首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most carcinogenic forms of asbestos contain iron to levels as high as 36% by weight and catalyze many of the same biochemical reactions that freshly prepared solutions of iron do, i.e. oxygen consumption, generation of reactive oxygen species, lipid peroxidation and DNA damage. The participation of iron from asbestos in these reactions has been demonstrated using the iron chelator desferrioxamine B which inhibits iron-catalyzed reactions. Iron appears to be redox active on the asbestos fiber, but chelation and subsequent iron mobilization from asbestos by a variety of chelators, e.g. citrate, EDTA or nitrilotriacetate, makes the iron more redox active resulting in greater oxygen consumption and production of oxygen radicals in the presence of reducing agents. Iron also appears to be important for some of the asbestos-dependent biological effects on tissues or cells in culture, such as phagocytosis, cytotoxicity, lipid peroxidation and DNA damage. Therefore, redox cycling of iron to generate oxygen radicals at the surface of the fiber and/or in solution, as mobilized, low molecular weight chelates, may be very important in eliciting some of the biological effects of asbestos in vivo.  相似文献   

2.
《Free radical research》2013,47(3-6):143-148
Iron plays a central role in oxidative injury, reportedly because it catalyzes superoxide- and hydrogen peroxide-dependent reactions yielding a powerful oxidant such as the hydroxyl radical. Iron is also thought to mediate the cardiotoxic and antitumour effects of adriamycin and related compounds. NADPH-supplemented microsomes reduce adriamycin to a semiquinone radical, which in turn re-oxidizes in the presence of oxygen to form superoxide and hence hydrogen peroxide. During this redox cycling membrane-bound nonheme iron undergoes superoxide dismutase- and catalase-insensitive reductive release. Membrane iron mobilization triggers lipid peroxidation, which is markedly enhanced by simultaneous addition of superoxide dismutase and catalase. The results indicate that : i) lipid peroxidation is mediated by the release of iron, yet the two reactions are governed by different mechanisms; and ii) oxygen radicals are not involved in or may actually inhibit adriamycin-induced lipid peroxidation. Microsomal iron delocalization and lipid peroxidation might represent oxyradical-independent mechanisms of adriamycin toxicity.  相似文献   

3.
Oxidative stress and lipid peroxidation are major causes of skin injury induced by ultraviolet (UV) irradiation. Ferroptosis is a form of regulated necrosis driven by iron-dependent peroxidation of phospholipids and contributes to kinds of tissue injuries. However, it remains unclear whether the accumulation of lipid peroxides in UV irradiation-induced skin injury could lead to ferroptosis. We generated UV irradiation-induced skin injury mice model to examine the accumulation of the lipid peroxides and iron. Lipid peroxides 4-HNE, the oxidative enzyme COX2, the oxidative DNA damage biomarker 8-OHdG, and the iron level were increased in UV irradiation-induced skin. The accumulation of iron and lipid peroxidation was also observed in UVB-irradiated epidermal keratinocytes without actual ongoing ferroptotic cell death. Ferroptosis was triggered in UV-irradiated keratinocytes stimulated with ferric ammonium citrate (FAC) to mimic the iron overload. Although GPX4 protected UVB-injured keratinocytes against ferroptotic cell death resulted from dysregulation of iron metabolism and the subsequent increase of lipid ROS, keratinocytes enduring constant UVB treatment were markedly sensitized to ferroptosis. Nicotinamide mononucleotide (NMN) which is a direct and potent NAD+ precursor supplement, rescued the imbalanced NAD+/NADH ratio, recruited the production of GSH and promoted resistance to lipid peroxidation in a GPX4-dependent manner. Taken together, our data suggest that NMN recruits GSH to enhance GPX4-mediated ferroptosis defense in UV irradiation-induced skin injury and inhibits oxidative skin damage. NMN or ferroptosis inhibitor might become promising therapeutic approaches for treating oxidative stress-induced skin diseases or disorders.  相似文献   

