首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
125I-Epidermal growth factor (EGF) binding capacity in fetal rat lung (FRL) cells is increased approximately 2 to 3-fold within 18 h of retinoic acid addition. Analysis of 125I-EGF binding assays at 0 C reveals approximately 25,000 receptors per cell, while analysis of growth factor binding to retinoic acid-treated cells demonstrates an increase in receptor levels to approximately 70,000 receptors per cell with no detectable changes in receptor affinities. We show by immunoprecipitation of 35S-methionine labeled EGF receptors that retinoic acid addition produces an increase in the accumulation of EGF receptor protein. Using brief pulses of 35S-methionine, an increase in EGF receptor synthesis can be identified within 3 h after retinoic acid addition. These results are the first to demonstrate that a retinoic acid-induced increase in 125I-EGF binding capacity is due to increased EGF receptor protein synthesis. Also, we find that a transient decrease in the rate of EGF receptor turnover occurs when retinoic acid is initially added to FRL cells. On the basis of our data, we conclude that the retinoic acid-induced accumulation of EGF receptors in FRL cells is primarily due to increased receptor synthesis. The effect of retinoic acid on EGF receptor turnover may be a secondary factor, influencing the rate at which receptors accumulate.  相似文献   

2.
Regulation of breast tumor proliferation depends in a large part on a variety of hormones and growth factors. In this report we show that estrogen and antiestrogen modulate epidermal growth factor-receptor (EGF-R) level in the human breast cancer MCF-7 cells with opposite mechanisms. Although a short-term treatment (24h to 48h) with estradiol leads to a decrease in EGF-R number, the addition of hormone in cell culture for 5 days increases EGF-R level with a maximal effect observed at 10(-10) M estradiol. In contrast, when cells are treated with the antiestrogen hydroxytamoxifen, a dose-dependent decrease in EGF-R level occurs. We also report that EGF is able to induce estrogen receptors and, to a lesser extent, progesterone receptors when added to MCF-7 cell cultures. These results demonstrate an interaction between both estrogen receptor and EGF receptor growth promoting systems in target cells. The implications of such an interaction in the understanding of human breast cancer hormone responsiveness and, in the development of therapies, are discussed.  相似文献   

3.
Retinoic acid has been shown to induce a 2.5-fold increase in 125I-EGF binding capacity through increased EGF receptor synthesis in a fetal rat lung (FRL) cell line (1). In FRL cells, incubation with either EGF or retinoic acid induces a modest increase in PGE2 secretion (80% or 40%, respectively). However, in the presence of both EGF and retinoic acid, FRL cells exhibit a 6.4-fold increase in PGE2 secretion. Retinoic acid and EGF dose-response curves demonstrate that the effect on PGE2 secretion correlates with the retinoic acid induced increase in EGF receptors. These data suggest a relationship between increased EGF receptor expression and increased EGF responsiveness. Furthermore, these data indicate a potential mechanism by which EGF and retinoic acid may interact in lung physiology.  相似文献   

4.
In this study the effects of retinoic acid on the binding and mitogenic activity of epidermal growth factor (EGF) in mouse fibroblast Balb/c 3T6 cells are further examined. Retinoic acid treatment of 3T6 cells results in a sixfold enhancement of 125I-labeled mouse EGF binding when assayed at 37 degrees C. In both retinoic acid-treated and control cells, cell-associated 125I-EGF is rapidly internalized, degraded, and secreted. Retinoic acid treatment does not seem to have a significant effect on the rate of internalization and degradation of EGF. At 0 degrees C, internalization of EGF is strongly inhibited in both retinoic acid-treated and control cells. Under these conditions retinoic acid-treated cells still exhibit a tenfold higher level of EGF binding compared to control cells. When exposed to high concentrations of EGF both retinoic acid-treated and control cells "down-regulate" their EGF receptors. And although the growth rate of retinoic acid-treated cells is about half that of control cells, the rate at which EGF binding capacity is restored after down-regulation is about three times as fast as in control cells. No direct antagonism on EGF binding was observed between the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and retinoic acid. EGF is a potent mitogen for 3T6 cells in serum-free medium; retinoic acid inhibits the mitogenic activity of EGF even though it increases EGF binding. Retinoic acid also inhibits cell proliferation induced by sarcoma growth factor (SGF) and insulin.  相似文献   

