首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Streptococcus mutans, a major etiological agent of dental caries, causes demineralization of the tooth tissue due to the formation of acids from dietary carbohydrates. Dominant among the virulence determinants of this organism are aciduricity and acidogenicity, the abilities to grow at low pH and to produce acid, respectively. The mechanisms underlying the ability of S. mutans to survive and proliferate at low pH are currently under investigation. In this study we cultured S. mutans at pH 5.2 or 7.0 and extracted soluble cellular proteins. These were analyzed using high-resolution two-dimensional gel electrophoresis, and replicate maps of proteins expressed under each of the two conditions were generated. Proteins with modulated expression at low pH, as judged by a change in the relative integrated optical density, were excised and digested with trypsin by using an in-gel protocol. Tryptic digests were analyzed using matrix-assisted laser desorption ionization mass spectrometry to generate peptide mass fingerprints, and these were used to assign putative functions according to their homology with the translated sequences in the S. mutans genomic database. Thirty individual proteins exhibited altered expression as a result of culture of S. mutans at low pH. Up-regulated proteins (n = 18) included neutral endopeptidase, phosphoglucomutase, 60-kDa chaperonin, cell division proteins, enolase, lactate dehydrogenase, fructose bisphosphate aldolase, acetoin reductase, superoxide dismutase, and lactoylglutathione lyase. Proteins down-regulated at pH 5.2 (n = 12) included protein translation elongation factors G, Tu, and Ts, DnaK, small-subunit ribosomal protein S1P, large-subunit ribosomal protein L12P, and components of both phosphoenolpyruvate:protein phosphotransferase and multiple sugar binding transport systems. The identification of proteins differentially expressed following growth at low pH provides new information regarding the mechanisms of survival and has identified new target genes for mutagenesis studies to further assess their physiological significance.  相似文献   

3.
Nine oral bacteria, associated with both healthy and diseased sites in the mouth, were grown at D = 0.05 h-1 (mean generation time 13.9 h) in a glucose-limited chemostat. After an initial period of steady-state growth at pH 7.0, pH control was discontinued. The pH then decreased until it stabilized at pH 4.1 after 9 d (16 generations), while the Eh rose from -165 mV to +160 mV. The lowering in pH resulted in the composition and metabolism of the flora being altered and in increased bacterial aggregation. At pH 7.0, 'Streptococcus mitior', Veillonella alcalescens and S. sanguis were most numerous while at pH 4.1 the counts of all bacteria fell except for Lactobacillus casei, which became predominant. The proportions of S. mutans within the community also increased while S. sanguis was recovered only occasionally and Bacteroides intermedius was not detected below pH 4.6. The survival at pH 4.1 of several other species would not have been predicted from earlier pure culture studies. Relative to pH 7.0, the community growing at pH 4.1 produced more lactic acid, washed cells had a greater glycolytic activity over a wider pH range but amino acid metabolism decreased. In general, when pH control was restored, so were the original patterns of metabolism and bacterial counts, except for B. intermedius, which was still not detected. The inverse relationship between S. sanguis and S. mutans, and the increase in proportions of L. casei and S. mutans during growth in a low pH environment parallel observations made in vivo and suggest that the chemostat can be used as a model for microbial behaviour in dental plaque.  相似文献   

4.
Streptococcus mutans normally colonizes dental biofilms and is regularly exposed to continual cycles of acidic pH during ingestion of fermentable dietary carbohydrates. The ability of S. mutans to survive at low pH is an important virulence factor in the pathogenesis of dental caries. Despite a few studies of the acid adaptation mechanism of this organism, little work has focused on the acid tolerance of S. mutans growing in high-cell-density biofilms. It is unknown whether biofilm growth mode or high cell density affects acid adaptation by S. mutans. This study was initiated to examine the acid tolerance response (ATR) of S. mutans biofilm cells and to determine the effect of cell density on the induction of acid adaptation. S. mutans BM71 cells were first grown in broth cultures to examine acid adaptation associated with growth phase, cell density, carbon starvation, and induction by culture filtrates. The cells were also grown in a chemostat-based biofilm fermentor for biofilm formation. Adaptation of biofilm cells to low pH was established in the chemostat by the acid generated from excess glucose metabolism, followed by a pH 3.5 acid shock for 3 h. Both biofilm and planktonic cells were removed to assay percentages of survival. The results showed that S. mutans BM71 exhibited a log-phase ATR induced by low pH and a stationary-phase acid resistance induced by carbon starvation. Cell density was found to modulate acid adaptation in S. mutans log-phase cells, since pre-adapted cells at a higher cell density or from a dense biofilm displayed significantly higher resistance to the killing pH than the cells at a lower cell density. The log-phase ATR could also be induced by a neutralized culture filtrate collected from a low-pH culture, suggesting that the culture filtrate contained an extracellular induction component(s) involved in acid adaptation in S. mutans. Heat or proteinase treatment abolished the induction by the culture filtrate. The results also showed that mutants defective in the comC, -D, or -E genes, which encode a quorum sensing system essential for cell density-dependent induction of genetic competence, had a diminished log-phase ATR. Addition of synthetic competence stimulating peptide (CSP) to the comC mutant restored the ATR. This study demonstrated that cell density and biofilm growth mode modulated acid adaptation in S. mutans, suggesting that optimal development of acid adaptation in this organism involves both low pH induction and cell-cell communication.  相似文献   

