首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang G  Fu M  Ning J 《Carbohydrate research》2005,340(1):155-159
A beta-(1-->6)-linked D-galactofuranosyl hexasaccharide was synthesized efficiently in a block construction manner by the well-known Schmidt glycosylation method using 6-O-acetyl-2,3,5-tri-O-benzoyl-beta-D-galactofuranosyl trichloroacetimidate (1) and allyl 2,3,5-tri-O-benzoyl-beta-D-galactofuranoside (3) as the key synthons. Coupling of 3 with 1 gave beta-(1-->6)-linked disaccharide 4. Subsequent selective deacetylation of 4 afforded the disaccharide acceptor 5, while deallylation of 4 followed by trichloroacetimidate formation produced the disaccharide donor 6. Condensation of 5 with 6 gave the tetrasaccharide 7, and subsequent deacetylation afforded the tetrasaccharide acceptor 8. Finally, coupling of 8 with 6 followed by deacylation yielded the target beta-(1-->6)-linked galactofuranose hexasaccharide 10. All of the reactions in the synthesis were carried out smoothly and in high yield.  相似文献   

2.
Zhao W  Kong F 《Carbohydrate research》2005,340(10):1673-1681
Beta-D-Xylp-(1-->2)-alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->2)][beta-D-Xylp-(1-->4)]-alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->4)]-alpha-D-Manp, the fragment of the exopolysaccharide from Cryptococcus neoformans serovar C, was synthesized as its methyl glycoside. Thus, chloroacetylation of allyl 3-O-acetyl-4,6-O-benzylidene-alpha-D-mannopyranoside (1) followed by debenzylidenation and selective 6-O-benzoylation afforded allyl 2-O-chloroacetyl-3-O-acetyl-6-O-benzoyl-alpha-D-mannopyranoside (4). Glycosylation of 4 with 2,3,4-tri-O-benzoyl-D-xylopyranosyl trichloroacetimidate (5) furnished the beta-(1-->4)-linked disaccharide 6. Dechloroacetylation gave the disaccharide acceptor 7 and subsequent coupling with 5 produced the trisaccharide 8. Deacetylation of 8 gave the trisaccharide acceptor 9 and subsequent coupling with a disaccharide 10 produced the pentasaccharide 11. Reiteration of deallylation and trichloroacetimidate formation from 11 yielded the pentasaccharide donor 12. Coupling of a disaccharide acceptor 13 with 12 afforded the heptasaccharide 14. Subsequent deprotection gave the heptaoside 16, while selective 2-O-deacetylation of 14 gave the heptasaccharide acceptor 15. Condensation of 15 with glucopyranosyluronate imidate 17 did not yield the expected octaoside, instead, an orthoester product 18 was obtained. Rearrangement of 18 did not give the target octaoside; but produced 15. Meanwhile, there was no reaction between 15 and the glycosyl bromide donor 19.  相似文献   

3.
A beta-(1-->6)-branched beta-(1-->3)-glucohexaose, present in many biologically active polysaccharides from traditionally herbal medicines such as Ganoderma lucidum, Schizophyllum commune and Lentinus edodes, was synthesized as its lauryl glycoside 32, and its analogues 18, 20 and 33 containing an alpha-(1-->3) linked bond were synthesized. It is interesting to find that coupling of a 3,6-branched acylated trisaccharide trichloroacetimidate donor 9 with 3,6-branched acceptors 13 and 16 with 3'-OH gave the alpha-(1--> 3)-linked hexasaccharides 17 and 19, respectively, in spite of the presence of C-2 ester capable of neighboring group participation. However, coupling of 9 with 4-methoxyphenyl 4,6-O-benzylidene-beta-D-glucopyranoside (27) selectively gave beta-(1-->3)-linked tetrasaccharide 28. Simple chemical transformation of the tetrasaccharide 28 gave acylated tetrasaccharide trichloroacetimidate 29. Coupling of 29 with lauryl (1-->6)-linked disaccharide 26 with 3-OH gave beta-(1-->3)-linked hexasaccharide 30 as the major product. Bioassay showed that in combination with the chemotherapeutic agent cyclophospamide (CPA), the hexaose 18 at a dose of 0.5-1mg/kg substantially increased the inhibition of S(180) for CPA, but decreased the toxicity caused by CPA. Some of these oligosaccharides also inhibited U(14) noumenal tumor in mice effectively.  相似文献   