5.
The effect of the human rIL-1 alpha and rTNF-alpha on the binding of 125I-labeled epidermal growth factor ([125I]EGF) to its receptor (EGF-R) has been studied in human gingival fibroblasts (HuGi). Incubation of these cells with recombinant cytokines at 37 degrees C caused a rapid, dose-dependent decrease in their ability to subsequently bind subsaturating levels of [125I]EGF at 4 degrees C. Inhibition was evident at 5 min after addition of cytokines, reached a maximal level (60-70% reduction) after 15 to 30 min, and declined thereafter. Normal EGF binding was attained by 2 h. Half-maximal inhibition of EGF binding occurred at 10 pM IL-1 and 50 pM TNF. The two cytokines were not additive in their effect. Competition experiments at 4 degrees C showed that the cytokines did not interact directly with EGF-R; Scatchard analysis of binding of [125I]EGF to HuGi after treatment with IL-1 and TNF revealed an increase in EGF-R Kd from 0.75 nM to 2.9 nM with no change in receptor number. The effect of IL-1 and TNF on EGF-R was compared with that of the tumor-promotor PMA which is known to "transmodulate" EGF-R affinity by activating protein kinase C which then phosphorylates EGF-R. PMA caused a greater inhibition of EGF binding to HuGi (80 to 85% inhibition; ED50 = 500 pM), and recovery of binding was much slower. Importantly, in HuGi made deficient in protein kinase C by prolonged incubation with PMA, addition of fresh PMA no longer affected EGF binding, while the response to IL-1 and TNF was intact. Cytokine- but not PMA-mediated EGF-R transmodulation was partially reversed by treatment of the cells with millimolar concentrations of the kinase inhibitor amiloride. HuGi were incubated with H3 32PO4, stimulated with PMA or cytokines, and EGF-R were immunoprecipitated; IL-1 and TNF, like PMA, caused a 2- to 5-fold increase in receptor phosphorylation. We conclude that occupation of IL-1 and TNF-R activates a protein kinase, distinct from kinase C, for which EGF-R is a substrate.  相似文献   

6.
Data are presented which document the first known effect of retinoic acid on progesterone receptor (PR) gene expression. Treatment of T-47D human breast cancer cells with retinoic acid for 48 h resulted in a marked concentration-dependent decrease in the level of PR mRNA and immunoreactive protein which was similar to the known effect of progestins on these parameters. Retinoic acid, however, did not bind to PR, nor did it cause the previously demonstrated increase in PR molecular weight observed after progestin exposure. When T-47D cells were treated with retinoic acid for 6 h rather than 48 h, no reduction in the level of PR protein was noted at any retinoic acid concentration whereas the effects of retinoic acid on PR mRNA at 6 and 48 h were the same. Examination of the time course of the effects of retinoic acid revealed a rapid decrease in PR mRNA levels detectable 1 h after and maximal 6 h after treatment of T-47D cells with retinoic acid. These effects of retinoic acid contrasted with previously demonstrated progestin effects on PR mRNA which were not apparent until 3 h after and were not maximal until 12 h after treatment. As expected, the PR protein concentration was unaffected for at least 6 h but was maximally decreased 24-48 h after retinoic acid treatment. In summary, retinoic acid treatment of T-47D cells caused a decrease in the cellular PR concentration by decreasing levels of receptor mRNA and protein, suggesting that retinoic acid is capable of modulating sensitivity to progestins in human breast cancer cells.  相似文献   

7.
8.
 研究不同浓度的血清对全反式视黄酸 (ATRA)抑制肺癌细胞生长的影响 .当细胞培养在 10 %血清中 ,ATRA不能抑制肺癌细胞生长 ,但是当细胞培养在 1%血清中 ,ATRA能够有效地抑制肺癌细胞生长 .视黄酸受体RARβ介导视黄酸的抗癌作用 .Northern印迹分析表明 ,在高浓度血清中AT RA不能诱导RARβ表达 ,但在低浓度血清中ATRA可以诱导RARβ表达 ,并且瞬时转染和CAT测定证实是通过激活RABβ启动子转录活性而诱导RARβ表达的 .孤生受体Nur77受到血清生长因子刺激后会大量表达 ,具有抗视黄酸活性的作用 .肺癌细胞培养在低浓度血清中 ,Nur77mRNA低水平表达和Nur77蛋白不表达 .然而在高浓度血清中 ,Nur77mRNA和蛋白高水平表达 .另外 ,在无血清条件下 ,EGF也可以诱导Nur77表达 .结果提示 ,血清中的生长因子可能拮抗ATRA抑制肺癌细胞生长的作用 ,其作用途径可能是通过刺激细胞中Nur77表达 ,或者通过下调RARβ启动子的转录活性而抑制RARβ的表达  相似文献   

