首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein disulfide isomerase (PDI)-like proteins act as oxido-reductases and chaperones in the endoplasmic reticulum (ER). How oligomerization of the PDI-like proteins control these activities is unknown. Here we show that dimerization of ERp29, a PDI-like protein, regulates its protein unfolding and escort activities. We have demonstrated previously that ERp29 induces the local unfolding of polyomavirus in the ER, a step required for viral infection. We now find that, in contrast to wild-type ERp29, a mutant ERp29 (D42A) that dimerizes inefficiently is unable to unfold polyomavirus or stimulate infection. A compensatory mutation that partially restores dimerization to the mutant ERp29 (G37D/D42A) rescues ERp29 activity. These results indicate that dimerization of ERp29 is crucial for its protein unfolding function. ERp29 was also suggested to act as an escort factor by binding to the secretory protein thyroglobulin (Tg) in the ER, thereby facilitating its secretion. We show that this escort function likewise depends on ERp29 dimerization. Thus our data demonstrate that dimerization of a PDI-like protein acts to regulate its diverse ER activities.  相似文献   

2.
In heterologous and endogenous expression systems, we studied the role of ERp44 and its complex partner endoplasmic reticulum (ER) oxidase 1-α (Ero1-Lα) in mechanisms regulating disulfide bond formation for serotonin transporter (SERT), an oligomeric glycoprotein. ERp44 is an ER lumenal chaperone protein that favors the maturation of disulfide-linked oligomeric proteins. ERp44 plays a critical role in the release of proteins from the ER via binding to Ero1-Lα. Mutation in the thioredoxin-like domain hampers the association of ERp44C29S with SERT, which has three Cys residues (Cys-200, Cys-209, and Cys-109) on the second external loop. We further explored the role of the protein chaperones through shRNA knockdown experiments for ERp44 and Ero1-Lα. Those efforts resulted in increased SERT localization to the plasma membrane but decreased serotonin (5-HT) uptake rates, indicating the importance of the ERp44 retention mechanism in the proper maturation of SERT proteins. These data were strongly supported with the data received from the N-biotinylaminoethyl methanethiosulfonate (MTSEA-biotin) labeling of SERT on ERp44 shRNA cells. MTSEA-biotin only interacts with the free Cys residues from the external phase of the plasma membrane. Interestingly, it appears that Cys-200 and Cys-209 of SERT in ERp44-silenced cells are accessible to labeling by MTSEA-biotin. However, in the control cells, these Cys residues are occupied and produced less labeling with MTSEA-biotin. Furthermore, ERp44 preferentially associated with SERT mutants (C200S, C209S, and C109A) when compared with wild type. These interactions with the chaperone may reflect the inability of Cys-200 and Cys-209 SERT mutants to form a disulfide bond and self-association as evidenced by immunoprecipitation assays. Based on these collective findings, we hypothesize that ERp44 together with Ero1-Lα plays an important role in disulfide formation of SERT, which may be a prerequisite step for the assembly of SERT molecules in oligomeric form.  相似文献   

3.
Endoplasmic reticulum (ER)-to-cytosol membrane transport is a decisive infection step for the murine polyomavirus (Py). We previously determined that ERp29, a protein disulfide isomerase (PDI) member, extrudes the Py VP1 C-terminal arm to initiate ER membrane penetration. This reaction requires disruption of Py's disulfide bonds. Here, we found that the PDI family members ERp57, PDI, and ERp72 facilitate virus infection. However, while all three proteins disrupt Py's disulfide bonds in vitro, only ERp57 and PDI operate in concert with ERp29 to unfold the VP1 C-terminal arm. An alkylated Py cannot stimulate infection, implying a pivotal role of viral free cysteines during infection. Consistent with this, we found that although PDI and ERp72 reduce Py, ERp57 principally isomerizes the virus in vitro, a reaction that requires viral free cysteines. Our mutagenesis study subsequently identified VP1 C11 and C15 as important for infection, suggesting a role for these residues during isomerization. C11 and C15 also act together to stabilize interpentamer interactions for a subset of the virus pentamers, likely because some of these residues form interpentamer disulfide bonds. This study reveals how a PDI family functions coordinately and distinctly to promote Py infection and pinpoints a role of viral cysteines in this process.  相似文献   