4.
4-methoxyphenyl glycosides of 2,3'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl tetraose (16), 3',2'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl hexaose (27), and a twentyose (42) consisting of beta-(1-->6)-linked D-galactopyranosyl pentadecaoligosaccharide backbone with alpha-L-arabinofuranosyl side chains alternately attached at C-2 and C-3 of the middle galactose residue of each consecutive beta-(1-->6)-linked galactotriose unit of the backbone, were synthesized with isopropyl 3-O-allyl-2,4-di-O-benzoyl-1-thio-beta-D-galactopyranoside (6), 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (7), 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (12), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (17), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (19), and 2,6-di-O-acetyl-3,4-di-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (28) as the key synthons. Condensation of 6 with 7 gave the disaccharide donor 8, and subsequent condensation of 8 with 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranosyl-(1-->6)-2-O-acetyl-3,4-di-O-benzoyl-beta-D-galactopyranoside (9) followed by selective deacetylation afforded the tetrasaccharide acceptor 11. Coupling of 11 with 12 gave the pentasaccharide 13, its deallylation followed by coupling with 12, and debenzoylation gave the hexasaccharide 16 with beta-(1-->6)-linked galactopyranose backbone and 2- and 3'-linked alpha-L-arabinofuranose side chains. The octasaccharide 27 was similarly synthesized, while the twentyoside 42 was synthesized with tetrasaccharides 33 or 24 as the donors and 23, 36, 38, and 40 as the acceptors by consecutive couplings followed by deacylation.  相似文献   

5.
Li A  Kong F 《Carbohydrate research》2005,340(12):1949-1962
Effective syntheses of galactose hepta-, octa-, nona-, and decasaccharides that exist in the rhizomes of Atractylodes lancea DC were achieved with 2,3,4,6-tetra-O-benzoyl-alpha-d-galactopyranosyl trichloroacetimidate (1), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-d-galactopyranoside (2), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-d-galactopyranosyl trichloroacetimidate (5), 4-methoxyphenyl 6-O-acetyl-2,4-di-O-benzoyl-beta-d-galactopyranoside (22), and 4-methoxyphenyl 2,4,6-tri-O-benzoyl-beta-d-galactopyranoside (26) as the key synthons. Coupling of 2 with 1, followed by oxidative cleavage of 1-OMP and subsequent trichloroacetimidate formation gave the beta-(1-->6)-linked disaccharide donor 4. Condensation of 2 with 5 and subsequent selective deacetylation by methanolysis produced the beta-(1-->6)-linked disaccharide acceptor 7. Reaction of 7 with 4, oxidative cleavage of 1-OMP, and trichloroacetimidate formation produced the tetrasaccharide donor 9. The penta- (15), the hexa- (17), and the heptasaccharide donor 19 were synthesized similarly. Meanwhile, treatment of 1 with 22 yielded beta-(1-->3)-linked disaccharide 23 and alpha-(1-->3)-linked disaccharide 25. Oxidative cleavage of 1-OMp of 23 followed by trichloroacetimidate formation produced the disaccharide donor 24. Coupling of 26 with 24, again, gave beta-linked 27 and alpha-linked 29. Selective 6-O-deacetylation of 27 afforded the trisaccharide acceptor 28. TMSOTf-promoted condensation 28 of with the tetra- (9), penta- (15), hexa-(17), and heptasaccharide donor 19, followed by deprotection, gave the target compounds.  相似文献   