9.
10.
11.
Binding of 125I-labelled epidermal growth factor (EGF) to C3H/2K cells and the effect of a tumor promotor, 12-O-tetradecanoyl phorbol-13-acetate (TPA) and of a tumor promotor antagonist, retinoic acid, on the binding was studied. Scatchard plot analysis of the binding showed the presence of two types of binding sites with different affinity to EGF. Treatment of the cells with retinoic acid for 1 h resulted in elevation of the affinity of both sites without changing their number per cell. Prolonged exposure to retinoic acid abrogated this elevation of the affinity and caused cycloheximide-sensitive increase of the number of the binding sites of both types. TPA inhibited binding of EGF to the cells by abolishing the binding to the high affinity sites, whereas retinoic acid, in the presence of TPA, enhanced it by increasing the number of the low affinity sites.  相似文献   

12.
Binding of 125I-labelled epidermal growth factor (EGF) to C3H/2K cells and the effect of a tumor promotor, 12-O-tetradecanoyl phorbol-13-acetate (TPA) and of a tumor promotor antagonist, retinoic acid, on the binding was studied. Scatchard plot analysis of the binding showed the presence of two type of binding sites with different affinity to EGF. Treatment of the cells with retinoic acid for 1 h resulted in elevation of the affinity of both sites without changing their number per cell. Prolonged exposure to retinoic acid abrogated this elevation of the affinity and caused cycloheximide-sensitive increase of the number of the binding sites of both types. TPA inhibited binding of EGF to the cells by abolishing the binding to the high affinity sites, whereas retinoic acid, in the presence of TPA, enhanced it by increasing the number of the low affinity sites.  相似文献   

13.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane cytokine and a potent inducer of apoptosis. Epidermal growth factor (EGF) signaling is well known to involve in tumor survival and overexpression of EGF receptor (EGF-R) attributes to decreased responsiveness to many available therapies in cancer treatment. We investigated whether EGF-R inhibitors enhance TRAIL-induced apoptosis. We exposed A549 cells to Genistein, PD153035, and PD158780 for 12h and then treated with recombinant TRAIL protein. TRAIL alone induced 25% cell death after a 3-h treatment, but in cells pretreated with EGF-R inhibitors, TRAIL induced cell death to more than 70% after 3h treatment. Genistein enhanced TRAIL-induced apoptosis in a time- and dose-dependent manner. Western blot analyses showed that pretreatment with Genistein down-regulated the protein levels of total Akt and phosphorylated active Akt. Genistein also decreased the protein level of Bcl-XL that is regulated by Akt. These molecules are well characterized to act against induction of apoptotic cell death. Therefore, our data suggest that EGF-R inhibitor may sensitize A549 cells to TRAIL-induced apoptosis by regulating expression of these proteins. EGF-R inhibitors may play an important role in the anti-cancer activity of TRAIL protein, especially in TRAIL-resistant tumors that arise by expressing constitutively active Akt.  相似文献   

14.
The cytosolic liver-specific growth factor-hepatic stimulator substance (HSS) has been shown to be able to amplify the rat hepatkocyte proliferation responded to BGF.In order to get more insight into the mechanism,the regulatory effect of HSS on EGF-receptor (EGF-R) and the receptor phosphorylation at molecular level was studied.HSS partially purified from weanling rat liver was given to cultured hepatocytes and its influence on EGF-R specific binding and internalization as well as mRNA expression were investigated.The results showed that preincubation of hepatocytes with HSS could lead to an increase in [^125I]-EGF binding to its receptors and inhibit EGF-induced receptor down-regulation.Furthermore,the overexpression of EGF-R mRNA stimulated by HSS was seen during 2-12 h after the incubation.Additionally,it was demonstrated with human hepatoma SMMC-7721 cells in Western blot that the EGF-R expression and the receptor autophosphorylation were increased with dose/timedependency after HSS treatment.These results strongly suggest that the mechanism of HSS action on hepatocyte growth might be related to its modulation on EGF-R and receptor-mediated signaling transfuction.  相似文献   

