首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five cyclic primiparous sows were used to test a surgical procedure for in vivo transcervical collection of pig embryos. The procedure consisted of shortening the uterine horns. After surgery, all sows returned to estrus and embryos were recovered following artificial insemination. Transcervical uterine flushing was carried out in four sows. On average 3.6 +/- 1.5 (mean +/- SD) embryos were recovered from the five sows. The results indicate that it is possible to recover embryos transcervically from sows with a resectioned uterus.  相似文献   

2.
The aim of this study was two-fold: (1). to compare recovery of embryos/ova from superovulated Holstein heifers by flushing the uterine horns through insertion of the catheter very close to the tip of the horn (deep) or just after the uterine bifurcation (shallow) and (2). to evaluate the hormonal and superovulatory response to estradiol benzoate (EB) treatment prior to superovulation. Ten Holstein heifers (12-16 months) underwent two superovulatory treatments in a cross-over design. Heifers were treated with decreasing doses of FSH from Days 8 to 12.5 of a synchronized estrous cycle. At 4 days prior to superovulation, half of the heifers received EB (5mg, i.m.) or served as Controls, followed by the alternative treatment in the subsequent superovulation. At embryo recovery, one uterine horn was flushed with deep ( approximately 7 cm caudal to the tip of the horn) and the other with shallow ( approximately 5 cm cranial to the beginning of the uterine bifurcation) flushing techniques. Embryos/ova were recovered, counted, and scored. Number of ovulations was estimated by ultrasound. Pretreatment with EB reduced circulating FSH and regressed the first wave dominant follicle with no change in number of large follicles, number of ovulations, number of embryos/ova recovered, or number of transferable embryos. The shallow flushing technique was superior to the deep technique for number of embryos/ova recovered per horn (5.4+/-1.1 versus 3.9+/-0.8) or percentage of embryos/ova recovered per CL (63.9+/-8.6% versus 37.4+/-6.5%). Thus, flushing the entire uterine horn increased recovery of embryos/ova.  相似文献   

3.
Hinrichs K 《Theriogenology》1990,33(5):937-942
Embryo recovery rates from uterine flushings of normal mares on Day 7 or later after ovulation currently range from 55% to 80%. In contrast, pregnancy rates at 14 d in experimental mares are often higher. There appears to be a discrepancy between pregnancy rates and recovery rates of embryos on uterine flushing, indicating that some embryos are not recovered from the uterus on flushing. Per rectum ultrasound examination of the uterus of mares during flushing suggested that in some mares, the infused fluid may accumulate in the uterine body and not extend to contact the entire uterus, even after massage of the filled uterus per rectum. To increase embryo recovery rates, the flusing technique was altered to allow 3 min contact time of the flush fluid with the uterus during each of three flushes. It was thought that during this time, if the embryo was not directly contacted by the infused fluid, mobility of the embryo might cause it to move into the fluid, and thus be collected. This technique was used in 20 flushes on 14 mares, from 7 to 11 d after ovulation. Embryos were recovered on 18 of the 20 flushes. A total of 21 embryos was recovered, for an embryo recovery rate of 105%. The recovery rate from mares with single ovulations was 13/15 (87%); the recovery rate from mares with multiple ovulations was 8/5 (160%). These rates appear to be higher than those obtained previously in our laboratory and those reported by other workers in the field. These results indicate that further investigation into the efficacy of this procedure is warranted.  相似文献   

