首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Tadpole and adult hemoglobin do not differ significantly in molecular weight. The molecular weight of both is in the neighborhood of 68,000. 2. Heme-heme interaction as measured by the value of n in Hill's equation is virtually the same—about 2.8—in both tadpole and adult. 3. There appears to be no significant effect of pH upon the oxygen equilibrium of tadpole hemoglobin, in contrast to large Bohr and reverse Bohr effects in the adult. This is taken to mean that during metamorphosis acid groups of globin become sensitive to the oxygenation of heme by some change in the mode of linkage between heme and globin. 4. The oxygen affinity of tadpole hemoglobin is about seven times as great as that of the adult at pH 6 and twice as great at pH 9.  相似文献   

2.
Bovine hemoglobin was cross-linked with glutaraldehyde, resulting in high oxygen affinity polymeric hemoglobin dispersions of varying molecular weight distributions. High oxygen affinity acellular oxygen carriers were designed in order to exhibit oxygen release profiles closer to that of human red blood cells (RBCs), without exhibiting the inherent increased vasoactivity that occurs with low oxygen affinity acellular oxygen carriers (1, 2). Oxygen dissociation curves were measured for polymerized hemoglobin dispersions at various pH values (7.0, 7.4, and 8.0) and chloride ion concentrations. Unmodified hemoglobin showed an increase in oxygen affinity with increased chloride ion concentration and a decrease in oxygen affinity with increased pH, as was previously demonstrated in the literature (3). For glutaraldehyde-polymerized hemoglobin dispersions, the ability of the oxygen affinity to respond to changes in Bohr H+ and Cl- concentration was weakened. However, at acidic physiological pH (pH = 7), the Bohr effect was still present at high Cl- concentrations. Thus, the Bohr effect maintained some dependency on the Cl- concentration.  相似文献   

3.
The hemoglobin found in the nucleated erythrocytes of the arcid blood clam Noetia ponderosa is heterogeneous and consists of two electrophoretic components, Hb-Major and Hb-Minor, present in about 80% and 20% proportions, respectively. Both components are hemoglobin dimers over a wide concentration range based on light-scattering measurements. No higher aggregation states are observed. The oxygen binding by Hb-Major and Hb-Minor is characterized by p50 values of 16.8 and 8.7 mm of Hg and Hill coefficients of 1.4 and 1.2, respectively, at pH 7.0 and 25 degrees C. Neither component exhibits an alkaline Bohr effect. An unusual nonlinear Hill plot is observed for Hb-Major. Hb-Major is composed of two different polypeptide chains and thus is a heterodimer based on sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis and reverse phase high performance liquid chromatography. By the same methods, Hb-Minor is a homodimer and may share a common chain with Hb-Major. Amino acid compositions of the two hemoglobins indicate 2 histidines/polypeptide chain which are presumably involved in the coordination of the heme iron. Visible absorption spectra indicate the heme environment is normal in the oxy state but perhaps more constrained in the deoxy state. Oxygen binding as a function of temperature and concentration and binding by the intact erythrocytes indicates the absence of intracellular regulators of oxygen binding.  相似文献   

4.
The O2 binding properties of sulfhemoglobin were studied. The oxygen tension required for half-saturation of sulfhemoglobin is more than 2 orders of magnitude higher than that for hemoglobin A. The binding of O2 exhibits an alkaline Bohr effect larger than that observed for hemoglobin, yet the Hill number is unity. From the Bohr titration curve, 0.68 proton is released during O2 binding at 0 degrees C. Sulfhemoglobin prepared from carboxypeptidase A-treated hemoglobin has an affinity for O2 which is about the same as that of sulfhemoglobin at the theoretical limit of the Bohr titration curve. Like its carboxypeptidase A-treated hemoglobin precursor, this sulfhemoglobin does not bind O2 cooperatively. Thus, sulfhemoglobin appears to be in a high affinity form at alkaline pH and a low affinity form at acid pH, similar to hemoglobin A. These results demonstrate that the magnitude of the Hill number is not always an indicator of the interaction between oxygen binding and other functions in a hemoglobin.  相似文献   