4.
Lipid peroxidation in rat liver microsomes induced by asbestos fibres, crocidolite and chrysotile, is greatly increased in the presence of NADPH, leading to malondialdehyde levels comparable with those induced by CCl4, a very strong inducer of lipid peroxidation. This synergic effect only occurs during the first minutes and could be explained by an increase or a regeneration of the ferrous active sites of asbestos by NADPH, which in turn could rapidly be prevented by the adsorption of microsomal proteins on the surface of the fibres. It is not inhibited by superoxide dismutase, catalase and mannitol, indicating that oxygen radicals are not involved in the reaction. It is also not inhibited by desferrioxamine, indicating that it is not due to a release of free iron ions in solution from the fibres. Lipid peroxidation in NADPH-supplemented microsomes is also greatly increased upon addition of magnetite. This could be linked to the presence of ferrous ions in this solid iron oxide, since the ferric oxides haematite and goethite are completely inactive.  相似文献   

5.
Iron overload can have serious health consequences. Since humans lack an effective means to excrete excess iron, overload can result from an increased absorption of dietary iron or from parenteral administration of iron. When the iron burden exceeds the body's capacity for safe storage, the result is widespread damage to the liver, heart and joints, and the pancreas and other endocrine organs. Clear evidence is now available that iron overload leads to lipid peroxidation in experimental animals, if sufficiently high levels of iron are achieved. In contrast, there is a paucity of data regarding lipid peroxidation in patients with iron overload. Data from experiments using an animal model of dietary iron overload support the concept that iron overload results in an increase in an hepatic cytosolic pool of low molecular weight iron which is catalytically active in stimulating lipid peroxidation. Lipid peroxidation is associated with hepatic mitochondrial and microsomal dysfunction in experimental iron overload, and lipid peroxidation may underlie the increased lysosomal fragility that has been detected in homogenates of liver samples from both iron-loaded human subjects and experimental animals. Some current hypotheses focus on the possibility that the demonstrated functional abnormalities in organelles of the iron-loaded liver may play a pathogenic role in hepatocellular injury and eventual fibrosis. The recent demonstration that hepatic fibrosis is produced in animals with long-term dietary iron overload will allow this model to be used to further investigate the relationship between lipid peroxidation and hepatic injury in iron overload.  相似文献   

6.
Lipid peroxidation is known to affect the activity of several enzymes including microsomal enzymes such as glucose-6-phosphatase; but its effect on the enzymes of lipid biosynthesis has not been investigated. Glycerol-3-phosphate acyltransferase (GPAT) represents the first committed step and probably the rate limiting step in glycerolipid synthesis and thus may be a good candidate for study. Rat liver microsomal GPAT was assayed after preincubating the microsomes under conditions known to induce peroxidation. In 30 min, 10 microM Fe2+ can diminish the activity by as much as 80%. The inactivating effect can be blocked to different extents by several antioxidants, while ascorbic acid enhances it. These effects, along with the concomitant measurement of lipid peroxidation, indicate that microsomal GPAT activity is inactivated by lipid peroxidation in a sensitive and rapid fashion. This is further confirmed by the inactivating effect of carbon tetrachloride, which is known to induce lipid peroxidation in microsomes. Fe3+ also inactivates the enzyme, but at a higher concentration. Copper salts inactivate GPAT by a mechanism apparently different from that of iron. The mechanism might involve a direct sulfhydryl modification by copper and lipid peroxidation apparently different from that induced by iron. It is suggested that the inactivation of GPAT by lipid peroxidation could accelerate the process of membrane disintegration caused by lipid peroxidation in pathological conditions involving free radical-mediated tissue injury.  相似文献   