4.
The aim of this study was to determine if initiation of superovulation in heifers during the time of development of the first dominant follicle (Days 2 to 6) would give equivalent ovulation and embryo production rates as treatment initiated at mid-cycle. Estrus was synchronized in 60 beef heifers using luprostiol (PG) and they were randomly allocated to treatment with 4.5, 3.5, 2.5 and 1.5 mg of porcine follicle stimulating hormone (FSH) administered twice daily, either on Days 2, 4, 5 and 6 (Day-2 group), respectively, or with similar doses at four consecutive days during mid-cycle (Day-10 group, initiation on Day 9 to 11). All heifers received 500 mug cloprostenol at the fifth FSH injection and 250 mug at the sixth injection. Blood samples for progesterone determination were collected at the time of FSH injections. Heifers were slaughtered 7 d post estrus, and the number of ovulations and large follicles (>/=10mm) were determined on visual inspection of the ovary. Following flushing of the uterine horns the quality of embryos and the fertilization rate were determined. Significant differences between treatments were determined using a two-sided t-test, and frequency distributions were compared using Chi-square tests. The mean number (+/-SEM) of ovulations for heifers in the Day-10 group was 12.9+/-1.0, and 8.5+/-0.9 embryos were recovered. Both the number of ovulations (6.7+/-0.8) and embryos recovered (4.1+/-0.6) were lower (P=0.0001) in heifers in the Day-2 group. Following grading based on a morphological basis, a higher number (P=0.002) of embryos was categorized as Grades 1 and 2 (4.1+/-0.6) and Grade 3 (2.1+/-0.4) in Day-10 heifers than in the Day-2 group (Grade 1 and 2, 1.9+/-0.3; Grade 3, 0.7+/-0.2). The number of Grade 4 and 5 embryos (Day 10, 1.6+/-0.2; Day 2, 1.4+/-0.2) and the number of unfertilized ova (Day 10, 0.7+/-0.4; Day 2, 0.2+/-0.1) did not differ between treatments. Progesterone concentrations were lower (P=0.0001) in Day-2 heifers at FSH treatment prior to prostaglandin, and the decline was more rapid following prostaglandin injection at Day 5 (P=0.02). Results of this study indicate that the number of ovulations and embryos recovered was lower in heifers when FSH treatment was initiated on Day 2 compared with Day 10 of the estrous cycle.  相似文献   

5.
Here we describe the development and optimization of endoscopy-mediated transvaginal access for collecting ova and embryos from the bovine oviduct. The novel technique was developed in three experimental setups: In Experiment 1 embryos were collected unilaterally from nonstimulated heifers. We flushed the oviducts of superovulated heifers unilaterally (Experiment 2) and bilaterally (Experiment 3). In Experiment 1 the oviducts of 18 heifers were successfully cannulated, which resulted in the collection of twelve 1-cell to 8-cell embryos and one empty zona. Unilateral flushing of 13 animals (Experiment 2) resulted in 84 ova with 6.3 +/- 3.2 observed ovulation sites. Bilateral flushing of 25 animals (Experiment 3) resulted in 293 ova plus 10 empty zonae from 11.8 +/- 5.4 ovulation sites. Given our experience from these studies we optimized the technical equipment by improving the flushing metal catheter (Experiment 4). The novel catheter hermetically sealed the lumen of the ampulla at the moment, the medium was flushed through the oviduct. This resulted in a visible flow of medium via oviducts toward the embryo filter connected to an embryo flushing catheter that was fixed in the uterine horns. Our endoscopy-guided method is minimally invasive and facilitates the flushing of tubal stage embryos.  相似文献   

6.
A transvaginal ultrasound guided follicular aspiration technique was developed for the repeated collection of bovine oocytes from natural cycling cows. In addition, the feasibility of using this method for collecting immature oocytes for in vitro embryo production was also evaluated. Puncturing of visible follicles for ovum pick-up was performed in 21 cows over a three month period. All visible follicles larger than 3 mm were punctured and aspirated three times during the estrous cycle on Day 3 or 4, Day 9 or 10 and Day 15 or 16. The mean (+/- SEM) estrous cycle length after repeated follicle puncture was 22.2 +/- 0.3 days. The mean total number of punctured follicles per estrous cycle was 12.6 +/- 0.3. The largest (P<0.05) number of follicles punctured (5.1 +/- 0.3) for ovum pick-up was on Day 3 or 4 of the estrous cycle. The overall recovery rate of 541 punctured follicles was 55%. Most oocytes (P<0.05) were aspirated from follicles smaller than 10 mm. Following in vitro maturation and fertilization (IVM/IVF), 104 oocytes were transferred to sheep oviducts. Six days later, 75 ova/embryos were recovered, after flushing the oviduct of the sheep, of which 24% developed into transferable morulae and blastocysts. In this study, a reliable nonsurgical, follicular aspiration procedure was used for the repeated collection of immature oocytes which could be used successfully for in vitro production of embryos. This procedure offers a competitive alternative to conventional superovulation/embryo collection procedures.  相似文献   