4.
ERp29 is a major resident of the endoplasmic reticulum (ER) that seemingly plays an important role in most animal cells. Although a protein-folding association is widely supported, ERp29's specific molecular function remains unknown. A chaperone activity was postulated from evidence that ERp29 forms multimers like the classical ER chaperones, but conflicting results have emerged from our recent studies. Here a biophysical approach was used to clarify this issue and also reveal a key structural role for ERp29's characteristic cysteine, Cys-125. Applying hydrodynamic parameters derived from sedimentation and dynamic light-scattering analyses, a model of ERp29's quaternary structure was assembled from existing tertiary substructures. Comparison with Windbeutel, an ERp29-like protein from fruit fly with specialized chaperone activity, revealed similar tri-lobar gross structures but some finer differences consistent with functional divergence. Solubility and hydrophobic probe assays revealed moderate surface hydrophobicity, which was reduced in mutant ERp29 in which serine replaced Cys-125. This mutant was also relatively labile to proteolytic degradation, providing two reasons for the strict conservation of Cys-125. No multimerization was observed with untagged ERp29, which existed as tight homodimers (K(d) < 50 nm), whereas His-tagged ERp29 artifactually formed 670-kDa oligomers. These findings distinguish ERp29 biophysically from its peers in the ER including Windbeutel, endorsing our postulate that ERp29 adds a distinct type of folding activity to the ER machinery. By invoking novel functional associations for Cys-125 and the adjoining linker, new clues about how ERp29 might work have also arisen.  相似文献   

5.
Recently we cloned and described ERp29, a novel 29-kDa endoplasmic reticulum (ER) protein that is widely expressed in rat tissues. Here we report our original isolation of ERp29 from dental enamel cells, and the comprehensive sequence analysis that correlated ERp29 with its cognate cDNA, both in enamel cells and liver. Fractionation of enamel cells using a new freeze-thaw procedure showed that ERp29 partitioned with known reticuloplasmins, and not with soluble proteins from mitochondria or cytosol. The absence of ERp29 in secreted enamel matrix indicated that the C-terminal tetrapeptide (KEEL motif) confers effective ER-retention in enamel cells. ERp29 behaved as a single species (approximately 40 kDa) during size-exclusion chromatography of liver reticuloplasm, suggesting that most ERp29 is not stably associated with other proteins. Immunoblot analysis showed that ERp29 was up-regulated during enamel secretion and expressed most highly in secretory tissues, indicative of a role in secretory-protein synthesis. Unlike other reticuloplasmins, ERp29 was down-regulated during enamel mineralization and thereby dissociated from a calcium-handling role. Tissue-specific variations in ERp29 molecular abundance were revealed by quantification of reticuloplasmin mole ratios. In conclusion: (a) ERp29 is a novel reticuloplasmin of general functional importance; (b) a unique role in protein processing is implicit from the distinctive expression patterns and molecular structure; (c) ERp29 is primarily involved in normal protein secretory events, not the ER stress response; (d) a major role is likely in tissues where ERp29 was equimolar with established molecular chaperones and foldases. This study implicates ERp29 as a new member of the ER protein-processing machinery, and identifies tissues where the physiological role of ERp29 is most likely to be clearly manifested.  相似文献   

6.
7.
It was previously reported that the up-regulation of ERp29 mRNA depends on the levels of thyroid stimulating hormone (TSH) in the thyrocytes of FRTL-5 cells. In order to investigate the putative new function of ERp29 as an endoplasmic molecular (ER) chaperone, an ERp29-overexpressing FRTL-5 cell line was established. This cell line had approximately three times the levels of ERp29 protein and an enhanced level of thyroglobulin (Tg) secretion. The results showed both enhanced ERp29 expression and an interaction with the other ER chaperones such as GRP94, BiP, ERp72 and calnexin. In addition, ERp29 enhanced the expression of PKR-like ER kinase (PERK), which is a transmembrane protein located in the ER membrane. These findings suggest that ERp29 assists in protein folding as well as in the secretion of the secretory/plasma membrane proteins under close co-operation with other ER chaperones and the ER stress signaler, PERK.  相似文献   