5.
Summary The arcid bivalveBarbatia reeveana contains within its erythrocytes two hemoglobins with remarkably different structures and oxygen equilibrium properties. A tetrameric hemoglobin (M r about 60,000) with non-identical subunits (22) constitutes about 60% of the erythrocytic heme protein. This hemoglobin has a relatively low oxygen affinity (P 50=19 Torr at 20°C, pH 7.2), shows cooperativityn H=2.2, shows no Bohr effect between pH 6.8 and 7.6 and a heat of oxygenation (H) of –5.4 kcal/mole between 15 and 35°C. Its oxygen affinity appears to be insensitive to ATP.B. reeveana erythrocytes also contain another hemoglobin withM r=430,000, the largest intracellular hemoglobin known in any organism. The subunit of this hemoglobin is unusual, having aM r of 32–34,000 and two heme oxygen binding sites per polypeptide chain. The large hemoglobin has a very low oxygen affinity (P 50=33 Torr at 20°C, pH 7.2), shows slight cooperativity,n H=1.8, and no Bohr effect (Grinich and Terwilliger 1980). The H at pH 7.2 equals –2.9 kcal/mole, a low value for most hemoglobins, and its O2 affinity appears to be insensitive to ATP. The two hemoglobins ofB. reeveana, so different in their structure, are also different in their functional properties.  相似文献   

6.
The temperature dependence of the oxygen equilibrium of tadpole hemoglobin has been determined between 0 degrees and 32 degrees for the unfractionated but phosphate-free lysate and between 12 degrees and 32 degrees for each of the four isolated components between pH 6 and 10 in 0.05 M cacodylate, Tris, or glycine buffers containing 0.1 M NaCl and 1 mM EDTA. Under these conditions the Bohr effect (defined as deltalog p50/deltapH) of the unfractionated lysate is positive at low temperatures between pH 6 and 8.5 and is negative above pH 8.5 to 8.8 at any temperature. As the temperature rises the Bohr effect below pH 8.5 changes greatly. In the interval pH 7.0 to 7.5, the magnitude of the Bohr effect decreases from + 0.28 at 0 degrees to zero at about 24 degrees and becomes negative, as in mammalian hemoglobins, above this temperature. Measurements with the isolated components show that the temperature dependence of oxygen binding for Components I and II and for Components III and IV is very similar. For both sets of components the apparent overall enthalpy of oxygenation at pH 7.5 is about -16.4 kcal/mol and -12.6 kcal/mol at pH 9.5. The measured enthalpies include contributions from the active Bohr groups, the buffer ions themselves, the hemoglobin groups contributing buffering, and any pH-dependent, oxygenation-dependent binding of ions such as chloride by the hemoglobin. The apportioning of the total enthalpy among these various processes remains to be determined. Between pH 8 and 10.5 tadpole oxyhemoglobin undergoes a pH-dependent dissociation from tetramer to dimer. The pH dependence of the apparent tetramer-dimer dissociation constant indicates that at pH 9.5 the dissociation of each tetramer is accompanied by the release of approximately 2 protons. In this pH range the oxygen equilibrium measurements indicate that about 0.5 proton is released for each oxygen molecule bound. The results are consistent with the conclusion that one acid group per alphabeta dimer changes its pK from about 10 to 8 or below upon dissociation of the tetramer.  相似文献   