7.
Superovulation treatments and embryo transfer in Angora goats   总被引:17,自引:0,他引:17  
A high incidence of early luteal regression after PMSG superovulation was associated with low recovery of embryos from reproductive tracts of Angora goats flushed later than Day 5 after onset of oestrus. Embryos were successfully recovered (mean 7.9/female) by flushing on Days 2-5. Mean ovulation rate after an FSH regimen (16.1 +/- 0.8) was significantly higher than that after a single injection of PMSG (10.8 +/- 1.2). Fertilization rate and survival of embryos following transfer to naturally synchronized recipient feral goats did not differ between the two gonadotrophin regimens: the mean number of kids born to 47 donors treated with FSH (7.5 +/- 0.6) was significantly greater than that to 28 donors treated with PMSG (4.8 +/- 0.6). Irrespective of hormonal treatment, the numbers of embryos recovered and of kids born were correlated with ovulation rate (r = 0.82, P less than 0.001 for both). Embryo survival was influenced by ovulation rate in recipients, with 52%, 63% and 75% of transferred embryos being carried to term by recipients with 1,2 and 3 CL, respectively (P less than 0.01). More embryos survived (65%) when 2 embryos were transferred to each recipient than when 1 (51%) or 3 (48%) were transferred. In recipients receiving 2 embryos, survival was significantly improved by transfer of both embryos to the same oviduct (70%) than when one was transferred to each oviduct (62%). The percentage survival of embryos was optimal when oestrus of recipients was synchronized within +/- 1 day of oestrus in donors.  相似文献   

8.
We describe the first complete embryo transfer program, including flushing of embryos from the oviducts via the uterine horns, transfer of embryos into the Fallopian tubes or the uterine horns and recording of the number of piglets born live. The described procedure is minimally invasive and allows the use of pigs simultaneously for embryo collection and production of normal pregnancies. A 30 degrees forward oblique endoscope provided optimal visualization of the reproductive organs and free access to the organs for embryo flushing and transfer. In contrast to surgical and nonsurgical methods, endoscopy allows to pre-examine the genital tract for reproductive abnormalities and successful ovulation. A total of 95 prepuberal gilts or cyclic sows were used in this trial. Embryos or oocytes were collected from hormonally treated pigs via endoscopy(n = 17) on Day 3 and via laparotomy or post mortem after slaughter (control group, n = 38) on Day 3 and 6 after insemination. One (unilateral collection, n = 7) or both oviducts (bilateral collection, n = 10) were flushed endoscopically. We recovered 114 (average 16/pig) and 279 (average 28/pig) oocytes or embryos with fertilization rates of 89% and 72%, respectively. In the control group 834 oocytes or embryos were collected at Day 3 and 6 after insemination (fertilization rate 64%, total 534 embryos, 33 at 2-, 367 at 4-, 2 at 8-cell stage, 24 morulae and 108 blastocysts). Of 836 embryos recovered by endoscopy, surgery or slaughter 528 Day 3 embryos at 2- to 4-cell stage were transferred into (one) oviducts (n = 27 pigs, about 20/pig) resulting in 9 pregnant pigs diagnosed at Day 28 by sonography. Of the 9, 8 carried a total of 49 piglets to term. A total of 195 Day 6 embryos were transferred into uterine horns (n = 12 pigs, about 16/pig), resulting in 5 pregnant pigs carrying a total of 38 offspring to term. The use of endoscopy in assisted reproduction of pigs has the advantages of allowing easy access to the ovary, oviduct and uterus, clear view of the organ manipulation without exposure and exteriorization of viscera during surgery.  相似文献   