5.
Streptococcus mutans and certain other oral lactic-acid bacteria were found to have the ability to carry out malolactic fermentation involving decarboxylation of L-malate to yield L-lactic acid and concomitant reduction in acidity. The activity was inducible by L-malate in S. mutans UA159 growing in suspensions or biofilms. The optimal pH for the fermentation was c. 4.0 for both suspensions and biofilms, although the pH optimum for malolactic enzyme in permeabilized cells of S. mutans UA159 was close to 5.5. Although malate did not serve as a catabolite for growth of S. mutans, it did serve to protect the organism against acid killing and to maintain ATP pool levels during starvation. Alkalinization associated with malolactic fermentation resulted in pH rise or increased need to add standardized HCl solution to maintain a set pH value in pH-stat experiments. The net conclusion is that malate has the potential to be effective for alkalinization of dental plaque, although the fermentation is sensitive to fluoride and triclosan, which are commonly added to oral care products.  相似文献   

6.
Abstract Both lactic and acetic acids cause mixed inhibition of acid production in mutans streptococci. This inhibition is partly irreversible due to cell death, an important factor when considering acidogenicity and aciduricity of these organisms, and their role in the caries process. Other monocarboxylic end-products may be present and may also be important inhibitors of acid production in dental plaque. This study considered the effects of varying concentrations of the end-product formic acid on acid production rates in Streptococcus mutans R9, measured using the pH-stat. Undissociated formic acid caused mixed inhibition with constants of K iu (uncompetitive) of 6.07 ± 1.27 mmol 1−1 and K ic (competitive) of 0.2 ± 10.11 mmol I −1. Inhibition was found to be fully reversible, with no loss of cell viability. It is concluded that at those concentrations found in vivo, formate is not a significant inhibitor of acid production by S. mutans in dental plaque at any time, and is not important in determining the acidogenicity or aciduricity of this organism.  相似文献   

7.
8.
Streptococcus mutans, a member of the dental plaque community, has been shown to be involved in the carious process. Cells of S. mutans induce an acid tolerance response (ATR) when exposed to sublethal pH values that enhances their survival at a lower pH. Mature biofilm cells are more resistant to acid stress than planktonic cells. We were interested in studying the acid tolerance and ATR-inducing ability of newly adhered biofilm cells of S. mutans. All experiments were carried out using flow-cell systems, with acid tolerance tested by exposing 3-h biofilm cells to pH 3.0 for 2 h and counting the number of survivors by plating on blood agar. Acid adaptability experiments were conducted by exposing biofilm cells to pH 5.5 for 3 h and then lowering the pH to 3.5 for 30 min. The viability of the cells was assessed by staining the cells with LIVE/DEAD BacLight viability stain. Three-hour biofilm cells of three different strains of S. mutans were between 820- and 70,000-fold more acid tolerant than corresponding planktonic cells. These strains also induced an ATR that enhanced the viability at pH 3.5. The presence of fluoride (0.5 M) inhibited the induction of an ATR, with 77% fewer viable cells at pH 3.5 as a consequence. Our data suggest that adhesion to a surface is an important step in the development of acid tolerance in biofilm cells and that different strains of S. mutans possess different degrees of acid tolerance and ability to induce an ATR.  相似文献   

