首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured changes of pH in a protein's microenvironment consequent on its binding to the cell surface and incorporation into pinosomes. Changes of pH were measured from single, living cells and selected regions of cells by the fluorescence ratio technique using a photon-counting microspectrofluorimeter. The chemotactic agent and pinocytosis inducer, ribonuclease, labeled with fluorescein (FTC- RNase), adsorbed to the surface of Amoeba proteus, and was pinocytosed by cells in culture media at pH 7.0. The FTC-RNase entered an apparently acidic microenvironment, pH approximately 6.1, upon binding to the surface of amoebae. Once enclosed within pinosomes, this protein's microenvironment became steadily more acidic, reaching a minimum of pH approximately 5.6 in less than 10 min. FTC-RNase pinocytosed by the giant amoeba, Chaos carolinensis, entered pinosomes whose pH was correlated with their cytoplasmic location during the initial 30-40 min after pinocytosis. The majority of pinosomes containing FTC-RNase clustered in the tail ectoplasm of C. carolinensis during this interval and had a pH of approximately 6.5; those released into endoplasm and carried into the tip of cells had a pH below 5.0. As pinosomes became distributed at random in C. carolinensis (1-2 h after initial pinocytosis), differences in pH between tip and tail pinosomes vanished. We have also measured the pH within single phagosomes of A. proteus. Phagosomal pH dropped steadily to approximately 5.4 within 5 min after particle ingestion in 70% of the cells measured, and reached this level of acidity within 10 min in 90% of the cells measured. By contrast, stain for the lysosomal enzyme, acid phosphatase, was evident within only 20% of 5-min-old phagosomes visualized by light microscopy, and within only 40% of 10-min-old phagosomes. A microfluorimetric assay was used to simultaneously record changes in pH, and the initial deposition of lysosomal esterases, within phagosomes of single, living Amoeba proteus. Near complete acidification of the phagosome was recorded from some cells before phagosomal fusion was evident by this microfluorimetric assay. From other cells, however, continued acidification of phagosomes was recorded after lysosomal fusion was initiated. We conclude that acidification of phagosomes by A. proteus is initiated but not necessarily completed prior to phagosome-lysosome formation, and that the two events are closely linked in time. Initial acidification of endosomes is a property intrinsic to the plasma membrane which envelops particles at the cell surface, rather than the result of lysosomal fusion with phagosomes.  相似文献   

2.
J M Gutteridge 《FEBS letters》1984,172(2):245-249
Iron salts stimulate lipid peroxidation by decomposing lipid peroxides to produce alkoxyl and peroxyl radicals which initiate further oxidation. In aqueous solution ferrous salts produce OH. radicals, a reactive species able to abstract hydrogen atoms from unsaturated fatty acids, and so can initiate lipid peroxidation. When iron salts are added to lipids, containing variable amounts of lipid peroxide, the former reaction is favoured and OH. radicals contribute little to the observed rate of peroxidation. When iron is complexed with EDTA, however, lipid peroxide decomposition is prevented, but the complex reacts with hydrogen peroxide to form OH. radicals which are seen to initiate lipid peroxidation. Superoxide radicals appear to play an important part in reducing the iron complex.  相似文献   

3.
4.
Cells require molecular oxygen for the generation of energy through mitochondrial oxidative phosphorylation; however, high concentrations of oxygen are toxic and can cause cell death. A number of different mechanisms have been proposed to cause cellular oxygen toxicity. One hypothesis is that reactive oxygen free radicals may be generated; however free radical generation in hyperoxic cells has never been directly measured and the mechanism of this radical generation is unknown. In order to determine if cellular oxygen toxicity is free radical mediated, we applied electron paramagnetic resonance, EPR, spectroscopy using the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide, DMPO, to measure free radical generation in hyperoxic pulmonary endothelial cells. Cells in air did not give rise to any detectable signal. However, cells exposed to 100% O2 for 30 min exhibited a prominent signal of trapped hydroxyl radical, DMPO-OH, while cell free buffer did not give rise to any detectable radical generation. This cellular radical generation was demonstrated to be derived from the superoxide radical since the observed signal was totally quenched by superoxide dismutase, but not by equal concentrations of the denatured enzyme. It was confirmed that the hydroxyl radical was generated since in the presence of ethanol the CH3 CH(OH) radical was formed. Loss of cell viability as measured by uptake of trypan blue dye was observed paralleling the measured free radical generation. Thus, superoxide and hydroxyl radicals are generated in hyperoxic pulmonary endothelial cells and this appears to be an important mechanism of cellular oxygen toxicity.  相似文献   