6.
Li A  Zeng Y  Kong F 《Carbohydrate research》2004,339(3):673-681
An octasaccharide, beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->2)]-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->2)]-beta-D-Galp-(1-->6)-beta-D-Galp-1-->OMP was synthesized. 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (5), 2,6-di-O-acetyl-3,4-di-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (9), and 4-methoxyphenyl 2-O-acetyl-3,4-di-O-benzoyl-beta-D-galactopyranoside (11), 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (12), and 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (17) were used as the synthons. A concise route was used to gain the tetrasaccharide donor 19 by the use of 11, 12, 5, and 17. Meanwhile, treatment of 5 with 9 yielded beta-(1-->6)-linked disaccharide 20, and subsequent selective 6-O-deacetylation produced the disaccharide acceptor 21. Reaction of 21 with 19 gave 22, and subsequent selective 2-O-deacetylation afforded the hexasaccharide acceptor 23. Condensation of 23 with alpha-L-(1-->5)-linked arabinofuranose disaccharide 24, followed by deprotection, yielded the target octasaccharide.  相似文献   

7.
We have established a unique enzymatic approach for obtaining sulfated disaccharides using Bacillus circulans beta-D-galactosidase-catalyzed 6-sulfo galactosylation. When 4-methyl umbelliferyl 6-sulfo beta-D-galactopyranoside (S6Gal beta-4MU) was used as a donor, the enzyme induced transfer of 6-sulfo galactosyl residue to GlcNAc acceptor. As a result, the desired compound 6'-sulfo N-acetyllactosamine (S6Gal beta1-4GlcNAc) and its positional isomer 6'-sulfo N-acetylisolactosamine (S6Gal beta1-6GlcNAc) were observed by HPAEC-PAD, in 49% total yield based on the donor added, and in a molar ratio of 1:3.5. With a glucose acceptor, the regioselectivity was substantially changed and S6Gal beta1-2Glc was mainly produced along with beta-(1-1)alpha, beta-(1-3), beta-(1-6) isomers in 74% total yield. When methyl alpha-D-glucopyranoside (Glc alpha-OMe) was an acceptor, the enzyme also formed mainly S6Gal beta1-2Glc alpha-OMe with its beta-(1-6)-linked isomer in 41% total yield based on the donor added. In both cases, it led to the predominant formation of beta-(1-2)-linked disaccharides. In contrast, with the corresponding methyl beta-D-glucopyranoside (Glc beta-OMe) acceptor, S6Gal beta1-3Glc beta-OMe and S6Gal beta1-6Glc beta-OMe were formed in a low total yield of 12%. These results indicate that the regioselectivity and efficiency on the beta-D-galactosidase-mediated transfer reaction significantly depend on the anomeric configuration in the glucosyl acceptors.  相似文献   

8.
Zhao W  Kong F 《Carbohydrate research》2004,339(10):1779-1786
beta-D-Xylp-(1-->4)-alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->2)]-alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->2)]-alpha-D-Manp, the fragment of the exopolysaccharide from Cryptococcus neoformans serovar B, was synthesized as its methyl glycoside. Thus, acetylation of allyl 3-O-benzoyl-4,6-O-benzylidene-alpha-D-mannopyranoside (1) followed by debenzylidenation and selective 6-O-benzoylation afforded allyl 2-O-acetyl-3,6-di-O-benzoyl-alpha-D-mannopyranoside (4). Glycosylation of 4 with 2,3,4-tri-O-benzoyl-D-xylopyranosyl trichloroacetimidate (5) furnished the beta-(1-->4)-linked disaccharide 6. Deallylation followed by trichloroacetimidate formation gave the disaccharide donor 8, and subsequent coupling with allyl 2,3,4-tri-O-benzoyl-beta-D-xylopyranosyl-(1-->2)-4,6-di-O-benzoyl-alpha-D-mannopyranoside (9), produced the tetrasaccharide 10. Reiteration of deallylation and trichloroacetimidate formation from 10 yielded the tetrasaccharide donor 12. The downstream disaccharide acceptor 18 was obtained by condensation of 5 with methyl 3-O-acetyl-4,6-O-benzylidene-alpha-D-mannopyranoside, followed by debenzylidenation, benzoylation, and selective 3-O-deacetylation. Coupling of 18 with 12 afforded the hexasaccharide 19, and subsequent deprotection gave the hexasaccharide glycoside 20. Selective 2"-O-deacetylation of 19 gave the hexasaccharide acceptor 21. Condensation of 21 with glucopyranosyluronate imidate 22 did not produce the expected heptasaccharide glycoside; instead, a transacetylation product 19 was obtained. Meanwhile, there was no reaction between 21 and the bromide donor 23.  相似文献   