7.
To determine whether iron toxicity is caused by iron-catalyzed radical production, the in vivo effect of ferric citrate was studied in paraquat-intoxicated mice. Intraperitoneally injected Fe3+-citrate complex was distributed mainly in the liver and kidney, and promoted lipid peroxidation, as measured by expiratory ethane in both normal and paraquat-intoxicated mice. Plasma glutamic-oxaloacetic transaminase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1) activity increased significantly only in paraquat and Fe3+-citrate-injected mice (PFe group). The rate of ethane production increased prior to the elevation of plasma glutamic-oxaloacetic transaminase levels, and was greater in the PFe group than in the mice, that were injected Fe3+-citrate alone. Pretreatment of animals with desferrioxamine mesylate inhibited both ethane production and elevation of plasma glutamic-oxaloacetic transaminase levels in the PFe group. Administration of 100% oxygen or glucose, which is expected to increase cellular NADPH, to the PFe group further elevated the plasma glutamic-oxaloacetic transaminase level, but had little effect on ethane production, indicating that tissue injury occurs independently of lipid peroxidation. These results suggest that iron toxicity is due to radical production and that, although iron stimulated lipid peroxidation, it might not be the only cause of tissue injury.  相似文献   

8.
The role of iron in allyl alcohol-induced lipid peroxidation and hepatic necrosis was investigated in male NMRI mice in vivo. Ferrous sulfate (0.36 mmol/kg) or a low dose of ally alcohol (0.6 mmol/kg) itself caused only minor lipid peroxidation and injury to the liver within 1 h. When FeSO4 was administered before allyl alcohol, lipid peroxidation and liver injury were potentiated 50-100-fold. Pretreatment with DL-tocopherol acetate 5 h before allyl alcohol protected dose-dependently against allyl alcohol-induced lipid peroxidation and liver injury in vivo. Products of allyl alcohol metabolism, i.e. NADH and acrolein, both mobilized trace amounts of iron from ferritin in vitro. Catalytic concentrations of FMN greatly facilitated the NADH-induced reductive release of ferritin-bound iron. NADH effectively reduced ferric iron in solution. Consequently, a mixture of NADH and Fe3+ or NADH and ferritin induced lipid peroxidation in mouse liver microsomes in vitro. Our results suggest that the reductive stress (excessive NADH formation) during allyl alcohol metabolism can release ferrous iron from ferritin and can reduce chelated ferric iron. These findings provide a rationale for the strict iron-dependency of allyl alcohol-induced lipid peroxidation and hepatotoxicity in mice in vivo and document iron mobilization and reduction as one of several essential steps in the pathogenesis.  相似文献   

9.
《Free radical research》2013,47(3-6):255-264
An overview of a series of experiments attempting to link iron and calcium redistribution and release of free fatty acids with falls in pH and adenine nucleotide levels during cold storage of rabbit kidneys is presented. The data reviewed strongly suggest that these events are inextricably linked to subsequent reperfusion injury. Circumstantial evidence incriminating iron was provided by experiments showing that iron chelation decreased reperfusion injury after warm (WI) and cold ischaemia (CI) in rat skin flap and rabbit kidney models. Evidence for a role for calcium was provided when it was found that a calcium channel blocking agent added to the saline flush solution before storage inhibited lipid peroxidation, whereas chemicals which caused release or influx of calcium into the cell exacerbated oxidative damage. Additional involvement of breakdown products of adenine nucleotides was suggested by the protection from lipid peroxidation afforded by allopurinol. Involvement of calcium-activated phospholipase A, was strongly suggested by increases In free fatty acids during cold storage and both this increase and lipid peroxidation were inhibited by addition of dibucaine to the storage solution.  相似文献   

10.
Evidence in alcoholics as well as in experimental models support the role of hepatic lipid peroxidation in the pathogenesis of alcohol-induced liver injury, but the mechanism of this injury is not fully delineated. Previous studies of the metabolism of ethanol by alcohol dehydrogenase revealed iron mobilization from ferritin that was markedly stimulated by superoxide radical generation by xanthine oxidase. Peroxidation of hepatic lipid membranes (assessed as malondialdehyde production) was studied during in vitro alcohol metabolism by alcohol dehydrogenase. Peroxidation was initiated by acetaldehyde-xanthine oxidase, stimulated by ferritin, and inhibited by superoxide dismutase or chelation or iron with desferrioxamine. In conclusion, lipid peroxidation may be initiated during the metabolism of ethanol by alcohol dehydrogenase by an iron-dependent acetaldehyde-xanthine oxidase mechanism.  相似文献   