5.
This study was designed to evaluate the effect of ethanol on the peroxidation of human low-density lipoprotein (LDL) initiated by oxygen free radicals (O(2)(.-) and (.)OH in the absence of ethanol; O(2)(.-) and ethanol-derived peroxyl radicals, RO(2)(.), in the presence of ethanol) generated by gamma radiolysis. Initial radiolytic yields as determined by several markers of lipid peroxidation [i.e. decrease in endogenous antioxidants alpha-tocopherol and beta-carotene, formation of conjugated dienes and of thiobarbituric acid-reactive substances (TBARS)] were determined in 3 g liter(-1) LDLs (expressed as total LDL concentration) in the absence of ethanol or its presence at six different concentrations (0.42-17 x 10(-2) mol liter(-1)). Ethanol acted as an antioxidant by decreasing the rate of consumption of LDL endogenous antioxidants and the yields of formation of lipid peroxidation products, and by delaying the onset of the propagation phase for conjugated dienes and TBARS. With regard to the different markers studied, except for alpha-tocopherol and beta-carotene consumption, the effect of ethanol did not appear to be dependent on its concentration. Indeed, (.)OH were scavenged by ethanol at the lowest ethanol concentration (0.42 x 10(-2) mol liter(-1)), leading to RO(2)(.). These RO(2)(.) resulted in lower radiation-induced yields related to endogenous antioxidant consumption or to formation of lipid peroxidation products (for example, approximately 10% of RO(2)(.) oxidized LDLs from TBARS). Thus, under our in vitro conditions, ethanol behaved as an antioxidant when added to the LDL solutions. This should be taken into account in the reported antioxidant activity of wine. This is also of interest when lipophilic compounds have to be added as ethanolic solutions to LDLs to evaluate in vitro their antioxidant activity toward LDL peroxidation.  相似文献   

6.
Free radicals produced during the autoxidation of 3,4-dihydroxyphenylalanine (DOPA) and other catechol(amine)s to melanins have been studied using electron spin resonance spectroscopy. Magnetic parameters for the radical intermediates have been determined, allowing the radicals to be unambiguously identified. Three types of radical are formed: the primary radical from one-electron oxidation of the parent catechol(amine); and two secondary radicals, one formed via OH substitution, the other via cyclization. The formation of these radical species can be linked to molecular products formed during catecholamine oxidation and melanin formation.  相似文献   

7.
Free radicals produced during the autoxidation of 3,4-dihydroxyphenylalanine (DOPA) and other catechol(amine)s to melanins have been studied using electron spin resonance spectroscopy. Magnetic parameters for the radical intermediates have been determined, allowing the radicals to be unambiguously identified. Three types of radical are formed: the primary radical from one-electron oxidation of the parent catechol(amine); and two secondary radicals, one formed via OH- substitution, the other via cyclization. The formation of these radical species can be linked to molecular products formed during catecholamine oxidation and melanin formation.  相似文献   

8.
Peroxynitrite (ONOO(((-)))/ONOOH) is expected in vivo to react predominantly with CO(2), thereby yielding NO(2)(.) and CO(3) radicals. We studied the inhibitory effects of ascorbate on both NADH and dihydrorhodamine 123 (DHR) oxidation by peroxynitrite generated in situ from 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). SIN-1 (150 micrometer)-mediated oxidation of NADH (200 micrometer) was half-maximally inhibited by low ascorbate concentrations (61-75 micrometer), both in the absence and presence of CO(2). Control experiments performed with thiols indicated both the very high antioxidative efficiency of ascorbate and that in the presence of CO(2) in situ-generated peroxynitrite exclusively oxidized NADH via the CO(3) radical. This fact is attributed to the formation of peroxynitrate (O(2)NOO(-)/O(2)NOOH) from reaction of NO(2)(.) with O(2), which is formed from reaction of CO(3) with NADH. SIN-1 (25 micrometer)-derived oxidation of DHR was half-maximally inhibited by surprisingly low ascorbate concentrations (6-7 micrometer), irrespective of the presence of CO(2). Control experiments performed with authentic peroxynitrite revealed that ascorbate was in regard to both thiols and selenocompounds much more effective to protect DHR. The present results demonstrate that ascorbate is highly effective to counteract the oxidizing properties of peroxynitrite in the absence and presence of CO(2) by both terminating CO(3)/HO( small middle dot) reactions and by its repair function. Ascorbate is therefore expected to act intracellulary as a major peroxynitrite antagonist. In addition, a novel, ascorbate-independent protection pathway exists: scavenging of NO(2)(.) by O(2) to yield O(2)NOO(-), which further decomposes into NO(2)(-) and O(2).  相似文献   

