首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that the cause of disagreements between molecular dynamics (MD) and NMR N–H bond order parameters is the fact that the NMR order parameter is determined for different amino acid residues at different time intervals, while the MD one is derived for all residues from the same MD trajectory of the same time interval. Therefore, it has been proposed for correct comparison with NMR data to calculate the MD order parameter for different amino acid residues separately for trajectory ranges close to NMR correlation time. The MD simulation of the human immunodeficiency virus type-1 protease (HIV-1 PR) with monoprotonated active centre was performed for verification of the proposition. It has been shown that the protease in aqueous solution adopts a set of conformations, which are intermediate between semiopen and closed ones. The calculated MD N–H bond order parameters are in agreement with literature NMR data in confidence interval limits.  相似文献   

2.
The solution conformation of an antibacterial protein sapecin has been determined by 1H nuclear magnetic resonance (NMR) and dynamical simulated annealing calculations. It has been shown that the polypeptide fold consists of one flexible loop (residues 4-12), one helix (residues 15-23), and two extended strands (residues 24-31 and 34-40). It was found that the tertiary structure of sapecin is completely different from that of rabbit neutrophil defensin NP-5, which is homologous to sapecin in the amino acid sequences and also has the antibacterial activity. The three-dimensional structure determination has revealed that a basic-residue rich region and the hydrophobic surface face each other on the surface of sapecin.  相似文献   

3.
Dike A  Cowsik SM 《Biochemistry》2006,45(9):2994-3004
Neuropeptide K (NPK), an N-terminally extended form of neurokinin A (NKA), represents the most potent and longest lasting vasodepressor and cardiomodulatory tachykinin reported thus far. NPK has been shown to have high selectivity for the NK2 receptor. Because the micelle-associated structure may be relevant to the NPK-receptor interaction, the three-dimensional structure of the NPK in aqueous and micellar environments has been studied by two-dimensional proton nuclear magnetic resonance (2D (1)H NMR spectroscopy) and distance geometry calculations. Proton NMR assignments have been carried out with the aid of correlation spectroscopy (DQF-COSY and TOCSY) and nuclear Overhauser effect spectroscopy (NOESY and ROESY) experiments. The interproton distances and dihedral angle constraints obtained from the NMR data have been used in torsion angle dynamics algorithm for NMR applications (DYANA) to generate a family of structures, which have been refined using restrained energy minimization and dynamics. The results show that in an aqueous environment NPK lacks a definite secondary structure, although some turn-like elements are present in the N terminus. The structure is well-defined in the presence of dodecylphosphocholine micelles. The global fold of NPK bound to DPC micelles consists of two well-defined helices from residues 9 to 18 and residues 27 to 33 connected by a noncanonical beta turn. The N terminus of the peptide is characterized by a 3(10) helix or a series of dynamic beta turns. The conformational range of the peptide revealed by NMR and circular dichroism (CD) studies has been analyzed in terms of characteristic secondary features. The observed conformational features have been further compared to a NKA and neuropeptide gamma (NPgamma) potent endogenous agonist for the NK2 receptor.  相似文献   

4.
Sequence-specific 1H NMR assignments for the 36 residue bovine pancreatic polypeptide (bPP) have been completed. The secondary and tertiary structure of bPP in solution has been determined from experimental NMR data. It is shown that bPP has a very well-defined C-terminal alpha-helix involving residues 15-32. Although regular secondary structure cannot be clearly defined in the N-terminal region, residues 4-8 maintain a rather ordered conformation in solution. This is attributed primarily to the hydrophobic interactions between this region and the C-terminal helix. The two segments of the structure are joined by a turn which is poorly defined. The four end residues both at the N-terminus and the C-terminus are highly disordered in solution. The overall fold of the bPP molecule is very closely similar to that found in the crystal structure of avian pancreatic polypeptide (aPP). The RMS deviation for backbone atoms of residues 4-8 and 15-32 between the bPP mean structure and the aPP crystal structure is 0.65 A, although there is only 39% identity of the residues. Furthermore, the average conformations of some (mostly from the alpha-helix) side chains of bPP in solution are closely similar to those of aPP in the crystal structure. A large number of side chains of bPP, however, show significant conformational averaging in solution.  相似文献   