7.
Hemoglobin (Hb) Chico (Lys beta 66----Thr at E10) has a diminished oxygen affinity (Shih, D. T.-b., Jones, R. T., Shih, M. F.-C., Jones, M. B., Koler, R. D., and Howard, J. (1987) Hemoglobin 11, 453-464). Our studies show that its P50 is about twice that of Hb A and that its cooperativity, anion, and Bohr effects between pH 7 and 8 are normal. The Bohr effect above pH 8 is somewhat reduced, indicating a small but previously undocumented involvement of the ionic bond formed by Lys beta 66 in the alkaline Bohr effect. Since the oxygen affinity of the alpha-hemes is likely to be normal, that of the beta-hemes in the tetramer is likely to be reduced by the equivalent of 1.2 kcal/mol beta-heme in binding energy. Remarkably, both initial and final stages of oxygen binding to Hb Chico are of lowered affinity relative to Hb A under all conditions examined. The isolated beta chains also show diminished oxygen affinity. In T-state Hb A, Lys(E10 beta) forms a salt bridge with one of the heme propionates, but comparison with other hemoglobin variants shows that rupture of this bridge cannot be the cause of the low oxygen affinity. X-ray analysis of the deoxy structure has now shown that Thr beta 66 either donates a hydrogen bond to or accepts one from His beta 63 via a bridging water molecule. This introduces additional steric hindrance to ligand binding to the T-state that results in slower rates of ligand binding. We measured the O2/CO partition coefficient and the kinetics of oxygen dissociation and carbon monoxide binding and found that lowered O2 and CO affinity is also exhibited by the R-state tetramers and the isolated beta chains of Hb Chico.  相似文献   

8.
The blood hemoglobin of the sea lamprey presents a curious mixture of primitive and highly specialized properties. Like muscle hemoglobin, it has a molecular weight of about 17,000, and apparently contains a single heme. Its isoelectric point is like that of a typical invertebrate hemoglobin. Its amino acid composition is partly characteristic of invertebrate) partly of vertebrate hemoglobins (Pedersen; Roche and Fontaine). In the present experiments, the oxygen equilibrium curve of this pigment was measured at several pH's. As expected, it is a rectangular hyperbola, the first such function to be observed in a vertebrate blood hemoglobin. Other hemoglobins known to possess this type of oxygen dissociation curve—those of vertebrate muscle, the worm Nippostrongylus, and the bot-fly larva—appear to serve primarily the function of oxygen storage rather than transport. Lamprey hemoglobin on the contrary is an efficient oxygen-transporting agent. It achieves this status by having, unlike muscle hemoglobin, a relatively low oxygen affinity, and a very large Bohr effect. In these properties it rivals the most effective vertebrate blood hemoglobins.  相似文献   

9.
The four components of hemoglobin from the rainbow trout (Salmo gairdneri) have been isolated. The oxygen affinities of the first two components eluted from the DEAE-cellulose column have much smaller pH dependencies than the last two components. These components have very low O2 affinities at low pH. The effect of pH on the equilibrium and kinetics of ligand binding to the third fraction, the pH-dependent component present in greatest amounts, has been studied. Measurements of ligand binding equilibria demonstrate the presence of both an alkaline and an acid Bohr effect. In the region of the alkaline Bohr effect the value of n in the Hill equation is a function of ligand affinity. For CO binding n decreases as the pH is decreased until at pH 6, the minimum ligand affinity is reached. At this pH there is also a complete loss of cooperative ligand binding. Decreasing the pH further results in an increase of ligand affinity, but this acid Bohr effect is not associated with a reappearance of cooperativity. This suggests that Fraction 3 of S. gairdneri is frozen in the low affinity, deoxygenated conformation at low pH and that the quaternary structure does not change even when fully liganded. However, the properties of the low affinity conformation of this hemoglobin are pH-dependent.  相似文献   

10.
In hemoglobin Richmond (beta102 leads to Lys), amino acid substitution has occurred at the same site as the mutation in hemoglobin Kansas (beta102 Asn leads to Thr), a variant with very low oxygen affinity. Although hemoglobin Richmond has been shown to have increased tetramer-dimer dissociation, its oxygen affinity has been inferred to be normal from studies on hemolysates of carriers. We have isolated hemoglobin Richmond and have further studied its properties. We confirm that the oxygen affinity of pure hemoglobin Richmond under conditions similar to those found in vivo is normal. However, the Bohr effect of the variant hemoglobin is markedly abnormal. Its oxygen affinity is low at high pH and high at low pH, relative to hemoglobin A. The tetramer-dimer equilibrium displays a strong pH dependence such that protons promote dissociation. A model is presented in which the structural change in hemoglobin Richmond results in low oxygen affinity, like hemoglobin Kansas. However, the close linkage between tetramer-dimer dissociation and proton concentration seen with hemoglobin Richmond results in normal oxygen affinity at intracellular pH and hemoglobin concentration, and carriers display no hematological abnormalities.  相似文献   