9.
Adaptive acid tolerance response of Streptococcus sobrinus   总被引:1,自引:0,他引:1  
Streptococcus mutans and Streptococcus sobrinus are the bacteria most commonly associated with human dental caries. A major virulence attribute of these and other cariogenic bacteria is acid tolerance. The acid tolerance mechanisms of S. mutans have begun to be investigated in detail, including the adaptive acid tolerance response (ATR), but this is not the case for S. sobrinus. An analysis of the ATR of two S. sobrinus strains was conducted with cells grown to steady state in continuous chemostat cultures. Compared with cells grown at neutral pH, S. sobrinus cells grown at pH 5.0 showed an increased resistance to acid killing and were able to drive down the pH through glycolysis to lower values. Unlike what is found for S. mutans, the enhanced acid tolerance and glycolytic capacities of acid-adapted S. sobrinus were not due to increased F-ATPase activities. Interestingly though, S. sobrinus cells grown at pH 5.0 had twofold more glucose phosphoenolpyruvate:sugar phosphotransferase system (PTS) activity than cells grown at pH 7.0. In contrast, glucose PTS activity was actually higher in S. mutans grown at pH 7.0 than in cells grown at pH 5.0. Silver staining of two-dimensional gels of whole-cell lysates of S. sobrinus 6715 revealed that at least 9 proteins were up-regulated and 22 proteins were down-regulated in pH 5.0-grown cells compared with cells grown at pH 7.0. Our results demonstrate that S. sobrinus is capable of mounting an ATR but that there are critical differences between the mechanisms of acid adaptation used by S. sobrinus and S. mutans.  相似文献   

10.
Citrate metabolism in lactic acid bacteria   总被引:20,自引:0,他引:20  
Abstract: Citrate metabolism plays an important role in many food fermentations involving lactic acid bacteria. Since citrate is a highly oxidized substrate, no reducing equivalents are produced during its degradation, resulting in the formation of metabolic end products other than lactic acid. Some of these end products, such as diacetyl and acetaldehyde, have very distinct aroma properties and contribute significantly to the quality of the fermented foods. In this review the metabolic pathways involved in product formation from citrate are described, the bioenergetic consequences of this metabolism for the lactic acid bacteria are discussed and detailed information on some key enzymes in the citrate metabolism is presented. The combined knowledge is used for devising strategies to avoid, control or improve product formation from citrate.  相似文献   

11.
Lactococcus lactis subsp. lactis biovar diacetylactis CRL264 is a natural strain isolated from cheese (F. Sesma, D. Gardiol, A. P. de Ruiz Holgado, and D. de Mendoza, Appl. Environ. Microbiol. 56:2099-2103, 1990). The effect of citrate on the growth parameters at a very acidic pH value was studied with this strain and with derivatives whose citrate uptake capacity was genetically manipulated. The culture pH was maintained at 4.5 to prevent alkalinization of the medium, a well-known effect of citrate metabolism. In the presence of citrate, the maximum specific growth rate and the specific glucose consumption rate were stimulated. Moreover, a more efficient energy metabolism was revealed by analysis of the biomass yields relative to glucose consumption or ATP production. Thus, it was shown that the beneficial effect of citrate on growth under acid stress conditions is not primarily due to the concomitant alkalinization of the medium but stems from less expenditure of ATP, derived from glucose catabolism, to achieve pH homeostasis. After citrate depletion, a deleterious effect on the final biomass was apparent due to organic acid accumulation, particularly acetic acid. On the other hand, citrate metabolism endowed cells with extra ability to counteract lactic and acetic acid toxicity. In vivo 13C nuclear magnetic resonance provided strong evidence for the operation of a citrate/lactate exchanger. Interestingly, the greater capacity for citrate transport correlated positively with the final biomass and growth rates of the citrate-utilizing strains. We propose that increasing the citrate transport capacity of CRL264 could be a useful strategy to improve further the ability of this strain to cope with strongly acidic conditions.  相似文献   

12.
The growth kinetics of Lactococcus lactis ssp. lactis were studied in batch culture in conditions of non-limiting lactose and the presence of citric acid. The control of pH modified growth and citrate metabolism but did not change the yield of acid formation. At controlled pH the growth rate was unaffected by citrate metabolism. Lactose was transformed to L-lactate and assay of the metabolic by-products showed some heterofermentation at the end of the growth of cultures with low growth rates. This heterofermentation was interpreted as a slowing down of glycolysis with activation of both the pyruvate formate lyase (PFL) and the pyruvate dehydrogenase complex (PDHC). Under these conditions the presence of citric acid affected the activity of both the PDHC and the alcohol dehydrogenase (ADH). L-Lactate remains the major fermentation end-product and the sole inhibitor of fermentation, this inhibition was greater on growth than on lactic acid production.  相似文献   