9.
The beta-D-galactosidase from porcine liver induced regiospecific transglycosylation of beta-D-galactose from beta-D-Gal-OC6H4NO2-o to OH-6 of, respectively, p-nitrophenyl glycoside acceptors of Gal, GlcNAc and GalNAc to afford beta-Gal-(1-->6)-alpha-Gal-OC6H4NO2-p, beta-Gal-(1--> 6)-beta-Gal-OC6H4NO2-p, beta-Gal-(1-->6)-alpha-GalNAc-OC6H4NO2-p, beta-Gal-(1-->6)-beta-GalNAc-OC6H4NO2-p, beta-Gal-(1-->6)-alpha-GlcNAc-OC6H4NO2-p, and beta-Gal-(1-->6)-beta-GlcNAc-OC6H4NO2-p. The enzyme showed much higher transglycosylation activity for the alpha-glycoside acceptors than the corresponding beta-glycoside acceptors. The regioselectivity of the beta-D-galactosidase from Bacillus circulans ATCC 31382 greatly depended on the nature of the acceptor. When alpha-D-GalNAc-OC6H4NO2-p and alpha-D-GlcNAc-OC6H4NO2-p were used as acceptors, the enzyme showed high potency for regioselective synthesis of beta-Gal-(1-->3)-alpha-GalNAc-OC6H4NO2-p and beta-Gal-(1-->3)-alpha-GlcNAc-OC6H4NO2-p in high respective yields of 75.9 and 79.3% based on the acceptors added. However, replacement of beta-D-Gal-OC6H4NO2-p by beta-D-GalNAc-OC6H4NO2-p did change the direction of galactosylation. The enzyme formed regioselectively beta-Gal-(1-->6)-beta-Gal-OC6H4NO2-p with (beta-Gal-1-->(6-beta-Gal-1-->)n6-beta-Gal-OC6H4NO2-p, n = 1-4). No beta-(1-->3)-linked product was detected during the reaction. Use of the two readily available beta-D-galactosidases facilitates the preparation of (1-->3)- and (1-->6)-linked disaccharide glycosides of beta-D-Gal-GalNAc and beta-D-Gal-GlcNAc.  相似文献   

10.
Zhang J  Kong F 《Carbohydrate research》2003,338(17):1719-1725
beta-D-GlcpA-(1-->2)-alpha-D-Manp-(1-->3)-[beta-D-Xylp-(1-->2)]-alpha-D-Manp-(1-->3)[-beta-D-Xylp-(1-->2)]-alpha-D-Manp, the repeating unit of the exopolysaccharide from Cryptococcus neoformans serovar A, was synthesized as its allyl glycoside. Thus, 3-O-selective acetylation of allyl 4,6-O-benzylidene-alpha-D-mannopyranoside afforded 2, and subsequent glycosylation of 2 with 2,3,4-tri-O-benzoyl-D-xylopyranosyl trichloroacetimidate furnished the beta-(1-->2)-linked disaccharide 4. Debenzylidenation followed by benzoylation gave allyl 2,3,4-tri-O-benzoyl-beta-D-xylopyranosyl-(1-->2)-3-O-acetyl-4,6-di-O-benzoyl-alpha-D-mannopyranoside (5), and selective 3-O-deacetylation gave the disaccharide acceptor 6. Coupling of 6 with 2-O-acetyl-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate yielded the trisaccharide 8, and subsequent deallylation and trichloroacetimidation gave 2,3,4-tri-O-benzoyl-beta-D-xylopyranosyl-(1-->2)-[2-O-acetyl-3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)]-4,6-di-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (9). Condensation of the trisaccharide donor 9 with the disaccharide acceptor 6 gave the pentasaccharide 10 whose 2-O-deacetylation gave the acceptor 11. Glycosylation of 11 with methyl 2,3,4-tri-O-acetyl-alpha-D-glucopyranosyluronate trichloroacetimidate and subsequent deprotection gave the target hexasaccharide.  相似文献   