11.
Hemolysate from white stork displayed a single hemoglobin component, thus resulting into two bands and two globin peaks in dissociating PAGE and reversed phase-HPLC, respectively. Stripped hemoglobin showed an oxygen affinity higher than that of human HbA, a small Bohr effect, and a cooperative oxygen binding. A small decrease of oxygen affinity, of the same extent in all the pH range examined, was observed by addition of chloride, thus indicating an unusual chloride-independent Bohr effect (DeltalogP50/Deltalog pH=-0.24). Saturating amounts of inositol hexakisphosphate, largely decreased hemoglobin-oxygen affinity (DeltalogP(50)=1.17 at pH 7.0), and increased the extent of its Bohr effect (DeltalogP50/DeltalogpH=-0.45). The phosphate binding curve allowed to measure a very high overall binding constant (K=1.18 x 10(5) M(-1)). The effect of temperature on the oxygen affinity was measured, and the enthalpy change of oxygenation resulted almost independent on pH. Structural-functional relationships are discussed by considering some amino acid residues situated at alpha1/beta1 and alpha1/beta2 interfaces, such as alpha38 and alpha89 positions. The presence of only one hemoglobin component, a rare event among birds, and its functional properties have been related to the physiological oxygen requirements of this soaring migrant bird and to its technique of flight during migration.  相似文献   

12.
Under physiological conditions of pH (7.4) and chloride concentration (0.15 M), the oxygen affinity of bovine hemoglobin is substantially lower than that of human hemoglobin. Also, the Bohr effect is much more pronounced in bovine hemoglobin. Numerical simulations indicate that both phenomena can be explained by a larger preferential binding of chloride ions to deoxyhemoglobin in the bovine system. Also, they show that the larger preferential binding may be produced by a decreased affinity of the anions for oxyhemoglobin, thereby stressing the potential relevance of the oxy conformation in regulating the functional properties of the protein. The conformation of the amino-terminal end of the beta subunits appears to regulate the interaction of hemoglobin with solvent components. The pronounced sensitivity of the oxygen affinity of bovine hemoglobin to chloride concentration and to pH suggests that in bovine species these are the modulators of oxygen transport in vivo.  相似文献   

13.
The Gymnothorax unicolor hemoglobin system is characterized by two components, called cathodic and anodic on the basis of their isoelectric point, which were separated by ion-exchange chromatography. The oxygen-binding properties of the purified components were studied in the absence and presence of chloride and/or GTP or ATP in the pH range 6.5-8.0. Stripped cathodic hemoglobin showed a small reverse Bohr effect, high oxygen affinity, and low co-operativity; the addition of chloride only caused a small decrease in oxygen affinity. In the presence of GTP or ATP, the oxygen affinity was dramatically reduced, the co-operativity increased, and the reverse Bohr effect abolished. Stripped anodic hemoglobin is characterized by both low oxygen affinity and co-operativity, and displayed a normal Bohr effect; the addition of chloride increased co-operativity, whereas ATP and GTP significantly modulated oxygen affinity at acidic pH values, enhancing the Bohr effect and giving rise to the Root effect. The complete amino-acid sequences of the alpha and beta chains of both hemoglobins were established; the molecular basis of the functional properties of the hemoglobins is discussed in the light of the primary structure and compared with those of other fish hemoglobins.  相似文献   