13.
Staphylococcus saprophyticus is a gram-positive coagulase negative bacteria which shows clinical importance due to its capability of causing urinary tract infections (UTI), as well as its ability to persist in this environment. Little is known about how S. saprophyticus adapts to the pH shift that occurs during infection. Thus, in this study we aim to use a proteomic approach to analyze the metabolic adaptations which occur as a response by S. saprophyticus when exposed to acid (5.5) and alkaline (9.0) pH environments. Proteins related to iron storage are overexpressed in acid pH, whilst iron acquisition proteins are overexpressed in alkaline pH. It likely occurs because iron is soluble at acid pH and insoluble at alkaline pH. To evaluate if S. saprophyticus synthesizes siderophores, CAS assays were performed, and the results confirmed their production. The chemical characterization of siderophores demonstrates that S. saprophyticus produces carboxylates derived from citrate. Of special note is the fact that citrate synthase (CS) is down-regulated during incubation at acid pH, corroborating this result. This data was also confirmed by enzymatic assay. Our results demonstrate that iron metabolism regulation is influenced by different pH levels, and show, for the first time, the production of siderophores by S. saprophyticus. Enzymatic assays suggest that citrate from the tricarboxylic acid cycle (TCA) is used as substrate for siderophore production.  相似文献   

14.
Aims:  Citrate metabolism generates metabolic energy through the generation of a membrane potential and a pH gradient. The purpose of this work was to study the influence of oxaloacetate decarboxylase in citrate metabolism and intracellular pH maintenance in relation to acidic conditions.
Methods and Results:  A Lactococcus lactis oxaloacetate decarboxylase mutant [ILCitM (pFL3)] was constructed by double homologous recombination. During culture with citrate, and whatever the initial pH, the growth rate of the mutant was lower. In addition, the production of diacetyl and acetoin was altered in the mutant strain. However, our results indicated no relationship with a change in the maintenance of intracellular pH. Experiments performed on resting cells clearly showed that oxaloacetate accumulated temporarily in the supernatant of the mutant. This accumulation could be involved in the perturbations observed during citrate metabolism, as the addition of oxaloacetate in M17 medium inhibited the growth of L. lactis .
Conclusions:  The mutation of oxaloacetate decarboxylase perturbed citrate metabolism and reduced the benefits of its utilization during growth under acidic conditions.
Significance and impact of the study:  This study allows a better understanding of citrate metabolism and the role of oxaloacetate decarboxylase in the tolerance of lactic acid bacteria to acidic conditions.  相似文献   

15.
Streptococcus mutans, a major etiological agent of dental caries, is a component of the dental plaque biofilm and functions during caries progression in acidic lesions that may be at or below pH 4. In this study, we were interested in determining the acid tolerance of 1-7-day chemostat-grown biofilm cells of S. mutans BM71 growing in a semi-defined medium at a rate consistent with that of cells in dental plaque (dilution rate=0.1 h(-1)), as well as, assessing the capacity of 2- and 5-day biofilms to induce an acid tolerance response that would enhance survival at a killing pH (3.5). As expected, biofilm cell growth increased (2.5-fold) from day 1 to day 7 (10.6-25.7 x 10(6) cells cm(-)(2)) with the percentage live cells over that period averaging 79.4%, slightly higher than that of planktonic cells (77.4%). Biofilms were highly resistant to acid killing at pH 3.5 for 2 h with survival ranging from 41.8 (1 day) to 63.9% (7 day), while the percentage of live cells averaged 43.4%. Planktonic and dispersed biofilm cells were very acid-sensitive with only 0.0009%- and 0.0002-0.2% survivors, respectively. Unlike the planktonic cells, the incubation of 2- and 5-day biofilms at pH 5.5 for periods of up to 6 h induced strong acid tolerance responses that enhanced survival during a subsequent exposure to acid killing at pH 3.5.  相似文献   