11.
A neutral-detergent-solubilized-enzyme preparation derived from Phaseolus aureus hypocotyls contains two types of glycosyltransferase activity. One, mannosyltransferase enzyme activity, utilizes GDP-alpha-d-mannose as the sugar nucleotide substrate. The other, glucosyltransferase enzyme activity, utilizes GDP-alpha-d-glucose as the sugar nucleotide substrate. The soluble enzyme preparation catalyses the formation of what appears to be a homopolysaccharide when either sugar nucleotide is the only substrate present. A beta-(1-->4)-linked mannan is the only polymeric product when only GDP-alpha-d-mannose is added. A beta-(1-->4)-linked glucan is the only polymeric product when only GDP-alpha-d-glucose is added. In the presence of both sugar nucleotides, however, a beta-(1-->4)-linked glucomannan is formed. There are indications that endogenous sugar donors may be present in the enzyme preparation. There appear to be only two glycosyltransferases in the enzyme preparation, each catalysing the transfer of a different sugar to the same type of acceptor molecule. The glucosyltransferase requires the continual production of mannose-containing acceptor molecules for maintenance of enzyme activity, and is thereby dependent upon the activity of the mannosyltransferase. The mannosyltransferase, on the other hand, does not require the continual production of glucose-containing acceptors for maintenance of enzyme activity, but is severely inhibited by GDP-alpha-P-glucose. These properties promote the synthesis of beta-(1-->4)-linked glucomannan rather than beta-(1-->4)-linked glucan plus beta-(1-->4)-linked mannan when both sugar nucleotide substrates are present.  相似文献   

12.
Chen L  Kong F 《Carbohydrate research》2002,337(21-23):2335-2341
A facile and practical method was developed for the synthesis of beta-(1 --> 3)-linked xylooligosaccharides. Dibezoylation of allyl alpha-D-xylopyranoside (1) afforded 2,4-dibenzoate 6 as the major product. Chloroacetylation of 6, followed by deallylation and trichloroacetimidation, gave a 1:3 alpha/beta imidate (10 and 11) mixture. Coupling of the imidate mixture with 6 gave a disaccharide 13, whose dechloroacetylation afforded the disaccharide acceptor 16. Condensation of perbenzoylated xylosyl alpha/beta imidate (7 and 8) mixture with 6 gave the disaccharide 12. Deallylation of 12, followed by trichloroacetimidation, furnished the disaccharide donor as a 1:1 alpha/beta mixture. Coupling of the disaccharide donor mixture with the disaccharide acceptor 16 yielded the tetrasaccharide 17. Reiteration of deallylation and trichloroacetimidation transformed 17 to the tetrasaccharide donor mixture. Condensation of the tetrasaccharide donor mixture with the acceptor 16 gave the hexasaccharide 21. Debenzoylation with saturated ammonia-methanol afforded beta-(1 --> 3)-linked allyl xylotetraoside and xylohexaoside.  相似文献   