11.
To understand chemical characteristics of the asbestos minerals which might contribute to tissue damage, the catalytic properties of three different varieties were studied. Using spin trapping techniques it was determined that crocidolite, chrysotile, and amosite asbestos were all able to catalyze the generation of toxic hydroxyl radicals from a normal byproduct of tissue metabolism, hydrogen peroxide. The iron chelator desferroxamine inhibits this reaction, indicating a major role for iron in the catalytic process, and suggesting a possible mechanism by which asbestos toxicity might be reduced.  相似文献   

12.
Oxidative stress during cold preservation has been identified as a significant cause of cell injury but the process by which injury occurs is poorly understood. We examined loss of lysosomal integrity as a possible cause of cell injury during extended cold storage of isolated rat hepatocytes. After 21 h of hypothermia, there was a marked decline in lysosomal integrity, which was correlated with an increase in lipid peroxidation. When lipid peroxidation was prevented with the antioxidant Trolox (a vitamin E analog) or the iron chelator desferrioxamine, lysosomal integrity was preserved. In contrast, increasing lysosomal iron with ferric chloride caused an increase in lipid peroxidation and decreased lysosomal integrity. Loss of lysosomal integrity during cold preservation in this experimental model was consistent with iron-initiated oxidative stress. The progressive loss of lysosomal integrity during hypothermic incubation has the potential to affect liver function after transplantation.  相似文献   

13.
The antioxidative property of green tea against iron-induced oxidative stress was investigated in the rat brain both in vivo and in vivo. Incubation of brain homogenates at 37 degrees C for 4 hours in vitro increased the formation of Schiff base fluorescent products of malonaldehyde, an indicator of lipid peroxidation. Auto-oxidation (without exogenous iron) of brain homogenates was inhibited by green tea extract in a concentration-dependent manner. Moreover, incubation with iron (1 microM) elevated lipid peroxidation of brain homogenates after 4-hour incubation at 37 degrees C. Co-incubation with green tea extract dose-dependently inhibited the iron-induced elevation in lipid peroxidation. For the in vivo studies: ferrous citrate (iron, 4.2 nmoles) was infused intranigrally and induced degeneration of the nigrostriatal dopaminergic system of rat brain. An increase in lipid peroxidation in substantia nigra as well as a decrease in dopamine content in striatum was observed seven days after the iron infusion. Intranigral infusion of green tea extract alone did not increase, and in some cases, even decreased lipid peroxidation in substantia nigra. Co-infusion of green tea extract prevented oxidative injury induced by iron. Both iron-induced elevation in lipid peroxidation in substantia nigra and iron-induced decrease in dopamine content in striatum were suppressed. Oral administration of green tea extract for two weeks did not prevent the iron-induced oxidative injury in nigrostriatal dopaminergic system. Our results suggest that intranigral infusion of green tea extract appears to be nontoxic to the nigrostriatal dopaminergic system. Furthermore, the potent antioxidative action of green tea extract protects the nigrostriatal dopaminergic system from the iron-induced oxidative injury.  相似文献   