16.
17.
This study comprised an ultrastructural examination of a cariogenic strain of Streptococcus mutans, C67-1, and a non-cariogenic mutant of that strain, C67-25. The aim of the work was to define more clearly the relationship between S. mutans and dental caries and, more specifically, to elicit ultrastructural evidence for the conclusion from a previous investigation that the greater survival of the parent strain in sucrose broth at uncontrolled pH was related partly to the production in this medium of abundant extracellular polysaccharide (EPS). The strains were grown as previously in 5% (w/v) glucose or sucrose broths, the pH being either allowed to fall or maintained above 6.0, and processed by the thiosemicarbazide technique for election microscopy. It was confirmed that EPS was most abundant in the sucrose broth culture of the parent strain at uncontrolled pH. While the presence of abundant EPS relates to the greater survival of the parent strain in sucrose broth at uncontrolled pH, this organism possesses at least one other mechanism of survival in acid media, possibly dependent on cell wall properties, in view of its greater cell wall thickness and increased survival in pH-uncontrolled glucose broth in the absence of detectable EPS production. It is postulated that intracellular and extracellular polysaccharide formation, cell wall thickening and reduced viability were indicators of unfavourable growth conditions in the test media. Cariogenic strains of S. mutans appear to be able to survive better under such conditions and hence the prevalence of this and other polysaccharide-producing organisms in stagnant sites in natural dental plaques.  相似文献   

18.
目的通过赤藓糖醇对变形链球菌、远缘链球菌及其耐氟菌株混合菌生长和产酸影响的体外研究,为赤藓糖醇防龋作用的机理提供制论依据。方法采用最小抑菌浓度递增法对变形链球菌(S.mutans ATCC 25175,S.m)、远缘链球菌(S.sobrinus 6715,S.s)进行氟化钠体外诱导耐氟菌株(S.m-FR、S.s-FR),利用液体稀释法配制赤藓糖醇TSB液8个浓度,分别加入含有变形链球菌、远缘链球菌及其耐氟菌株的细菌混悬液48 h,用比浊法观察其对混合菌生长的影响,并用pH计测定培养前后上清液的△pH值。结果吸光度A值和△pH值实验前后与对照组相比最低浓度为12%时差异均有统计学意义(P〈0.05),且随着浓度的升高A值和△pH值均下降。结论赤藓糖醇能抑制变形链球菌、远缘链球菌及耐氟菌株混合菌生长和产酸,并且随着浓度的升高抑制作用增强。  相似文献   

19.
Streptococcus mutans is a member of oral plaque biofilms and is considered the major etiological agent of dental caries. We have characterized the survival of S. mutans strain UA159 in both batch cultures and biofilms. Bacteria grown in batch cultures in a chemically defined medium, FMC, containing an excess of glucose or sucrose caused the pH to decrease to 4.0 at the entry into stationary phase, and they survived for about 3 days. Survival was extended up to 11 days when the medium contained a limiting concentration of glucose or sucrose that was depleted by the time the bacteria reached stationary phase. Sugar-limited cultures maintained a pH of 7.0 throughout stationary phase. Their survival was shortened to 3 days by the addition of exogenous lactic acid at the entry into stationary phase. Sugar starvation did not lead to comparable survival in biofilms. Although the pH remained at 7.0, bacteria could no longer be cultured from biofilms 4 days after the imposition of glucose or sucrose starvation; BacLight staining results did not agree with survival results based on culturability. In both batch cultures and biofilms, survival could be extended by the addition of 0.5% mucin to the medium. Batch survival increased to an average of 26 (+/-8) days, and an average of 2.7 x 10(5) CFU per chamber were still present in biofilms that were starved of sucrose for 12 days.  相似文献   

20.
Oral streptococci utilize an F-ATPase to regulate cytoplasmic pH. Previous studies have shown that this enzyme is a principal determinant of aciduricity in the oral streptococcal species Streptococcus sanguis and Streptococcus mutans. Differences in the pH optima of the respective ATPases appears to be the main reason that S. mutans is more tolerant of low pH values than S. sanguis and hence pathogenic. We have recently reported the genetic arrangement for the S. mutans operon. For purposes of comparative structural biology we have also investigated the F-ATPase from S. sanguis. Here, we report the genetic characterization and expression in Escherichia coli of the S. sanguis ATPase operon. Sequence analysis showed a gene order of atpEBFHAGDC and that a large intergenic space existed upstream of the structural genes. Activity data demonstrate that ATPase activity is induced under acidic conditions in both S. sanguis and S. mutans; however, it is not induced to the same extent in the nonpathogenic S. sanguis. Expression studies with an atpD deletion strain of E. coli showed that S. sanguis-E. coli hybrid enzymes were able to degrade ATP but were not sufficiently functional to permit growth on succinate minimal media. Hybrid enzymes were found to be relatively insensitive to inhibition by dicyclohexylcarbodiimide, indicating loss of productive coupling between the membrane and catalytic subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号