13.
Zeng Y  Kong F 《Carbohydrate research》2003,338(22):2359-2366
The glucohexaose, beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-D-Glcp, was synthesized as its allyl glycoside via 3+3 strategy. The trisaccharide donor, 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11), was obtained by 3-selective coupling of isopropyl 4,6-O-benzylidene-1-thio-beta-D-glucopyranoside (2) with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2-O-acetyl-4,6-O-benzylidene-alpha-D-glucopyranosyl trichloroacetimidate (6), followed by hydrolysis, acetylation, dethiolation, and trichloroacetimidation. Meanwhile, the trisaccharide acceptor, allyl 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2-O-acetyl-beta-D-glucopyranosyl-(1-->3)-4,6-di-O-acetyl-2-O-benzoyl-alpha-D-glucopyranoside (14), was prepared by coupling of allyl 4,6-di-O-acetyl-2-O-benzoyl-alpha-D-glucopyranoside (12) with 6, followed by debenzylidenation. Condensation of 14 with 11, followed by deacylation, gave the target hexaoside. A beta-(1-->3)-linked tetrasaccharide 29 was also synthesized with methyl 2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-beta-D-glucopyranoside (25) as the acceptor and acylated beta-(1-->3)-linked disaccharide 21 as the donor.  相似文献   

14.
Reaction of 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl trichloroimidate with allyl alpha-D-mannopyranoside in the presence of TMSOTf selectively gave allyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-alpha-D-mannopyranoside through an orthoester intermediate. Benzoylation of 3, followed by deallylation, and then trichloroimidation afforded the disaccharide donor 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroimidate, while benzoylation of 3 followed by selective removal of acetyl groups yielded the disaccharide acceptor allyl alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranoside. Coupling of 5 with 6 gave the tetrasaccharide allyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranoside, which were converted into the tetrasaccharide donor 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroimdate and the tetrasaccharide acceptor allyl alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->6)-2,3,4-tri-O-benzoyl-alpha-D-mannopyranoside, respectively, by the same strategies as used for conversion of 3 into 5 and 6. Condensation of 5 with 13 gave the hexasaccharide 14, while condensation of 12 with 13 gave the octasaccharide 17. Dodecasaccharide 21 was obtained by the coupling of 12 with the octasaccharide acceptor 20. Similar strategies were used for the syntheses of beta-(1-->6)-linked glucose di-, tri-, tetra-, hexa-, and octamers. Deprotection of the oligosaccharides in ammonia-saturated methanol yielded the free alpha-(1-->6)-linked mannosyl and beta-(1-->6)-linked glucosyl oligomers.  相似文献   

15.
A tetra- and a pentasaccharide were synthesized as analogues to the structure of the Streptococcus pneumoniae type 37 capsular polysaccharide, a homopolymer with a disaccharide-repeating unit of -->3)[beta-D-Glcp-(1-->2)]-beta-D-Glcp-(1-->. Synthesis of the tetrasaccharide employed a beta-(1-->2)-diglycosylation of a beta-(1-->3)-linked disaccharide. Subsequently, the pentasaccharide was synthesized from a suitably protected tetrasaccharide derivative by a beta-(1-->3)-extension at O-3'. Steric crowding was found to be an important factor in the formation of the pentasaccharide.  相似文献   

16.
An endo-beta-(1-->6)-galactanase from Onozuka R-10, a commercial cellulase preparation from Trichoderma viride, was purified 57-fold. Apparent Mr values of the purified enzyme, estimated by denaturing gel electrophoresis and gel filtration, were 47,000 and 17,000, respectively. The enzyme was assayed with a galactan from Prototheca zopfii, which has a high proportion of beta-(1-->6)-linked galactosyl residues. It exhibited maximal activity toward the galactan at pH 4.3. The enzyme hydrolyzed specifically beta-(1-->6)-galactooligosaccharides with a degree of polymerization higher than 3 and their acidic derivatives with 4-O-methyl-glucosyluronic or glucosyluronic groups at the nonreducing terminals. The methyl beta-glycoside of beta-(1-->6)-galactohexaose was degraded to reducing galactooligomers with a degree of polymerization 2-5 as the products at the initial stage of hydrolysis, and galactose and galactobiose at the final stage, indicating that the enzyme can be classified as an endo-galactanase. The extent of hydrolysis of the carbohydrate portion of a radish root arabinogalactan-protein (AGP) increased when alpha-L-arabinofuranosyl residues attached to beta-(1-->6)-linked galactosyl side chains of the AGP were removed in advance. The enzyme released galactose, beta-(1-->6)-galactobiose, and 4-O-methyl-beta-glucuronosyl-(1-->6)-galactose as major hydrolysis products when allowed to act exhaustively on the modified AGP.  相似文献   