14.
BACKGROUND: The hemoglobins of the sea lamprey are unusual in that cooperativity and sensitivity to pH arise from an equilibrium between a high-affinity monomer and a low-affinity oligomer. Although the crystal structure of the monomeric cyanide derivative has previously been determined, the manner by which oligomerization acts to lower the oxygen affinity and confer a strong Bohr effect has, until now, been speculative. RESULTS: We have determined the crystal structure of deoxygenated lamprey hemoglobin V by molecular replacement to 2.7 A resolution, in a crystal form with twelve protomers in the asymmetric unit. The subunits are arranged as six essentially identical dimers, with a novel subunit interface formed by the E helices and the AB corner using the standard hemoglobin helical designations. In addition to nonpolar interactions, the interface includes a striking cluster of four glutamate residues. The proximity of the interface to ligand-binding sites implicates a direct effect on ligand affinity. CONCLUSIONS: Comparison of the deoxy structure with that of the cyanide derivative revealed conformational changes that appear to be linked to the functional behavior. Oligomerization is coupled with a movement of the first half of the E helix by up to 1.0 A towards the heme, resulting in steric interference of ligand binding to the deoxy structure. The Bohr effect seems to result from proton uptake by glutamate residues as they are buried in the interface. Unlike human and mollusc hemoglobins, in which modulation of function is due to primarily proximal effects, regulation of oxygen affinity in lamprey hemoglobin V seems to depend on changes at the distal (ligand-binding) side of the heme group.  相似文献   

15.
Properties of erythrocruorin from Cirraformia grandis   总被引:4,自引:0,他引:4  
The respiratory protein erythrocruorin from the annelid worm Cirraformia grandis has been subjected to a detailed physicochemical characterization. The amino acid composition and heme content for this protein have been determined. Molecular weight measurements indicate a value of 3.0 × 106 for the native species and 18,500 for the subunit. The number of subunits in the intact molecule is estimated as 162 ± 24. Oxygen binding experiments revealed a high affinity for oxygen, an unusually large Bohr effect, and little or no interaction among the heme groups in the pH range of 6.5–7.2.  相似文献   

16.
The mutations in hemoglobin Nancy beta145(HC2) Tyr leads to Asp and hemoglobin Cochin-Portal-Royal beta146(HC3) His leads to Arg involve residues which are thought to be essential for the full expression of allosteric action in hemoglobin. Relative to the structure of deoxyhemoglobin A, our x-ray study of deoxyhemoglobin Nancy shows severe disordering of the beta chain COOH-terminal tetrapeptide and a possible movement of the beta heme iron atom toward the plane of the porphyrin ring. These structural perturbations result in a high oxygen affinity, reduced Bohr effect, and lack of cooperatively in hemoglobin Nancy. In the presence of inositol hexaphosphate (IHP), the Hill constant for hemoglobin Nancy increases from 1.1 to 2.0. But relative to its action on hemoglobin A, IHP is much less effective in reducing the oxygen affinity and in increasing the Bohr effect of hemoglobin Nancy. This indicates that IHP does not influence the R in equilibrium T equilibrium as much in hemoglobin Nancy as in hemoglobin A, and this probably is due to the disordering of His 143beta which is known to be part of the IHP binding site. IHP is also known to produce large changes in the absorption spectrum of methemoglobin A, but we find that it has no effect on the spectrum of methemoglobin Nancy. In contrast to the large structural changes in deoxyhemoglobin Nancy, the structure of deoxyhemoglobin Cochin-Port-Royal differs from deoxyhemoglobin A only in the position of the side chain of residue 146beta. The intrasubunit salt bridge between His 146beta and Asp 94beta in deoxyhemoglobin A is lost in deoxyhemoglobin Cochin-Portal-Royal with the guanidinium ion of Arg 146beta floating freely in solution. This small difference in structure results in a reduced Bohr effect, but does not cause a change in the Hill coefficient, the response to 2,3-diphosphoglycerate, or the oxygen affinity at physiological pH.  相似文献   