9.
de Leeuw AM 《Theriogenology》1992,37(4):907-913
Embryos were collected from superovulated donor cows on Day 7 of the cycle either in vivo by a standard nonsurgical method (A) or in vitro from the excised uterus after slaughter of the donor cow (B). In Method B, the time between slaughter and flushing of the uterus ranged from 0.5 to 4 hours. Flush yield was 5.6 +/- 5.0 and 8.4 +/- 5.3 embryos (P<0.01); the recovery rate was 0.6 +/- 0.4 and 0.8 +/- 0.3 (P<0.05) for Methods A and B, respectively. Method B resulted in more Grade 3 (P<0.001) and 4 embryos, while Method A resulted in more Grade 1 and 2 embryos. The correlation between the percentage of Grade 1 and 2 embryos and the time interval between slaughter of the donor cow and flushing the excised uterus was -0.42 for in vitro flushes. Viability of fresh and frozen-thawed embryos, as determined by in vitro culture of Grade 1 and 2 morulae and early blastocysts, was considerably lower for Method B than Method A. The percentage of embryos developing into expanded blastocysts was 100% (10 10 ) and 40% (4 10 ) for fresh embryos (P<0.01) and 52.7% (29 55 ) and 0% (0 25 ) for the frozen-thawed embryos (P<0.001) for Methods A and B, respectively. This reduction in viability might be the result of a postmortem pH decrease in the uterine fluids within the first 30 minutes from 7.0 to 5.8 and 6.0. Flushing of the uterus directly after slaughter (within 5 to 10 minutes) may prevent the possible detrimental effect of a low pH on the embryos.  相似文献   

10.
Forty crossbred beef heifers were superovulated with 2000 IU pregnant mare serum gonadotropin (PMSG) and mated twice by natural service during estrus. Ovulations were counted and ova were recovered during mid-ventral laparotomy between 44 and 54 h after the onset of estrus. The overall donor ovulation rate (M+/-SEM) was 15.2+/-1.3. There was a positive association between ovulation rate and the number of ova recovered (P<0.001), and between ovulation rate and the incidence of ova advanced beyond the two-cell stage of development (P<0.05). When grouped on the basis of superovulation response, the numbers (M+/-SEM) of recovered one-cell, two-cell and more advanced ova were 3.7+/-0.7, 1.0+/-0.3 and 0.5+/-0.3, respectively, for donors with up to 15 ovulations. The corresponding numbers for donors with more than 15 ovulations were 7.2+/-1.8, 6.0+/-1.3 and 2.8+/-1.2, respectively. Following centrifugation, pronuclei were visible in 68% of one-cell ova, and nuclei were visible in 80% of two-cell ova. Approximately 20% of ova were destroyed during DNA microinjection. A total of 66 centrifuged and DNA-injected ova were transferred to the oviducts of 26 crossbred beef heifers, each receiving two, three or four ova. Echography at Day 55 confirmed that 14 (54%) heifers were pregnant with 26 (39%) fetuses. Eleven heifers were held to calve and produced 21 calves.  相似文献   

11.
The ovarian response of 25 buffalo-cows was visually assessed, and their oviducts and uteri separately flushed 3 to 6 d post superovulatory estrus at slaughter. Ten buffalo-cows slaughtered on Days 5 and 6 were examined per rectum for corpora lutea (CL) and follicles > 8 mm prior to slaughter, and the estimate was compared later with the actual ovarian response. Five out of the ten buffalo-cows were nonsurgically flushed in vivo on Day 5 of the estrous cycle, a day before slaughtering, and as a result, six ova/embryos were recovered. After the flushing of the reproductive tract at slaughter, one more ovum was recovered from the uterus of each of the three buffalo-cows. As a result of treatment of three groups of five buffalo with 3000 IU pregnant mare serum gonadotrophin (PMSG) on Days 6, 10 or 14 of the estrous cycle, 3.8, 6.2 and 3.4 CL on the average were recovered, respectively (Experiment I). A mean number of 8.8 and 9.0 CL, respectively, was obtained in two groups of five buffalo each, after treatment with 40 mg of follicle stimulating hormone (FSH) on Day 10 of the stage of the estrous cycle (Experiment II) and 3000 IU PMSG regardless of the stage of cycle (Experiment III). The percentage of ova/embryos recovered in the three experiments was 32.8, 20.4 and 22.2, respectively.  相似文献   