9.
Apoptosis is characterised by the degradation of DNA into a specific pattern of high and low molecular weight fragments seen on agarose gels as a distribution of sizes between 50-300 kb and sometimes, but not always, a ladder of smaller oligonucleosomal fragments. Using a 2D pulsed field-conventional agarose gel electrophoresis technique, where the second dimension is run under either normal or denaturing conditions, we show that single-strand breaks are introduced into DNA at the initial stages of fragmentation. Using single-strand specific nuclease probes we further show that the complete fragmentation pattern, including release of small oligonucleosomal fragments can also be generated by a single-strand endonuclease. Three classes of sites where single-strand breaks accumulate were identified. The initial breaks produce a distribution of fragment sizes (50 kb to >1 Mb) similar to those generated by Topoisomerase II inhibitors suggesting that cleavage may commence at sites of attachment of DNA to the nuclear matrix. A second class of rare sites is also cut further reducing the size distribution of the fragments to 50-300 kb. Thirdly, single-strand breaks accumulate at the linker region between nucleosomes eventually causing double-strand scissions which release oligonucleosomes. These observations further define the properties of the endonuclease responsible for DNA fragmentation in apoptosis.  相似文献   

10.
The effect of hydroxyl radicals generated by the FeSO4/H2O2 system on structural properties of proteins and membranes was studied in rat cardiac mitochondria and myofibrils. Exposure of mitochondria to 0.1 mmol/l FeSO4/EDTA plus 1 mmol/l H202 at 37 degrees C for 30 or 60 min caused conjugated diene formation, but it was not accompanied by accumulation of fluorescent lipid-protein conjugates. On the other hand, fluorescence measurements revealed radical-induced and time-dependent loss of tryptophans and production of bityrosines. Under the same conditions, the gradual decrease in tryptophan flurescence and increase in bityrosine formation was also observed in radical-treated myofibrils. These results suggest that *OH radicals can alter the mitochondrial and myofibrillar function via oxidation of amino acid residues and might be implicated in the pathogenesis of myocardial injury.  相似文献   

11.
Iron(II) salts in aqueous solution, or iron(III) salts in the presence of an O√2 generating system, can activate dioxygen to produce hydroxyl radicals. These are detected indirectly by their ability to degrade deoxyribose with the formation of thiobarbituric acid-reactive (TBA) products. Iron salts also catalyse the peroxidation of phospholipids resulting in the formation of TBA-reactive products. Hydroxyl radicals were responsible for the degradation of deoxyribose but not for the observed peroxidation of phospholipid. The function of O√2 in both deoxyribose degradation and phospholipid peroxidation seems to be that of reducing iron(III) into iron(II).  相似文献   

12.
125I-labelled triiodothyronine which binds to specific nuclear receptors induce DNA strand breaks in Chinese hamster cells. A large fraction of these breaks is left unrepaired and seems to be double strand breaks. The efficiency of inducing such breaks is as high as after incorporation into DNA of [125I-]iododeoxyuridine which is known to be very radiotoxic.  相似文献   

13.
The increased insulin release induced by carbamoylcholine (CbCh) in pancreatic islets requires the presence of extracellular Ca2+. Intracellular recordings demonstrate that CbCh produces a transient increase in Ca2+ channel activity lasting from 30 to 60 s. Thereafter activity decreased to levels lower than in controls. When extracellular Ca2+ was present during this initial period, the stimulatory effects of CbCh were not different from those in which Ca2+ was present throughout. These experiments suggest that during muscarinic potentiation of insulin release extracellular calcium is only needed in the first minute.  相似文献   

14.
15.
The administration of nickel to rats resulted in enhanced hepatic lipid peroxidation, levels of glutathione and iron with a concomitant decrease in glutathione peroxidase activity. These effects were dose dependent. Enhanced lipid peroxidation was found to be inhibited by the exogenous addition of ethylenediamine tetraacetic acid (EDTA), benzoate and ethanol while catalase and superoxide dismutase were ineffective in this regard. Our data strongly suggest the involvement of hydroxyl radicals in the nickel mediated enhancement of lipid peroxidation which may have their implications in the carcinogenicity of nickel compounds.  相似文献   