17.
Proton NMR studies of sperm whale and horse deoxymyoglobin have revealed that both proteins exhibit a single, well defined, pH-induced structural change. The changes in hyperfine shifts are clearly observed not only at the heme peripheral substituents, but also at the proximal histidyl imidazole, which suggest that heme-apoprotein contacts are looser in the acidic than alkaline conformations. The hyperfine shift changes are modulated by a single titratable group with a pK of approx. 5.7 in both proteins. Oxygen binding studies of sperm whale myoglobin over a range of temperature and pH showed that, while the oxygen affinity was independent of pH at 25 degrees C, it increased below pH 7 at 0 degrees C and decreased below pH 7 at 37 degrees C. Hence, sperm whale myoglobin exhibits a small acid Bohr effect which most likely arises from the characterized structural changes in the deoxy proteins. While horse myoglobin failed to exhibit a resolvable acid Bohr effect between 0 and 37 degrees C, it did show a weak alkaline Bohr effect at 25 degrees C which disappeared at lower temperatures. Since the oxygen affinity changed smoothly over several pH units, this alkaline Bohr effect can not be associated with any well defined conformational change detected by NMR.  相似文献   

18.
Heat-shocked organisms are known to produce not only "heat shock proteins" but also diadenosine tetraphosphate (Ap4A) and related compounds that may act as "alarmones" that alert the cell to the onset of metabolic stress. We found that Ap4A is synthesized in chicken erythrocytes and that the Ap4A level in the whole blood of heat-stressed birds increases about 10-fold. In searching for alarmone receptors, we found that the diadenosine polyphosphates bind preferentially with high affinity to the deoxy conformation of hemoglobin in a ratio of one/tetramer. The binding affinity of this new class of effectors of hemoglobin function is directly related to the number of phosphates which bridge the nucleotide moieties, with the most dramatic in vitro effect on oxygen affinity being shown by Ap6A. Decreasing effects are brought about by diadenosine penta-, tetra-, tri-, di-, and monophosphates. The association constant for Ap4A binding to deoxygenated human hemoglobin at pH 7.25 is 26 microM-1, close to that for 2,3-diphosphoglycerate. At 100-fold excess over heme, Ap4A increases the P50 of stripped Hb A in 0.05 M HEPES buffer at pH 7.25, 20 degrees C, from 0.85 to 6.03 mm Hg. The binding, which markedly enhances the Bohr effect, involves the beta chain anion-binding site. The kinetics of both ligand binding and dissociation are affected, with a greater quantitative effect on the oxygen dissociation process. Although the low concentration of the diadenosine polyphosphates in red cells precludes a physiologically significant modulation of oxygen delivery, competition with the ATP- and NAD(P)H-binding sites on hemoglobin or regulatory enzymes may prove to be of adaptive significance.  相似文献   

19.
A rapidly induced and readily reversible shift in the affinity of hemoglobin for oxygen has been demonstrated. The shift, similar to the Bohr effect, is independent of PCO2 or pH changes. It occurred within 30 min of hemodilution and was seen in portal venous blood but not arterial blood. A hypothesis is suggested involving a phasic alteration in levels of 2,3-diphosphoglycerate (DPG) or ATP binding to hemoglobin. It is proposed that, following hemodilution, the degree of these phosphates to hemoglobin increases on passage through the intestinal vascular bed. The increased DPG binding to hemoglobin results in displacement of additional oxygen. As the blood becomes reoxygenated, the levels of DPG-hemoglobin binding decline and DPG is displaced from the hemoglobin by oxygen.  相似文献   

20.
The oxygen dissociation curve and Bohr effect were measured in normal whole blood as a function of carboxyhemoglobin concentration [HbCO]. pH was changed by varying CO2 concentration (CO2 Bohr effect) or by addition of isotonic NaOH or HCl at constant PCO2 (fixed acid Bohr effect). As [HbCO] varied through the range of 2, 25, 50, and 75%, P50 was 26.3, 18.0, 11.6, and 6.5 mmHg, respectively. CO2 Bohr effect was highest at low oxygen saturations. This effect did not change as [HbCO] was increased. However, as [HbCO] was increased from 2 to 75%, the fixed acid Bohr factor increased in magnitude from -0.20 to -0.80 at very low oxygen saturations. The effect of molecular CO2 binding (carbamino) on oxygen affinity was eliminated at high [HbCO]. These results are consistent with the initial binding of O2 or CO to the alpha-chain of hemoglobin. The results also suggest that heme-heme interaction is different for oxygen than for carbon monoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号