12.
In two trials, eight attempts were made to collect fertilized ova from dairy goats by nonsurgical methods. In both trials the cervix of each doe was dilated by inserting a Laminaria japonica tent device into the cervical canal prior to flushing. In Trial 1, an attempt was made to collect embryos from four nonsuperovulated does by flushing phosphate-buffered saline (PBS) through a rigid pipette. Little fluid and no embryos were recovered from the does. All four donors were in estrus two days after the procedure. In the second trial, FSH-superovulated does were collected on day 5 following estrus. The donors were anesthetized, and a modified Foley catheter was passed through the cervical canal. In three does, a 24 ga. two-way Foley was stiffened with a size 10 (French) polypropylene catheter which penetrated the Foley, extending 7 cm beyond the tip. Recovery of flushing medium with this device was minimal, and laparotomy of one doe revealed a punctured uterus. Replacement of this device with a different catheter, through which a polypropylene catheter (size 5 Fr.) penetrated only 1 to 2 cm, resulted in satisfactory return of infused PBS, and recovery of two blastocysts and one degenerated ovum from this doe. Use of the same device on a second doe without laparotomy resulted in collection of seven blastocysts and three degenerated ova. Of three observed donors that received Laminaria tents (including one which was not flushed) two were in estrus three days after the procedure, while unused synchronized recipients showed normal cycle lengths. Surgical transfer of two blastocysts from each donor to each of two synchronized recipients resulted in the birth of twin kids from one recipient doe. The study demonstrates the feasibility of embryo collection from dairy goats by nonsurgical means.  相似文献   

13.
The aim of this study was to evaluate the effect of delaying ovulation subsequent to superstimulation of follicular growth in beef cows (Bos indicus) on embryo recovery rates and the capacity of embryos to establish pregnancies. Ovulation was delayed by three treatments using either progesterone (CIDR-B) or a GnRH agonist (deslorelin). Multiparous Nelore cows (n = 24) received three of four superstimulation treatments in an incomplete block design (n = 18 per group). Cows in Groups CTRL, P48 and P60 were treated with a CIDR-B device plus estradiol benzoate (EB, 4 mg, i.m.) on Day-5, while cows in Group D60 were implanted with deslorelin on Day-7. Cows were superstimulated with FSH (Folltropin-V, 200 mg), from Day 0 to 3, using twice daily injections in decreasing amounts. All cows were treated with a luteolytic dose of prostaglandin on Day 2 (08:00 h). CIDR-B devices were removed as follows: Group CTRL, Day 2 (20:00 h); Group P48, Day 4 (08:00 h); Group P60, Day 4 (20:00 h). Cows in Group CTRL were inseminated at 10, 20 and 30 h after first detected estrus. Ovulation was induced for cows in Group P48 (Day 4, 08:00 h) and Groups P60 and D60 (Day 4, 20:00 h) by injection of LH (Lutropin, 25 mg, i.m.), and these cows were inseminated 10 and 20 h after treatment with LH. Embryos were recovered on Days 11 or 12, graded and transferred to synchronized recipients. Pregnancies were determined by ultrasonography around Day 100. Data were analyzed by mixed procedure, Kruskal-Wallis and Chi-square tests. The number of ova/embryos, transferable embryos (mean +/- SEM) and pregnancy rates (%) were as follows, respectively: Group CTRL (10.8+/-1.8, 6.1+/-1.3, 51.5), P48 (12.6+/-1.9, 7.1+/-1.0, 52.3), P60 (10.5+/-1.6, 5.7+/-1.3, 40.0) and D60 (10.3+/-1.7, 5.0+/-1.2, 50.0). There were no significant differences among the groups (P > 0.05). It was concluded that fixed time AI in association with induced ovulation did not influence embryo recovery. Furthermore, pregnancy rates in embryos recovered from cows with delayed ovulation were similar to those in embryos obtained from cows treated with a conventional superstimulation protocol.  相似文献   