5.
The solution conformation of the 27 residue polypeptide hormone secretin has been investigated by 1H-NMR spectroscopy under conditions where it adopts a fully ordered structure as judged by circular dichroism spectroscopy, namely in an aqueous solution of 40% (v/v) trifluoroethanol. Using a combination of two-dimensional NMR techniques the 1H-NMR spectrum of secretin is completely assigned and its secondary structure is determined from a qualitative interpretation of the nuclear Overhauser enhancement data. It is shown that under these conditions secretin adopts a conformation consisting of an N-terminal irregular strand (residues 1-6) followed by two helices (residues 7-13 and 17-25) connected by a 'half-turn' (residues 14-16); the last two residues (26 and 27) are again irregular. This conformation is shown to be very similar to that of glucagon in perdeuterated dodecylphosphocholine micelles and to that of the active 1-29 fragment of growth hormone releasing factor in 30% (v/v) trifluoroethanol:  相似文献   

6.
Recording of good quality NMR spectra of the single-stranded DNA binding protein gene V of the bacteriophage M13 is hindered by a specific protein aggregation effect. Conditions are described for which NMR spectra of the protein can best be recorded. The aromatic part of the spectrum has been reinvestigated by means of two-dimensional total correlation spectroscopy. Sequence-specific assignments were obtained for all of the aromatic amino acid residues with the help of a series of single-site mutant proteins. The solution properties of the mutants of the aromatic amino acid residues have been fully investigated. It has been shown that, for these proteins, either none or only local changes occur compared to the wild-type molecule. Spin-labeled oligonucleotide-binding studies of wild-type and mutant gene V proteins indicate that tyrosine 26 and phenylalanine 73 are the only aromatic residues involved in binding to short stretches of single-stranded DNA. The degree of aggregation of wild-type gene V protein is dependent on both the total protein and salt concentration. The data obtained suggest the occurrence of specific protein-protein interactions between dimeric gene V protein molecules in which the tyrosine residue at position 41 is involved. This hypothesis is further strengthened by the observation that the solubility of tyrosine 41 mutants of gene V protein is significantly higher than that of the wild-type protein. The discovery of the so-called 'solubility' mutants of M13 gene V protein has finally made it possible to study the solution structure of gene V protein and its interaction with single-stranded DNA by means of two-dimensional NMR.  相似文献   

7.
The binding of gadolinium to a synthetic peptide of 13 amino acid residues representing the calcium binding loop of site 3 of rabbit skeletal troponin C [AcSTnC(103-115)amide] has been studied by using proton nuclear magnetic resonance (1H NMR) spectroscopy. In particular, the proton line broadening and enhanced spin-lattice relaxation have been used to determine proton-metal ion distances for several assigned nuclei in the peptide-metal ion complex. These distances have been used in conjunction with other constraints and a distance algorithm procedure to demonstrate that the structure of the peptide-metal complex as shown by 1H NMR is consistent with the structure of the EF calcium binding loop in the X-ray structure of parvalbumin but that the available 1H NMR distances do not uniquely define the solution structure.  相似文献   

8.
P Gettins  L W Cunningham 《Biochemistry》1986,25(18):5011-5017
The 1H NMR spectrum of human alpha 2-macroglobulin, Mr 716,000, consists of predominantly extremely broad unresolved resonances but also has nine relatively sharp (delta nu 1/2 less than 25 Hz) resonances from aromatic residues. By treatment of alpha 2-macroglobulin with methylamine, chymotrypsin, and subtilisin, it has been shown that eight of these resonances arise from bait region residues. More specifically, assignment has been made of resonances at 6.80 and 7.11 ppm to the ortho and meta protons, respectively, of tyrosine-685 and tentative assignment of a resonance at 7.29 ppm to the aromatic protons of phenylalanine-684. C2 proton resonances from five histidine residues are also visible. Four of these are attributed to residues in the bait region or immediately adjacent to this, at positions 675, 694, 699, and 704. The sharpness of resonances from bait region residues demonstrates the great flexibility of this region of the polypeptide. It is proposed that the flexible region extends from residue 675 to residue 710. These resonances are all affected by proteolytic cleavage in the bait region but are not influenced by the subsequent conformational rearrangement of the whole protein tetramer. The significance of these findings is discussed in relation to the current structural models of alpha 2-macroglobulin.  相似文献   