8.
The endoplasmic reticulum protein 29 (ERp29) is a molecule that facilitates processing and transport of proteins in the early secretory pathway. Structural and functional analyses have suggested a biological role as a putative chaperone in the endoplasmic reticulum. The N-terminal domain of ERp29 resembles the thioredoxin domain of protein disulfide isomerase, but lacks its redox-active function due to the absence of an active motif consisting of double cysteines. In the context of carcinogenesis, the role of ERp29 in cancer progression has not been fully elucidated. However, recent studies indicate that high expression of ERp29 inversely correlates to tumor progression. In addition, over-expression of ERp29 significantly inhibits proliferation and suppresses tumorigenesis by modulating ER stress signaling and the mesenchymal-epithelial transition in breast cancer cells. In this review, we summarize the biological properties of ERp29 and its novel function as a tumor suppressor.  相似文献   

9.
We have characterized the properties and putative role of a mammalian thioredoxin-like protein, ERp16 (previously designated ERp18, ERp19, or hTLP19). The predicted amino acid sequence of the 172-residue human protein contains an NH(2)-terminal signal peptide, a thioredoxin-like domain with an active site motif (CGAC), and a COOH-terminal endoplasmic reticulum (ER) retention sequence (EDEL). Analyses indicated that the mature protein (comprising 146 residues) is generated by cleavage of the 26-residue signal peptide and is localized in the lumen of the ER. Biochemical experiments with the recombinant mature protein revealed it to be a thioldisulfide oxidoreductase. Its redox potential was about -165 mV; its active site cysteine residue Cys(66) was nucleophilic with a pK(a) value of approximately 6.6; it catalyzed the formation, reduction, and isomerization of disulfide bonds, with the unusual CGAC active site motif being responsible for these activities; and it existed as a dimer and underwent a redox-dependent conformational change. The observations that the redox potential of ERp16 (-165 mV) was within the range of that of the ER (-135 to -185 mV) and that ERp16 catalyzed disulfide isomerization of scrambled ribonuclease A suggest a role for ERp16 in protein disulfide isomerization in the ER. Expression of ERp16 in HeLa cells inhibited the induction of apoptosis by agents that elicit ER stress, including brefeldin A, tunicamycin, and dithiothreitol. In contrast, expression of a catalytically inactive mutant of ERp16 potentiated such apoptosis, as did depletion of ERp16 by RNA interference. Our results suggest that ERp16 mediates disulfide bond formation in the ER and plays an important role in cellular defense against prolonged ER stress.  相似文献   

10.
The cytoplasmic membrane proteins CvaB and CvaA and the outer membrane protein TolC constitute the bacteriocin colicin V secretion system in Escherichia coli. CvaB functions as an ATP-binding cassette transporter, and its C-terminal domain (CTD) contains typical motifs for the nucleotide-binding and Walker A and B sites and the ABC signature motif. To study the role of the CvaB CTD in the secretion of colicin V, a truncated construct of this domain was made and overexpressed. Different forms of the CvaB CTD were found during purification and identified as monomer, dimer, and oligomer forms by gel filtration and protein cross-linking. Nucleotide binding was shown to be critical for CvaB CTD dimerization. Oligomers could be converted to dimers by nucleotide triphosphate-Mg, and nucleotide release from dimers resulted in transient formation of monomers, followed by oligomerization and aggregation. Site-directed mutagenesis showed that the ABC signature motif was involved in the nucleotide-dependent dimerization. The spatial proximity of the Walker A site and the signature motif was shown by disulfide cross-linking a mixture of the A530C and L630C mutant proteins, while the A530C or L630C mutant protein did not dimerize on its own. Taken together, these results indicate that the CvaB CTD formed a nucleotide-dependent head-to-tail dimer.  相似文献   