14.
Peroxidative injury to the mitochondrial inner membrane with resultant defects in oxidative metabolism may be partially responsible for hepatocellular injury in iron overload. We examined the effects of iron-induced lipid peroxidation in vitro on hepatic mitochondrial morphology and function and determined if various inhibitors of free-radical-mediated injury could be protective. Normal rat liver mitochondria were prepared by differential centrifugation and were incubated with 1, 2, and 3 μM Fe2+, NADPH, and with and without oxygen radical scavengers, iron chelators, and antioxidants. There was a direct linear relationship between the concentration of added iron and the degree of lipid peroxidation as measured by malondialdehyde (MDA) production (r =.85). With 3 μM Fe2+ there was a decrease in the respiratory control ratio (RCR) for all four substrates tested; this decrease in RCR was due to a decrease in the state 3 respiratory rate for all substrates, with no changes in the state 4 respiratory rate for glutamate, β-hydroxybutyrate, or succinate. Oxygen radical scavengers failed to prevent iron-induced lipid peroxidation or to protect against associated mitochondrial dysfunction. Iron chelators and antioxidants prevented MDA formation and mitochondrial function was maintained. Iron-induced lipid peroxidation in vitro produces an irreversible inhibitory defect in mitochondrial electron transport that may be specific at complex IV (cytochrome oxidase).  相似文献   

15.
Summary

Pro-oxidant effects of hemoglobin-derived heme and iron contribute to the progressive damage observed in β thalassemic and sickle (HbS) red blood cells. Agents that prevent heme/iron release and inhibit their redox activity might diminish such injury. Consequently, the inhibitory effects of chloroquine (CQ), a heme-binding antimalarial drug, and a novel dichloroquine compound (CQ-D2) on iron release and lipid peroxidation were investigated. In contrast to normal hemoglobin, significant amounts of iron were released from both purified hemin and α-hemoglobin chains during incubations with exogenous reduced glutathione (GSH) and/or H2O2. Addition of either CQ or CQ-D2 effectively inhibited GSH- and GSH/H2O2-mediated iron release from hemin (P<0.001). During prolonged incubations (6 h), both CQ and CQ-D2 significantly decreased the release of heme-free iron from both purified hemoglobin and α-hemoglobin chains. Interestingly, CQ and CQ-D2 differentially affected the redox availability of the heme-bound iron. The CQ: heme complex significantly enhanced membrane lipid peroxidation whereas CQ-D2 dramatically (P<0.001) inhibited heme-dependent peroxidation to almost baseline levels. In summary, CQ-derivatives which render heme redox inert and prevent the release of free iron from heme might be beneficial in the treatment of certain hemoglobinopathies and, perhaps, other pathologies promoted by delocalized heme/iron.  相似文献   

16.
This study examined the generation of reactive oxygen species (ROS) and the induction of lipid peroxidation by carcinogenic iron(III)-NTA complex (1:1), which has three conformations with two pKa values (pKa1 approximately 4, pKa2 approximately 8). These conformations are type (a) in acidic conditions of pH 1-6, type (n) in neutral conditions of pH 3-9, and type (b) in basic conditions of pH 7-10. The iron(III)-NTA complex was reduced to iron(II) complex under cool-white fluorescent light without the presence of any reducer. The reduction rates of three species of iron(III)-NTA were in the order type (a) > type (n) > type (b). Iron(III)-NTA-dependent lipid peroxidation was induced in the presence and absence of preformed lipid peroxides (L-OOH) through processes associated with and without photoreduction of iron(III). The order of the abilities of the three species of iron(III)-NTA to initiate the three mechanisms of lipid peroxidation was: (1) type (a) > type (n) > type (b) in lipid peroxidation that is induced L-OOH- and H2O2-dependently and mediated by the photoreduction of iron(III); (2) type (b) > type (n) > type (a) in lipid peroxidation that is induced L-OOH- and H2O2-dependently but not mediated by the photoreduction of iron(III); (3) type (n) > type (b) > type (a) in lipid peroxidation that is induced peroxide-independently and mediated by the photoactivation but not by the photoreduction of iron(III). The rate of lipid peroxidation induced L-OOH-dependently is faster than that induced H2O2-dependently in the mechanism (1), but the rate of lipid peroxidation induced H2O2-dependently is faster than that induced L-OOH-dependently in the mechanism (2). In the lag process of mechanism (3), L-OOH and/or some free radical species, not 1O2, were generated by photoactivation of iron(III)-NTA. These multiple pro-oxidant properties that depend on the species of iron(III)-NTA were postulated to be a principal cause of its carcinogenicity.  相似文献   