14.
The potential litter size of gilts that is based on the ovulation rate is much higher than the actual litter size, which depends on the fertilization rate and subsequent prenatal mortality. Prenatal mortality is divided into embryonic mortality (before Day 30) and fetal mortality (after Day 30). Prenatal loss includes both fertilization failure and prenatal mortality. Crossbred gilts (n = 149) were bred at the first observed estrus after being exposed to the boar at 200 days of age. Time of the first insemination after estrus detection was determined by measurement of vaginal conductivity using a Walsmeta meter. A second insemination was administered either 8 or 16 hours later. Artificial insemination with fresh semen (0 to 3 days old) was used throughout the experiment. Gilts were slaughtered on Day 3 (n = 26), Day 10 (n = 42), Day 30 of gestation (n = 45) or they were allowed to farrow (n = 36). Gilts slaughtered on Day 3 were used to estimate the fertilization rate. Gilts slaughtered on Day 10 and Day 30 were used to calculate embryonic mortality, while fetal mortality was calculated from the gilts that farrowed. The mean (+/-SEM) number of corpora lutea (CL) was 13.15+/-0.46, 13.36+/-0.37 and 12.97+/-0.39 for gilts slaughtered at Days 3, 10 and 30, respectively (P>0.05), and the mean (+/-SEM) number of normal embryos recovered was 11.12+/-0.69, 9.46+/-0.55 and 9.33+/-0.58, respectively. Litter size at parturition was 9.10+/-0.54. There was a significant difference between the number of normal embryos on Day 3 and Day 30 (P=0.05) and also between the number of normal embryos at Day 3 and the number of piglets at term. Ninety percent of the ova were recovered at Day 3. The fertilization rate was calculated either 1) assuming that unrecovered ova had a similar fertilization rate as the recovered ova (FRER=94.5+/-2.0%) or 2) assuming that unrecovered ova were unfertilized (FROR=84.5+/-2.5%). It was concluded that FRER was a more accurate estimation of the fertilization rate. Based on this fertilization rate, embryonic mortality between Day 3 and Day 10 was 20.8+/-8.3%, with an additional 12.5+/-7.1% loss between Day 10 and Day 30, when all gilts were included (P = 0.308). Thus the total prenatal loss, including fertilization failure, up to Day 10 was 26.3% and to Day 30 it was 38.8%. Fetal mortality was 2.2%, giving a total prenatal mortality (excluding fertilization failure) of 35.5% and a prenatal loss of 41%. Most of the prenatal loss was due to embryonic mortality. In those gilts that remained pregnant most of the embryonic loss occurred before Day 10 (19.0+/-6.3%; P=0.003). There was no further loss between Day 10 and 30 of pregnancy. There was a significant difference between the loss from Day 3 to Day 10 compared with the loss from Day 10 to Day 30 (P=0.05); therefore, most of the embryonic loss in pregnant gilts occurred before Day 10. Since fetal mortality was 3.2+/-6.3%, most of the prenatal loss was due to embryonic mortality.  相似文献   

15.
《Theriogenology》1996,45(8):1443-1448
Equine embryos spend 5 to 6 d in the oviduct before entering the uterus as expanded blastocysts, and cannot be consistently collected nonsurgically until Day 7. Technologies such as cryopreservation and embryo splitting, which are most successful with embryos at the morula or early blastocyst stage, have not been used in mares because equine morulae and early blastocysts are located in the oviduct and cannot be recovered nonsurgically. These experiments test the hypothesis that transport of equine embryos through the oviduct can be hastened by cervical dilation or by acute, sterile endometritis induced by intrauterine oyster glycogen treatment. Cervical dilation with or without intrauterine infusion of 0.5 ml PBS on Day 4 did not appear to hasten the transport of embryos into the uterus since Day 5 uterine embryo recovery rates were not higher (P > 0.1) for mares with cervical dilation or cervical dilation plus PBS infusion vs mares receiving no treatments (0 of 5 and 0 of 5 vs 0 of 10, respectively). Intrauterine infusions of 40 ml of 1% oyster glycogen or 40 ml of PBS on Day 3 did not appear to hasten the transport of embryos into the uterus since Day 5 uterine embryo recovery rates were not higher (P > 0.1) for oyster glycogen- or PBS-treated vs untreated mares (2 of 12 and 3 of 11 vs 0 of 10, respectively). Cervical and uterine treatments on Day 3 or Day 4 and uterine lavages on Day 5 decreased (P < 0.05) Days 11 to Day 15 pregnancy rates compared with that of untreated mares. Day 11 to Day 15 pregnancy rates were 1 of 5 for mares with Day 4 cervical dilation and Day 5 uterine lavage, 1 of 5 for mares with Day 4 PBS infusion and Day 5 uterine lavage, 2 of 12 for mares with Day 3 oyster glycogen infusion and Day 5 uterine lavage, and 3 of 11 for mares with Day 3 PBS infusion and Day 5 uterine lavage vs 7 of 10 for mares that received no treatment or lavage. Cervical and uterine manipulations on Day 3 or 4 and uterine lavage on Day 5 appeared to decrease pregnancy rates by Days 11 to 15. The results of these experiments do not support the hypothesis that cervical dilation or uterine infusion hasten oviductal transport, since neither cervical manipulation nor transcervical infusion of oyster glycogen or PBS into the uterus significantly hastened the rate of embryo transport into the uterus.  相似文献   