9.
The structure of the Ala38 variant of yeast iso-1-cytochrome c, in which the previously unchanged Arg38 has been replaced, has been characterised by NMR. The NMR data indicate that the structure of the Ala38 variant is very similar to that of the wild type protein. In particular, the heme environment and interactions of the heme macrocycle are shown to be preserved. Analysis of the chemical shift perturbations to the resonances of Ile35 is shown to be consistent with the change in charge at position 38. The only significant area of conformational change detected was at residues 39 and 58, close to the site of modification. Therefore the redox potential change accompanying the modification [1988, Biochemistry 28, 3188-3197] appears to be a direct consequence of the altered side-chain of residue 38 and not a result of secondary conformational changes induced by the modification.  相似文献   

10.
Dystrophin is assumed to act via the central rod domain as a flexible linker between the amino-terminal actin binding domain and carboxyl-terminal proteins associated with the membrane. The rod domain is made up of 24 spectrin-like repeats and has been shown to modify the physical properties of lipid membranes. The nature of this association still remains unclear. Tryptophan residues tend to cluster at or near to the water-lipid interface of the membrane. To assess dystrophin rod domain-membrane interactions, tryptophan residues properties of two recombinant proteins of the rod domain were examined by (1)H NMR and fluorescence techniques in the presence of membrane lipids. F114 (residues 439-553) is a partly folded protein as inferred from (1)H NMR, tryptophan fluorescence emission intensity, and the excited state lifetime. By contrast, F125 (residues 439-564) is a folded compact protein. Tryptophan fluorescence quenching shows that both proteins are characterized by structural fluctuations with their tryptophan residues only slightly buried from the surface. In the presence of negatively charged small vesicles, the fluorescence characteristics of F125 change dramatically, indicating that tryptophan residues are in a more hydrophobic environment. Interestingly, these modifications are not observed with F114. Fluorescence quenching experiments confirm that tryptophan residues are shielded from the solvent in the complex F125 lipids by a close contact with lipids. The use of membrane-bound quenchers allowed us to conclude that dystrophin rod domain lies along the membrane surface and may be involved in a structural array comprising membrane and cytoskeletal proteins as well as membrane lipids.  相似文献   

11.
Proton NMR spectroscopy allows the detection in plasma of resonances arising from N-acetyl-glucosamine (NAG) and N-acetyl-neuraminic acid (NANA) which have been shown to be borne by acute phase glycoproteins. These resonances can be identified using 2 different protocols of spectrum acquisition detecting different physical states in the global pool of glycoproteins, ie mobile and less mobile moieties of glycosylated chains. In this study we demonstrate that NMR spectroscopy allows a precise monitoring of the variations of glycosylated residues in cancers, inflammatory processes and bone marrow transplantation. The most important findings are that: i), the distribution of glycosylated residues varies with the origin of the cancerous tissue; ii), the level of these residues is a function of tumor development; iii), the concentrations in NAG and NANA are well correlated with the standard biological parameters of acute phase and leucocyte activation. Proton NMR spectroscopy of glycosylated residues in plasma may offer a new means of monitoring sialic acid in cancer and other pathological conditions.  相似文献   

12.
High mobility group (HMG) protein 14, which, like HMG-17, has been implicated in the structure of 'active chromatin' is shown by 270-MHz NMR and by circular dichroism to be in a disordered conformation in free solution. At low ionic strength protein HMG-14 binds to DNA by weak attachment of the N-terminal half of the molecule and is released by 0.3 M NaCl, the ionic strength at which the protein is extracted from chromatin. The protein HMG-20 (ubiquitin), a constituent of the conjugate protein A 24, is shown to be a highly stable compact globular protein that remains folded over a pH range of 1--13 and has a half-denaturation temperature of 85 degrees C when thermally denatured. Circular dichroism indicates 28% helix and 12% beta sheet. Despite having 15% basic residues it binds only very weakly to DNA. A detailed study of the folding of ubiquitin has been made by a combination of several NMR approaches, including decoupling, nuclear Overhauser enhancement and titration. Several line assignments have been made and it is shown that, although the tyrosine and histidine are buried residues, they are not adjacent to one another nor are they close to either of the phenylalanines, of which at least one is also a buried residue.  相似文献   