16.
Electron spin resonance (ESR) spectroscopy, which is the only commonly available method for directly detecting free radicals in biological systems, has now been quite extensively used to study radicals produced by metabolism of xenobiotic chemicals and the interaction of such species with lipid molecules. This review examines a variety of different xenobiotic systems and tissues and summarises the information obtained from these studies, with particular reference to the elucidation of the nature of the radicals involved in the initiation and propagation of lipid peroxidation.  相似文献   

17.
Ultrasonic radiation produced a dose-dependent linear increase in lipid peroxidation in the liposomal membrane as reflected in the measurements of conjugated dienes, lipid hydroperoxides, and malondialdehydes (MDA). Production of MDA was confirmed by spectrophotometric and spectrofluorometric methods including the detection of excitation (360 nm) and emission (435 nm) maxima characteristic of the MDA-glycine adduct formed after addition of glycine in the system. Ultrasound of frequencies 20 kHz (used for laboratory purposes) and 3.5 MHz (used for clinical purposes) produced MDA in an identical manner. Ultrasound-induced lipid peroxidation was enhanced synergistically by 2.5 X 10(2) microM ascorbic acid but inhibited significantly by 10(4) microM ascorbic acid. Ultrasound-induced production of MDA could not be inhibited to any significant degree by superoxide dismutase, histidine, dimethylfuran, or beta-carotene but was very significantly inhibited by cholesterol (93%), butylated hydroxytoluene (88%), alpha-tocopherol (85%), sodium benzoate (80%), dimethyl sulfoxide (80%), sodium formate (64%), and EDTA (64%). The scavenger studies indicated the functional role of OH radicals in the initiation of ultrasound-induced lipid peroxidation.  相似文献   

18.
19.
We have demonstrated that the carcinogen 2-nitrosofluorene (NOF) reacts with rat liver microsomal membranes to produce a nitroxyl free radical form of the carcinogen, designated N-?-LAF. We conclude that NOF adds to the double bond of the membrane lipids in a pseudo Diels-Alder reaction. This conclusion is based on studies involving 2,3-dimethyl-2-butene and NOF. NOF reacts with this simple unsaturated hydrocarbon to produce a stable nitroxyl free radical in a pseudo Diels-Alder reaction. NOF adds to liposomes formed from lipids extracted from the rat liver microsomes to produce a free radical identical to that produced with microsomes. NOF forms the same amount of N-?-LAF at the same rate in heated microsomes as in unheated microsomes. The observations indicate the involvement of only the lipid fraction in the reaction of NOF with membranes. The amount of N-?-LAF formed increases hyperbolically in microsomes and liposomes as a function of NOF added. The amount of N-?-LAF formed reaches a maximum, at which point the amount of free radical present is about 1% of both the amount of NOF added and the amount of phospholipid present. The half-maxima of the amount of N-?-LAF formed occurs at 50 μm NOF in liposomes but at 100 μm in microsomes. The electron spin resonance spectrum of N-?-LAF indicates that this nitroxyl free radical is in a rigidly fixed position in the membrane. N-?-LAF is reduced by NADPH. There appears to be a direct chemical reduction as well as an enzyme-mediated mechanism involving NADPH-potentiated electron flow in microsomes. The reduced compound is reoxidized by ferricyanide added to microsomal membranes.  相似文献   

20.
Kinetic rate laws arising from theoretical expectations for the oxidation of lipids initiated by water-soluble free radicals in compartmentalized systems under different experimental conditions are deduced. In particular, the predictions for the kinetic reaction orders in: (a) intra-particle oxidizable compound concentration (at fixed number of particles and particle size), alpha; (b) number of particles or analytical lipid concentration (at fixed intra-particle concentration and particle size), beta and (c) initiator, gamma, are obtained. The reaction orders beta and gamma are determined by the fraction of initiator derived radicals captured by the particles (f) and the mean number of chain carrying radicals per particle () when the system reaches the steady state condition. Predicted orders in initiator range from 0 ( = 0.5) to 0.5 (f-->1; > > 1), while the order in number of particles ranges between 0.5 (f-->1; > > 1) and 1. These predictions are tested by measuring the kinetic law for the oxidation of SUV's egg yolk phosphatidylcholine vesicles initiated by the thermal decomposition of ABAP. The results indicate that, under the conditions employed, beta = 0.68 +/- 0.05 and gamma = 0.46 +/- 0.04. These values are close to those expected for a system in which > > 1 and the efficiency of capture is relatively high. This last condition is confirmed by estimating the efficiency of capture from a comparison of induction times elicited by similar concentrations of Trolox and alpha-tocopherol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号