16.
The purposes of this experiment were 1) to test the hypothesis that placing rabbit embryos into the mare's uterus would hasten oviduct transport and 2) to determine if placing fluid into the uterus of bred mares on Day 4 and/or Day 5 would subsequently disrupt the mare's pregnancy. The hypothesis that placing rabbit embryos into the mare's uterus would hasten oviduct transport was not supported, since the uterine recovery rate of equine embryos on Day 5 was not significantly higher (P>0.05) for mares receiving rabbit embryos on Day 4 than for mares receiving no uterine infusion on Day 4 (1 10 vs 0 10 , respectively). However, placing fluid into the mare's uterus on Day 4 was apparently responsible for hastened oviduct transport, since mares with media infused into the uterus on Day 4 had a significantly higher (P<0.05) recovery rate of equine embryos on Day 5 than did mares receiving either rabbit embryos or no uterine infusion on Day 4 post ovulation (5 10 vs 1 10 or 0 10 , respectively). The Day-14 pregnancy rate was significantly higher (P<0.05) for mares receiving no uterine infusion on Day 4 or Day 5 than for mares receiving uterine infusion on Day 5 or uterine infusion on both Days 4 and 5 (9 10 vs 4 10 , 2 10 and 0 10 , respectively).  相似文献   

17.
The present study was designed to determine the effect of pooling embryos from two donors on the reproductive success of transfer of vitrified/warmed porcine blastocysts. Intact blastocysts were collected from superovulated Large White Hyperprolific gilts (n = 24) on Days 5-5.5 after artificial insemination. Embryos were recovered by flushing the uterine horns, and unhatched blastocysts were selected. Vitrification and warming were performed as described by Berthelot et al. [Cryobiology 41(2000) 116]. To evaluate in vitro development, 37 vitrified/warmed blastocysts were cultured, non-vitrified embryos (n = 48) were used as controls. Embryo transfers were conducted in asynchronous (-24 h) Meishan gilts (n = 20). Twenty vitrified/warmed blastocysts were surgically transferred into one uterine horn. Ten recipients received embryos from one donor (Group 1) and the other 10 transfers were performed with mixed embryos from two donors (Group 2). Pregnancy was assessed ultrasonographically at Day 25 after estrus and recipients were slaughtered at Day 30 after transfer. In vitro survival rate of the vitrified/warmed blastocysts was lower (P < 0.01) than that from control embryos (73.0% versus 93.7%). The pregnancy rate for Group 1 (70%) was not different (P > 0.05) than that from Group 2 (90%). No significant differences were detected between Groups 1 and 2 for in vivo embryo development (number fetuses/transferred embryos in pregnant recipients) or in vivo embryo survival (number viable fetuses/transferred embryos in pregnant recipients). However, the in vivo efficiency (number viable fetuses/total transferred embryos) was higher (P < 0.05) when transfers were performed with embryos from two donors (19.5% versus 30.5%). These results indicate that pooling embryos from two donors increases the in vivo efficiency after transfer of vitrified/warmed porcine blastocysts.  相似文献   

