogue-sensitive allele, Mps1(M602A), also rescues the RNAi-induced defect, but not when inhibited by the adenosine triphosphate analogue 1-NM-PP1. Thus, Mps1 activity does restrain anaphase during an unperturbed mitosis. Furthermore, although catalytically inactive Mps1 can restore kinetochore localization of Mad1, only the active kinase restores Mad2 localization. Thus, in human cells, Mps1 catalytic activity is required for spindle checkpoint function and recruitment of Mad2.  相似文献   

18.
Cyclin A is a stable protein in S and G2 phases, but is destabilized when cells enter mitosis and is almost completely degraded before the metaphase to anaphase transition. Microinjection of antibodies against subunits of the anaphase-promoting complex/cyclosome (APC/C) or against human Cdc20 (fizzy) arrested cells at metaphase and stabilized both cyclins A and B1. Cyclin A was efficiently polyubiquitylated by Cdc20 or Cdh1-activated APC/C in vitro, but in contrast to cyclin B1, the proteolysis of cyclin A was not delayed by the spindle assembly checkpoint. The degradation of cyclin B1 was accelerated by inhibition of the spindle assembly checkpoint. These data suggest that the APC/C is activated as cells enter mitosis and immediately targets cyclin A for degradation, whereas the spindle assembly checkpoint delays the degradation of cyclin B1 until the metaphase to anaphase transition. The "destruction box" (D-box) of cyclin A is 10-20 residues longer than that of cyclin B. Overexpression of wild-type cyclin A delayed the metaphase to anaphase transition, whereas expression of cyclin A mutants lacking a D-box arrested cells in anaphase.  相似文献   

19.
The Mps1 protein kinase is an intriguing and controversial player in centriole assembly. Originally shown to control duplication of the budding yeast spindle pole body, Mps1 is present in eukaryotes from yeast to humans, the nematode C. elegans being a notable exception, and has also been shown to regulate the spindle checkpoint and an increasing number of cellular functions relating to genomic stability. While its function in the spindle checkpoint appears to be both universally conserved and essential in most organisms, conservation of its originally described function in spindle pole duplication has proven controversial, and it is less clear whether Mps1 is essential for centrosome duplication outside of budding yeast. Recent studies of Mps1 have identified at least two distinct functions for Mps1 in centriole assembly, while simultaneously supporting the notion that Mps1 is dispensable for the process. However, the fact that at least one centrosomal substrate of Mps1 is conserved from yeast to humans down to the phosphorylation site, combined with evidence demonstrating the exquisite control exerted over centrosomal Mps1 levels suggest that the notion of being essential may not be the most important of distinctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号