17.
Duan J  Wang X  Dong Q  Fang Jn  Li X 《Carbohydrate research》2003,338(12):1291-1297
A water-soluble acidic heteroglycan, DL-3Bb, isolated from the leaves of Diospyros kaki, had [alpha](D)(20) -19.9 degrees (c 0.30, water), and contained rhamnose, arabinose, xylose, galactose and galacturonic acid in the molar ratio of 1.0:4.5:0.7:1.5:1.0. About 44% of the galacturonic acid existed as its methyl ester, and O-acetyl groups (approx 5.7%) were also identified. Its molecular weight was determined to be 9.0x10(5) Da by high-performance gel-permeation chromatography. Its structural features were elucidated by a combination of methylation analysis, periodate oxidation, two steps of partial acid hydrolysis, and 1H and 13C NMR spectroscopy and ESI mass spectrometry. The data obtained indicated that DL-3Bb possessed a backbone of a disaccharide of [-->4)-alpha-GalAp-(1-->2)-alpha-Rhap-(1-->], with approx 58.7% substitution at O-4 of the rhamnopyranosyl residues by beta-(1-->4)-linked xylopyranosyl residues, and by beta-(1-->3) and beta-(1-->6)-linked galactopyranosyl (galactan) residues. The side chains were further substituted by arabinofuranosyl residues at O-2 by beta-(1-->4)-linked xylopyranosyl residues and at O-3 by beta-(1-->6)-linked galactopyranosyl residues. Preliminary tests in vitro revealed that it could stimulate LPS-induced B lymphocyte proliferation, but not for ConA-induced T lymphocyte proliferation. It was proposed that the acid-labile arabinofuranosyl residues in the side chains would not be needed for the expression of the enhancement of the immunological activity, and that the presence of GalAp in the backbone has an important, but not crucial effect on the expression of the activity.  相似文献   

18.
We investigated a galactosyltransferase (GalT) involved in the synthesis of the carbohydrate portion of arabinogalactan-proteins (AGPs), which consist of a beta-(1-->3)-galactan backbone from which consecutive (1-->6)-linked beta-Gal p residues branch off. A membrane preparation from 6-day-old primary roots of radish ( Raphanus sativus L.) transferred [(14)C]Gal from UDP-[(14)C]Gal onto a beta-(1-->3)-galactan exogenous acceptor. The reaction occurred maximally at pH 5.9-6.3 and 30 degrees C in the presence of 15 mM Mn(2+) and 0.75% Triton X-100. The apparent K(m) and V(max) values for UDP-Gal were 0.41 mM and 1,000 pmol min(-1) (mg protein)(-1), respectively. The reaction with beta-(1-->3)-galactan showed a bi-phasic kinetic character with K(m) values of 0.43 and 2.8 mg ml(-1). beta-(1-->3)-Galactooligomers were good acceptors and enzyme activity increased with increasing polymerization of Gal residues. In contrast, the enzyme was less efficient on beta-(1-->6)-oligomers. The transfer reaction for an AGP from radish mature roots was negligible but could be increased by prior enzymatic or chemical removal of alpha- l-arabinofuranose (alpha- l-Ara f) residues or both alpha- l-Ara f residues and (1-->6)-linked beta-Gal side chains. Digestion of radiolabeled products formed from beta-(1-->3)-galactan and the modified AGP with exo-beta-(1-->3)-galactanase released mainly radioactive beta-(1-->6)-galactobiose, indicating that the transfer of [(14)C]Gal occurred preferentially onto consecutive (1-->3)-linked beta-Gal chains through beta-(1-->6)-linkages, resulting in the formation of single branching points. The enzyme produced mainly a branched tetrasaccharide, Galbeta(1-->3)[Galbeta(1-->6)] Galbeta(1-->3)Gal, from beta-(1-->3)-galactotriose by incubation with UDP-Gal, confirming the preferential formation of the branching linkage. Localization of the GalT in the Golgi apparatus was revealed on a sucrose density gradient. The membrane preparation also incorporated [(14)C]Gal into beta-(1-->4)-galactan, indicating that the membranes contained different types of GalT isoform catalyzing the synthesis of different types of galactosidic linkage.  相似文献   