18.
Immature female rats (60-65 g) were injected with 4 i.u. PMSG on Day -2 and allocated to 3 groups. On the evening of Day 0, rats in Groups I and II were allowed to mate. Embryos were collected on Day 4 (Group I, control morulae) or Day 5 (Group II, control blastocysts) and were transferred into the oviduct or uterine horn of Day-4 pregnant recipient rats. On the transfer side of the recipients, the bursa had been peeled from around the ovary to prevent endogenous oocytes from entering the oviduct. For Group III, unmated donors were killed 65-67 h after PMSG injection. Ovulated oocytes recovered from the oviducts were fertilized in vitro and transferred 16-18 h later. Embryos developing from in-vitro fertilized (IVF) oocytes were recovered on Day 5, separated into morulae (Group IIIm) and blastocysts (Group IIIb) and transferred into Day-4 pregnant recipients similar to control embryos. Some embryos from each group were used to determine the mean number of cells/embryo. Embryo recipients were killed on Day 20. After transfer, the development of IVF oocytes was retarded compared to control embryos. IVF morulae contained significantly fewer cells/embryo than did control morulae but were able to implant and grow to fetuses, in proportions similar to controls, if transferred into the oviduct of the recipients. These results suggest that the developmental potential of rat oocytes fertilized in vitro is limited due to asynchrony between the embryo and the uterine environment at the time of implantation, rather than possible defects incurred by the oocyte during the fertilization procedure.  相似文献   

19.
Pregnancy rates were compared between fertile and infertile donors in an embryo transfer program. Non-surgical embryo transfer techniques were utilized for examination of uterine contents and collection of ova. Recovered embryos were transferred surgically into suitable recipients. Three groups of donors were included in this investigation: a) fertile; b) infertile, due to known causes (diagnosed); c) infertile, due to unknown causes (undiagnosed). There were 11.3, 6.6 and 8.0 corpora lutea; 6.8, 1.2 and 1.0 fertilized ova; 3.6, 0.8 and 0.4 pregnancies per superovulation for the fertile, diagnosed and undiagnosed groups, respectively. In 23 months, unsuperovulated, fertile, diagnosed and undiagnosed donors yielded 17, 15 and 9 fertilized ova which resulted in 15, 13, and 3 pregnancies, respectively. Donors treated for uterine infections, adhesions or cystic ovaries prior to superovulation responded with 10.1, 7.6 and 4.1 corpora lutea; 1.9, 4.0 and 0.3 fertilized ova; 1.1, 3.3 and 0.2 pregnancies per superovulation, respectively. Relatively few viable embryos were recovered from donors with chronic cystic ovaries or from infertile cows of unknown etiology. Infertile donors, when compared to fertile donors, were unproductive when used for embryo transfer.  相似文献   

20.
Forty superovulated dairy ewes of the Greek Chios breed were used in an experiment to evaluate the efficiency of laparoscopic intrauterine insemination on fertilization and embryo recovery rates as well as embryo quality. Estrus was synchronized by intravaginal progestagen impregnated sponges and superovulation was induced by administration of 8.8 mg o-FSH i.m. following a standard 8 dose protocol. A small volume (0.3 mL) of diluted fresh ram semen was deposited in each uterine horn 24 to 28 h after onset of the estrus by a laparoscopic technique. The animals were allocated randomly into two groups (Group A and B) of 20 animals each. In Group A, embryos were recovered 18 to 24 h after the intrauterine insemination and in Group B on Day 6. The average number of corpora lutea was 12.8 +/- 1.2 and 11.5 +/- 1.1 (+/- SEM); the overall embryo recovery was 66.4% and 57% and the percentage of recovered fertilized ova was 81% and 82.8% in Groups A and B, respectively. More fertilized ova were collected per ewe from Group A (P < or = 0.1). Results indicated that in Chios breed, superovulation using homologous FSH combined with laparoscopic AI leads to good ovarian response with satisfactory results in fertilization, embryo recovery and quality of embryos. This could lead to improved and more efficient methods for obtaining large numbers of high quality oocytes and embryos for embryo transfer programs which could contribute to genetic improvement and increase of the population size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号