13.
Uperolein, a physalaemin-like endecapeptide, has been shown to be selective for Neurokinin 1 receptor. As a first step towards understanding the structure-activity relationship, we report the membrane-induced structure of Uperolein with the aid of circular dichroism and 2D (1)H NMR spectroscopy. Sequence-specific resonance assignments of protons have been made using correlation spectroscopy (TOCSY, DQF-COSY) and NOESY spectroscopy. The interproton distance constraints and dihedral angle constraints have been utilized to generate a family of structures using torsion angle molecular dynamics within program DYANA. The conformational range of the peptide revealed by NMR and CD studies has been analysed in terms of characteristic secondary features. Analysis of NMR data indicates that the global fold of Uperolein can be explained in terms of equilibrium between 3(10)-helix and alpha-helix from residues 5 to 11. An extended highly flexible N-terminus displays some degree of order and a possible turn structure. A comparison between the structures of Uperolein and Substance P, a prototype and endogenous Neurokinin 1 receptor agonist, indicates several common features in the distribution of hydrophobic and hydrophilic residues. Both the peptides show an amphiphilic character towards the middle region. The similarities suggest that the molecules interact with the receptor in an analogous manner.  相似文献   

14.
The reported NMR structure of RD3, a naturally occurring two-domain antifreeze protein, suggests that the two nearly identical domains are oriented to allow simultaneous binding of their active regions to the ice surface. It is implied that the nine residues linking the two domains play a role in this alignment, but this has not been established. We have designed and expressed a modified form of RD3 that replaces the nine-residue linker with a generic sequence of one serine and eight glycine residues to test the importance of the linker amino acid sequence. The modified linker is shown to have significantly different characteristics compared to the original linker. Heteronuclear nuclear Overhauser effect experiments show that the new linker residues have more mobility than the linker residues in the native protein. Further, NMR data show that the folding of the C-terminal domain is somewhat perturbed by the altered linker. Finally, distributions of residual dipolar couplings indicate that the two domains tumble and move independently of each other. Nevertheless, the thermal hysteresis activity of the modified protein is indistinguishable from that of native RD3, proving that increased activity of the two-domain antifreeze protein is not dependent on structure of the linker.  相似文献   

15.
The Fv fragment, a univalent antigen-binding unit with a molecular weight of 25,000, has successfully been prepared in high yield by limited proteolysis with clostripain of a short-chain mouse IgG2a anti-dansyl monoclonal antibody in which the entire CH1 domain is deleted [Igarashi, T., Sato, M., Takio, K., Tanaka, T., Nakanishi, M., & Arata, Y. (1990) Biochemistry 29, 5727-5733]. The Fv fragment obtained is stable at room temperature and retains its full antigen-binding capability. It has been shown that selective deuterium labeling of the Fv fragment, which is half the size of the Fab fragment, provides 1H NMR spectral data at a sufficient resolution for a detailed structural analysis of the antigen-combining site. NOESY spectra of an Fv analogue, in which all aromatic protons except for His C2'-H and Tyr C3',5'-H had been deuterated, were measured in the presence of varying amounts of dansyl-L-lysine. On the basis of the NOESY data obtained, it was possible to assign all the ring proton resonances for the dansyl group that is bound to the Fv fragment. It was also possible to obtain information about His and Tyr residues of the Fv fragment in the absence and presence of the antigen. On the basis of the NMR data obtained, we have shown that at least two Tyr residues along with one of the amide groups are directly involved in antigen binding. The mode of interaction of the dansyl ring with these residues in the Fv fragment has briefly been discussed.  相似文献   

16.
T Pan  L P Freedman  J E Coleman 《Biochemistry》1990,29(39):9218-9225
The DNA binding domain of the mammalian glucocorticoid hormone receptor (GR) contains nine highly conserved cysteine residues, a conservation shared by the superfamily of steroid and thyroid hormone receptors. A fragment [150 amino acids (AA) in length] consisting of GR residues 407-556, containing within it the entire DNA binding domain (residues 440-525), has been overexpressed and purified from Escherichia coli previously. This fragment has been shown to contain 2.3 +/- 0.2 mol of Zn(II) per mole of protein [Freedman, L. P., Luisi, B. F., Korszun, Z. R., Basavappa, R., Sigler, P. B., & Yamamoto, K. R. (1988) Nature 334, 543]. Zn(II) [or Cd(II) substitution] has been shown to be essential for specific DNA binding. 113Cd NMR of a cloned construct containing the minimal DNA binding domain of 86 AA residues [denoted GR(440-525)] with 113Cd(II) substituted for Zn(II) identifies 2 Cd(II) binding sites by the presence of 2 113Cd NMR signals each of which integrates to 1 113Cd nucleus. The chemical shifts of these two sites, 704 and 710 ppm, suggest that each 113Cd(II) is coordinated to four isolated -S- ligands. Shared -S- ligands connecting the two 113Cd(II) ions do not appear to be present, since their T1s differ by 10-fold, 0.2 and 2.0 s, respectively. Addition of a third 113Cd(II) or Zn(II) to 113Cd2GR(440-525) results in occupancy of a third site, which introduces exchange modulation of the two original 113Cd NMR signals causing them to disappear. Addition of EDTA to the protein restores the original two signals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Structural analysis of oxazolomycin and simpler fragments containing a common 3-hydroxy-2,2-dimethylpropanamide moiety has indicated that a U-shaped conformation is preferred, in some cases stabilised by hydrogen bonding between the N–H and O–H residues, as shown by a combination of molecular modelling, NMR spectroscopic and single crystal X-ray analysis. A direct synthesis of this unit has been established via the opening of β-lactones by a range of amines, and their antibacterial activity been shown to vary with the hydrophobic character of the substituents.  相似文献   