15.
Human salivary gland adenocarcinoma (HSG) cells treated with 10(-6) M triamcinolone acetonide for 48 h exhibited a 1.7- to 2.0-fold increase in [125I]human epidermal growth factor (hEGF) binding capacity as compared with untreated HSG cells. Scatchard analysis of [125I]EGF binding data revealed that the number of binding sites was 83,700 (+/- 29,200) receptors/cell in untreated cells and 160,500 (+/- 35,500) receptors/cell in treated cells. No substantial change in receptor affinity was detected. The dissociation constant of the EGF receptor was 0.78 (+/- 0.26).10(-9) M for untreated cells, whereas it was 0.93 (+/- 0.31).10(-9)M for treated cells. The triamcinolone acetonide-induced increase in [125I]EGF binding capacity was dose-dependent between 10(-9) and 10(-6)M, and maximal binding was observed at 10(-6)M. EGF receptors on HSG cells were affinity-labeled with [125I]EGF by use of the cross-linking reagent disuccinimidyl suberate (DSS). The cross-linked [125I]EGF was 3-4% of the total [125I]EGF bound to HSG cells. The affinity-labeled EGF receptor was detected as a specific 170 kDa band in the autoradiograph after SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Densitometric analysis revealed that triamcinolone acetonide amplified the intensity of this band 2.0-fold over that of the band of untreated cells. EGF receptor synthesis was also measured by immunoprecipitation of [3H]leucine-labeled EGF receptor protein with anti-hEGF receptor monoclonal antibody. Receptor synthesis was increased 1.7- to 1.8-fold when HSG cells were treated with 10(-8)-10(-6)M triamcinolone acetonide for 48 h. When the immunoprecipitated, [35S]methionine-pulse-labeled EGF receptor was analyzed by SDS-PAGE and fluorography, the newly synthesized EGF receptor was detected at the position of 170 kDa; and treatment of HSG cells with triamcinolone acetonide resulted in a 2.0-fold amplification of this 170 kDa band. There was no significant difference in turnover rate of EGF receptor between treated and untreated HSG cells. These results demonstrate that the triamcinolone acetonide-induced increase in [125I]EGF binding capacity is due to the increased synthesis of EGF receptor protein in HSG cells.  相似文献   

16.
Colonic mucosal wounds are repaired, in part, by epithelial migration. Signaling mechanisms regulating this migration are poorly characterized. This study aimed to examine the role that the epidermal growth factor (EGF) receptor (EGF-R) and its ligands, EGF and transforming growth factor-alpha (TGF-alpha), play in migration in wounded in vitro models of colonic epithelium. Migration was assessed over 24 h in circular wounds made in confluent monolayers of LIM1215 human colon cancer cells. EGF and TGF-alpha stimulated migration twofold from 4 h after wounding. Basal migration and the motogenic effects of short chain fatty acids and hepatocyte growth factor were mediated through enhanced binding of TGF-alpha to EGF-R, while trefoil peptide-mediated motogenesis required EGF-R activation independently of TGF-alpha binding. Activation of protein kinase C (PKC) stimulated migration, an effect more potent than, and independent of, EGF-R activation. However, neither inhibition of PKC by Ro 31-8220 nor depletion of PKC by pretreatement with phorbol myristate acetate attenuated EGF-R-mediated motogenesis. In conclusion, EGF-R activation via TGF-alpha binding, or intracellularly, mediates basal LIM1215 migration and the effects of several motogens, with the exception of PKC activators. Since EGF-R and PKC have physiological activators in vivo, they may control colonic mucosal repair processes following injury.  相似文献   

17.
125I-Epidermal growth factor (EGF) binding capacity in fetal rat lung cells is decreased by approximately 50% following 24-h dexamethasone treatment. Ligand binding assays identified an average of 30,000 receptors per cell in untreated FRL cells, while analysis of dexamethasone treated cells showed a decrease to about 16,000 receptors per cell. No substantial changes in receptor affinities were detected. Immunoprecipitation of 35S-methionine-labeled EGF receptor protein demonstrated a 50% decrease in total EGF receptor protein after 24-h dexamethasone treatment. Brief pulse labeling with 35S-methionine showed that the reduction in total EGF receptor protein content was due to a decrease in EGF receptor synthesis. Receptor synthesis declined about 25% after 1 h of dexamethasone treatment and at 3 h, EGF receptor synthesis was maximally decreased to nearly 50% that of cells not exposed to dexamethasone. Dexamethasone treatment was also effective in reducing EGF receptor synthesis in cells pretreated with retinoic acid, an agent which enhances receptor synthesis. These data are the first to document a dexamethasone-induced decrease in EGF receptor synthesis. Furthermore, these findings may provide a plausible mechanism by which dexamethasone could regulate EGF responsiveness.  相似文献   