11.
Membrane penetration of nonenveloped viruses is a poorly understood process. We have investigated early stages of this process by studying the conformational change experienced by polyomavirus (Py) in the lumen of the endoplasmic reticulum (ER), a step that precedes its transport into the cytosol. We show that a PDI-like protein, ERp29, exposes the C-terminal arm of Py's VP1 protein, leading to formation of a hydrophobic particle that binds to a lipid bilayer; this reaction likely mimics initiation of Py penetration across the ER membrane. Expression of a dominant-negative ERp29 decreases Py infection, indicating ERp29 facilitates viral infection. Interestingly, cholera toxin, another toxic agent that crosses the ER membrane into the cytosol, is unfolded by PDI in the ER. Our data thus identify an ER factor that mediates membrane penetration of a nonenveloped virus and suggest that PDI family members are generally involved in ER remodeling reactions.  相似文献   

12.
ERp29 was recently characterized biochemically as a novel protein that resides in mammalian endoplasmic reticulum (ER). Here we applied immunochemical procedures at the cellular level to investigate the hypothesized role of ERp29 in secretory protein production. ERp29 was localized exclusively to the ER/nuclear envelope of MDCK cells using confocal immunocytochemistry and comparative markers of the ER lumen, ER/Golgi membrane, nuclei, and mitochondria. A predominant association with rough ER was revealed by sucrose-gradient analysis of rat liver microsomes. Immunohistochemistry showed ERp29 expression in 35 functionally distinct cell types of rat, establishing ERp29 as a general ER marker. The ERp29 expression profile largely paralleled that of protein disulfide isomerase (PDI), the closest relative of ERp29, consistent with a role in secretory protein production. However strikingly different ERp29/PDI ratios were observed in various cell types, suggesting independent regulation and functional roles. Together, these findings associate ERp29 primarily with the early stages of secretory protein production and implicate ERp29 in a distinct functional role that is utilized in most cells. Our identification of several ERp29-enriched cell types suggests a potential selectivity of ERp29 for non-collagenous substrates and provides a physiological foundation for future investigations.  相似文献   

13.
14.
ERp29 is a ubiquitously expressed endoplasmic reticulum (ER) protein, which is found in the folding complexes of several secretory proteins in the ER. In our previous work, it was suggested that ERp29 function is critical for the folding/secretion of thyroglobulin (Tg), a major secretory product of thyroid cells. Current work is an attempt to substantiate this assumption by answering the question whether the secretion of Tg can be regulated through the manipulation of ERp29 expression in the FRTL-5 rat thyroid cells. Indeed, transient overexpression of ERp29 resulted in twofold enhancement of the Tg secretion whereas the RNAi-mediated ERp29 silencing led to the attenuation of the Tg export. Mutational analysis has suggested two loci that might be involved in the ERp29-Tg interactions: the interdomain linker including Cys157, an amino acid, which is important for the structural integrity of the C-terminal domain and an uncharged surface on the N-terminal domain flanked by Tyr64 and Gln70.  相似文献   

15.
In human cells, Ero1-Lalpha and -Lbeta (hEROs) regulate oxidative protein folding by selectively oxidizing protein disulfide isomerase. Specific protein--protein interactions are probably crucial for regulating the formation, isomerization and reduction of disulfide bonds in the endoplasmic reticulum (ER). To identify molecules involved in ER redox control, we searched for proteins interacting with Ero1-Lalpha. Here, we characterize a novel ER resident protein (ERp44), which contains a thioredoxin domain with a CRFS motif and is induced during ER stress. ERp44 forms mixed disulfides with both hEROs and cargo folding intermediates. Whilst the interaction with transport-competent Ig-K chains is transient, ERp44 binds more stably with J chains, which are retained in the ER and eventually degraded by proteasomes. ERp44 does not bind a short-lived ribophorin mutant lacking cysteines. Its overexpression alters the equilibrium of the different Ero1-Lalpha redox isoforms, suggesting that ERp44 may be involved in the control of oxidative protein folding.  相似文献   