18.
The 3D structure of a peptide derived from the putative transmembrane segment 7 (TM7) of subunit a from H+-V-ATPase from Saccharomyces cerevisiae has been determined by solution state NMR in SDS. A stable helix is formed from L736 up to and including Q745, the lumenal half of the putative TM7. The helical region extends well beyond A738, as was previously suggested based on NMR studies of a similar peptide in DMSO. The pKa of both histidine residues that are important for proton transport was measured in water and in SDS. The differences that are found demonstrate that the histidine residues interact with the SDS polar heads. In detergent, circular dichroism data indicate that the secondary structure of the peptide depends on the pH and the type of detergent used. Using solid-state NMR, it is shown that the peptide is immobile in phospholipid bilayers, which means that it is probably not a single transmembrane helix in these samples. The environment is important for the structure of TM7, so in subunit a it is probably held in place by the other transmembrane helices of this subunit.  相似文献   

19.
Circular dichroism and NMR spectroscopy have been used to determine the structure of the low-density lipoprotein (LDL) receptor-binding peptide, comprising residues 130-152, of the human apolipoprotein E. This peptide has little persistent three-dimensional structure in solution, but when bound to micelles of dodecylphosphocholine (DPC) it adopts a predominantly alpha-helical structure. The three-dimensional structure of the DPC-bound peptide has been determined by using 1H-NMR spectroscopy: the structure derived from NOE-based distance constraints and restrained molecular dynamics is largely helical. The derived phi and psi angle order parameters show that the helical structure is well defined but with some flexibility that causes the structures not to be superimposable over the full peptide length. Deuterium exchange experiments suggest that many peptide amide groups are readily accessible to the solvent, but those associated with hydrophobic residues exchange more slowly, and this helix is thus likely to be positioned on the surface of the DPC micelles. In this conformation the peptide has one hydrophobic face and two that are rich in basic amino acid side chains. The solvent-exposed face of the peptide contains residues previously shown to be involved in binding to the LDL receptor.  相似文献   

20.
Ackerman MS  Shortle D 《Biochemistry》2002,41(46):13791-13797
A nativelike low-resolution structure has been shown to persist in the Delta 131 Delta denatured fragment of staphylococcal nuclease, even in the presence of 8 M urea. In this report, the physical-chemical basis of this structure is addressed by monitoring changes in structure reflected in residual dipolar couplings and diffusion coefficients as a function of changes in amino acid sequence. Ten large hydrophobic residues, previously shown to play dominant roles in the stability of the native state, are replaced with polar residues of similar shape. Modest increases in the Stokes radius determined by NMR methods result from replacement of five isoleucine/valine residues with threonine, one leucine with glutamine, and oxidation of four methionines to the sulfoxides. Yet in the presence of all ten hydrophobic to polar substitutions and 8 M urea, the NMR signature of a native-like topology is still largely intact. In addition, removal of 30 residues from either the N-terminus (which deletes a three-strand beta meander) or C-terminus (a long extended segment and the final alpha helix) produces only very small changes in long-range structure. These data indicate that both the general shape of the denatured state and the angular relationships of individual bond angles to the axes describing the spatial distribution of the protein chain are insensitive to large changes in the amino acid sequence, a finding consistent with the conclusion that the long-range structure of denatured proteins is encoded primarily by local steric interactions between side chains and the polypeptide backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号