18.
Tea polyphenols are known to inhibit a wide variety of enzymatic activities associated with cell proliferation and tumor progression. The molecular mechanisms of antiproliferation are remained to be elucidated. In this study, we investigated the effects of the major tea polyphenol (−)-epigallocatechin gallate (EGCG) on the proliferation of human epidermoid carcinoma cell line, A431. Using a [3H]thymidine incorporation assay, EGCG could significantly inhibit the DNA synthesis of A431 cells. In vitro assay, EGCG strongly inhibited the protein tyrosine kinase (PTK) activities of EGF-R, PDGF-R, and FGF-R, and exhibited an IC50 value of 0.5–1 μg/ml. But EGCG scarcely inhibited the protein kinase activities of pp60v-src, PKC, and PKA (IC50 > 10 μg/ml). In an in vivo assay, EGCG could reduce the autophosphorylation level of EGF-R by EGF. Phosphoamino acid analysis of the EGF-R revealed that EGCG inhibited the EGF-stimulated increase in phosphotyrosine level in A431 cells. In addition, we showed that EGCG blocked EGF binding to its receptor. The results of further studies suggested that the inhibition of proliferation and suppression of the EGF signaling by EGCG might mainly mediate dose-dependent blocking of ligand binding to its receptor, and subsequently through inhibition of EGF-R kinase activity. J. Cell. Biochem. 67:55–65, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
We have previously shown that lactogenic hormones stimulate epidermal growth factor (EGF) mRNA accumulation in mouse mammary glands in vivo and in mouse mammary epithelial cells (NMuMG line). However, our in vitro studies indicate that the lactogenic hormone prolactin (PRL) completely inhibits EGF-stimulated DNA synthesis. PRL does not alter cholera toxin or insulin-like growth factor-1-stimulated cell growth, thus the inhibition appears to be specific for EGF. Our current studies are designed to evaluate the effects of PRL on EGF-stimulated signaling events in the NMuMG cell line. Cells treated with PRL for 30 min demonstrated a loss of high affinity EGF-binding ability. After long-term PRL treatment (18 h) there was a decrease in EGF receptor (R) number, as determined by [125I]EGF binding. PRL treatment (8 h) also decreased EGF-R mRNA levels. An EGF-stimulated increase in EGF-R mRNA observed 2-4 h after treatment was decreased when PRL was added to the cultures. Furthermore, levels of EGF-stimulated tyrosine phosphorylation of the EGF-R (170 kDa) and phospholipase C gamma (145 kDa) are dramatically decreased in cells treated with PRL. Also of great interest was a decrease in EGF-stimulated c-myc mRNA in PRL-treated cells. We conclude that PRL is acting to down-regulate the EGF-R, thus limiting EGF-stimulated cell signaling in mammary tissue.  相似文献   

20.
We obtained terminally differentiated chondrocytes in monolayer culture from chick embryonal growth plates, and examined the effect of retinoic acid on these cells. The cells treated with retinoic acid ceased type X collagen synthesis and showed decreased calcium incorporation into cell layers. Retinoic acid tended to stimulate proliferation of the cultured chondrocytes. It also increased DNA accumulation dose-dependently in the range from 1 nM to 1 microM. DNA synthesis in the growth phase and confluency was stimulated within 10 h after addition of 0.1 microM retinoic acid. [3H]Retinoic acid binding, which was inhibited by simultaneous addition of excess unlabeled retinoic acid, was detected in both the cytosolic and nuclear fractions of the chondrocytes. The retinoic acid binding capacity of the nuclear fraction was increased by pretreating the cells with retinoic acid. These results indicate that retinoic acid binds to both the cytosolic and nuclear fractions of cultured chondrocytes, and induces their proliferation and dedifferentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号