16.
17.
An infective retrovirus requires a mature capsid shell around the viral replication complex. This shell is formed by about 1500 capsid protein monomers, organized into hexamer and pentamer rings that are linked to each other by the dimerization of the C‐terminal domain (CTD). The major homology region (MHR), the most highly conserved protein sequence across retroviral genomes, is part of the CTD. Several mutations in the MHR appear to block infectivity by preventing capsid formation. Suppressor mutations have been identified that are distant in sequence and structure from the MHR and restore capsid formation. The effects of two lethal and two suppressor mutations on the stability and function of the CTD were examined. No correlation with infectivity was found for the stability of the lethal mutations (D155Y‐CTD, F167Y‐CTD) and suppressor mutations (R185W‐CTD, I190V‐CTD). The stabilities of three double mutant proteins (D155Y/R185W‐CTD, F167Y/R185W‐CTD, and F167Y/I190V‐CTD) were additive. However, the dimerization affinity of the mutant proteins correlated strongly with biological function. The CTD proteins with lethal mutations did not dimerize, while those with suppressor mutations had greater dimerization affinity than WT‐CTD. The suppressor mutations were able to partially correct the dimerization defect caused by the lethal MHR mutations in double mutant proteins. Despite their dramatic effects on dimerization, none of these residues participate directly in the proposed dimerization interface in a mature capsid. These findings suggest that the conserved sequence of the MHR has critical roles in the conformation(s) of the CTD that are required for dimerization and correct capsid maturation. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The pleiotropic effects of the insulin-sensitizing adipokine adiponectin are mediated, at least in part, by two seven-transmembrane domain receptors AdipoR1 and AdipoR2. Recent reports indicate a role for AdipoR-binding proteins, namely APPL1, RACK1 and CK2β, in proximal signal transduction events. Here we demonstrate that endoplasmic reticulum protein 46 (ERp46) interacts specifically with AdipoR1 and provide evidence that ERp46 modulates adiponectin signalling. Co-immunoprecipitation followed by mass spectrometry identified ERp46 as an AdipoR1-, but not AdipoR2-, interacting protein. Analysis of truncated constructs and GST-fusion proteins revealed the interaction was mediated by the cytoplasmic, N-terminal residues (1-70) of AdipoR1. Indirect immunofluorescence microscopy and subcellular fractionation studies demonstrated that ERp46 was present in the ER and the plasma membrane (PM). Transient knockdown of ERp46 increased the levels of AdipoR1, and AdipoR2, at the PM and this correlated with increased adiponectin-stimulated phosphorylation of AMPK. In contrast, adiponectin-stimulated phosphorylation of p38MAPK was reduced following ERp46 knockdown. Collectively these results establish ERp46 as the first AdipoR1-specific interacting protein and suggest a role for ERp46 in adiponectin receptor biology and adiponectin signalling.  相似文献   

19.
Connexin43 (Cx43) is a gap junction protein that forms multimeric channels that enable intercellular communication through the direct transfer of signals and metabolites. Although most multimeric protein complexes form in the endoplasmic reticulum (ER), Cx43 seems to exit from the ER as monomers and subsequently oligomerizes in the Golgi complex. This suggests that one or more protein chaperones inhibit premature Cx43 oligomerization in the ER. Here, we provide evidence that an ER-localized, 29-kDa thioredoxin-family protein (ERp29) regulates Cx43 trafficking and function. Interfering with ERp29 function destabilized monomeric Cx43 oligomerization in the ER, caused increased Cx43 accumulation in the Golgi apparatus, reduced transport of Cx43 to the plasma membrane, and inhibited gap junctional communication. ERp29 also formed a specific complex with monomeric Cx43. Together, this supports a new role for ERp29 as a chaperone that helps stabilize monomeric Cx43 to enable oligomerization to occur in the Golgi apparatus.  相似文献   

20.
Calnexin and ERp57 act cooperatively to ensure a proper folding of proteins in the endoplasmic reticulum (ER). Calnexin contains two domains: a lectin domain and an extended arm termed the P-domain. ERp57 is a protein disulfide isomerase composed of four thioredoxin-like repeats and a short basic C-terminal tail. Here we show direct interactions between the tip of the calnexin P-domain and the ERp57 basic C-terminus by using NMR and a novel membrane yeast two-hybrid system (MYTHS) for mapping protein interactions of ER proteins. Our results prove that a small peptide derived from the P-domain is active in binding ERp57, and we determine the structure of the bound conformation of the P-domain peptide. The experimental strategy of using the MYTHS two-hybrid system to map interaction sites between ER proteins, together with NMR, provides a powerful new strategy for establishing the function of ER complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号