17.
Environmental heat stress is associated with an age-related increase in hepatic oxidative damage and an exaggerated state of oxidative stress. The purpose of this investigation was to evaluate the regulation of hepatic iron after heat stress. A secondary aim was to determine a potential role for iron in heat stress-induced liver injury. Hyperthermia-induced alterations in hepatic iron were evaluated in young (6 mo) and old (24 mo) Fischer 344 rats by exposing them to a two-heat stress protocol. Livers were harvested at several time points after the second heating and assayed for labile and nonheme iron. In the control condition, there was no difference in labile iron between age groups. Both labile iron and storage iron were not altered by hyperthermia in young rats, but both were increased immediately after heating in old rats. To evaluate a role for iron in liver injury, hepatic iron content was manipulated in young and old rats, and then both groups were exposed to heat stress. Iron administration to young rats significantly increased hepatic iron content and ferritin but did not affect markers of lipid peroxidation under control conditions or after heat stress. In old rats, iron chelation with deferoxamine prevented the increase in nonheme iron, labile iron, ferritin, and lipid peroxidation after heat stress. These results suggest that iron may play a role in hepatic injury after hyperthermia. Thus, dysregulation of iron may contribute to the gradual decline in cellular and physiological function that occurs with aging.  相似文献   

18.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

19.
Role of lipid peroxidation in iron-induced cellular calcium overload   总被引:1,自引:0,他引:1  
Calcium overload is the common pathway leading to cell injury. The role of iron-induced lipid peroxidation in the modification of Ehrlich carcinoma cells calcium homeostasis has been studied. There is a lack of correlation between that modification and the value of lipid peroxidation. The stability characteristics of low-mol-weight iron complexes affect lipid peroxidation and, to a lesser extent, cellular calcium uptake. Lipid peroxidation appears not as a triggering factor of cellular calcium homeostasis modification, but as a concomitant phenomenon.  相似文献   

20.
This study examined the generation of reactive oxygen species (ROS) and the induction of lipid peroxidation by carcinogenic iron(III)-NTA complex (1:1), which has three conformations with two pKa values (pKa1≈4, pKa2≈8). These conformations are type (a) in acidic conditions of pH 1-6, type (n) in neutral conditions of pH 3-9, and type (b) in basic conditions of pH 7-10. The iron(III)-NTA complex was reduced to iron(II) complex under cool-white fluorescent light without the presence of any reducer. The reduction rates of three species of iron(III)-NTA were in the order type (a)?type (n) ? type (b). Iron(III)-NTA-dependent lipid peroxidation was induced in the presence and absence of preformed lipid peroxides (L-OOH) through processes associated with and without photoreduction of iron(III). The order of the abilities of the three species of iron(III)-NTA to initiate the three mechanisms of lipid peroxidation was: (1) type (a) ? type (n) ? type (b) in lipid peroxidation that is induced L-OOH- and H2O2-dependently and mediated by the photoreduction of iron(III); (2) type (b) ? type (n) ? type (a) in lipid peroxidation that is induced L-OOH- and H2O2-dependently but not mediated by the photoreduction of iron(III); (3) type (n) ? type (b) ? type (a) in lipid peroxidation that is induced peroxide-independently and mediated by the photoactivation but not by the photoreduction of iron(III). The rate of lipid peroxidation induced L-OOH-dependently is faster than that induced H2O2-dependently in the mechanism (1), but the rate of lipid peroxidation induced H2O2-dependently is faster than that induced L-OOH-dependently in the mechanism (2). In the lag process of mechanism (3), L-OOH and/or some free radical species, not 1O2, were generated by photoactivation of iron(III)-NTA. These multiple pro-oxidant properties that depend on the species of iron(III)-NTA were postulated to be a principal cause of its carcinogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号