19.
With a particulate enzyme preparation from Phaseolus aureus hypocotyls, UDP-alpha-d-[U-(14)C]galactose served as a precursor for a number of products. One of these products was characterized as a beta-(1-->4)-linked galactan. The ADP-, GDP-, TDP- and CDP- derivatives of alpha-d-galactose did not serve as biosynthetic precursors for any products insoluble in 70% ethanol, nor as substrates for a sugar nucleotide 4-epimerase which is present in the particulate enzyme preparation. The (14)C-labelled beta-(1-->4)-galactan is alkali-insoluble and was characterized by analysis of partial acetolysis products. The labelling pattern of the [(14)C]oligosaccharides derived from acetolysis indicates that (1) only slightly more than two [(14)C]galactose moieties are added to the growing polysaccharide chain on average, and (2) these additions take place at the reducing end of the polysaccharide chain. The radioactive beta-(1-->4)-linked galactan chain represented 8.5% of the radioactivity initially added, and 20% of the water- and butanol-insoluble products derived from UDP-alpha-d-[(14)C]galactose. Total hydrolysis of the alkali-insoluble fraction of Phaseolus aureus hypocotyl yielded d-glucose and d-mannose in a 5:1 ratio but no detectable quantities of d-galactose. A trace quantity of a radioactive disaccharide, identified as (1-->3)-linked galactobiose, was isolated from the partial acetolysate of the alkali-insoluble [(14)C]polysaccharide material. Also isolated from this partial acetolysate was a C-1 derivative of [(14)C]galactose, which could not be identified. An alkali-soluble galactose-containing polysaccharide was also synthesized in this enzymic reaction, and represented 20% of the water- and butanol-insoluble products derived from UDP-alpha-d-[(14)C]galactose. The spectrum of radioactive oligosaccharides produced by partial acetolysis of this alkali-soluble polysaccharide material was different from that obtained from the alkali-insoluble polysaccharide, indicating a different structure.  相似文献   

20.
Chen L  Zhu Y  Kong F 《Carbohydrate research》2002,337(5):383-390
The tetrasaccharide repeating unit of Escherichia coli O9a, alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-D-Manp, and the pentasaccharide repeating unit of E. coli O9 and Klebsiella O3, alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->2)-alpha-D-Manp-(1-->3)-alpha-D-Manp-(1-->3)-D-Manp, were synthesized as their methyl glycosides. Thus, selective 3-O-allylation of p-methoxyphenyl alpha-D-mannopyranoside via a dibutyltin intermediate gave p-methoxyphenyl 3-O-allyl-alpha-D-mannopyranoside (2) in good yield. Benzoylation (-->3), then removal of 1-O-methoxyphenyl (right arrow4), and subsequent trichloroacetimidation afforded the 3-O-allyl-2,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate (5). Condensation of 5 with methyl 4,6-O-benzylidene-alpha-D-mannopyranoside (6) selectively afforded the (1-->3)-linked disaccharide 7. Benzoylation of 7, debenzylidenation, benzoylation, and deallylation gave methyl 2,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)-2,4,6-tri-O-benzoyl-alpha-D-mannopyranoside (11) as the disaccharide acceptor. Coupling of 11 with (1-->2)-linked mannose disaccharide donor 17 or trisaccharide donor 21, followed by deacylation, furnished the target tetrasaccharide and pentasaccharide, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号