首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endogenous endonuclease activity of chromatin in isolated rat liver nuclei in the presence of Mn2+, Mg2+ and Ca2+ + Mg2+ was studied. The existence of a Mn2+-dependent endonuclease activity not coupled with the Ca2+, Mg2+-dependent endonuclease was demonstrated, which was weaker than the former one in isolated cell nuclei but higher than in the preparation of Ca2+, Mg2+-dependent nuclease obtained by gel filtration through Toyopearl HW 60F. The Mn2+-dependent splitting of chromatin predominantly occurs at linker DNA of distal parts of chromatin loops. A split-off of purified DNA was more universal than in the presence of Ca2+, Mg2+-dependent endonuclease; the hydrolysis rate of native and denaturated DNA appeared to be the same.  相似文献   

2.
We report here a mammalian cell-free system that can support chromatin assembly. Effective nucleosome assembly in HeLa cell extracts occurred at 125 to 200 mM KCl or potassium glutamate. At this physiological K+ ion concentration, two types of chromatin assembly were observed. The first was interfered with by Mg2+. Other cations such as Mn2+, Ca2+, Fe3+, and spermidine also inhibited this type of nucleosome assembly. The second type of assembly occurred in the presence of Mg2+ and at least equimolar ATP. However, even in the presence of ATP, excess Mg2+ inhibited assembly and promoted catenation of DNA; these effects could be circumvented by excess ATP, GTP, EDTA, or polyglutamic acid. The critical DNA concentration for optimum assembly in both pathways suggested a stoichiometric association of histones with DNA. The spacing of nucleosomes formed by both types of assembly on linear and circular DNA was reasonably regular, but chromatin assembled in the presence of ATP and Mg2+ was more stable.  相似文献   

3.
An endogenous Ca2+, Mg2+-dependent factor of enzymic nature (apparently an endonuclease) digests a part of chromatin in the rat liver nuclei producing DNA fragments of an uniform size. After 60 min of incubation at 15 degrees C and pH 7.50 in the presence of 5 mM MgCl2 and 2 mM CaCl2 87-93% of the total chromatin becomes soluble. The insoluble chromatin however contains 70-85% of the in vivo newly synthesized RNA. In regenerating liver the proportion of the insoluble residual chromatin increases while the radioactivity of the newly synthesized DNA in this fraction is highest. Residual chromatin can be solubilized by ultrasonic treatment only. The Ca2+, Mg2+-dependent dissolving factor is not present either in brain or in PMN leucocyte nuclei.  相似文献   

4.
Adenylate cyclase was assayed in a sonicated preparation of silkworm pupal fat body. The adenylate cyclase was found mostly in the particulate fraction. The activity depended upon either Mg2+ or Mn2+, and the degree of stimulation by Mn2+ was 2 times greater than that by Mg2+ compared at the saturating concentrations. In the presence of Mg2+, the enzyme was inhibited by both EGTA and high concentrations of Ca2+, showing biphasical response to Ca2+. The enzyme was stimulated several-fold by NaF. The enzyme exhibited typical Michaelis-Menten kinetics and Km values were 0.13 mM for MgATP and 0.086 mM for MnATP.  相似文献   

5.
Hamelin C  Yaniv M 《Biochimie》1980,62(4):261-265
Simian virus 40 (SV40) nucleoprotein complexes extracted from nuclei of infected monkey cells (CV1) were precipitated with Ca2+, Mg2+, and Mn2+ divalent cations. Most of the viral chromatin but only a fraction of the proteins in the crude nuclear extracts were recovered after precipitation with 10 mM MgCl2. At this optimal concentration, DNA topoisomerase activity (nicking closing enzyme) coprecipitated with the SV40 nucleoprotein complexes.  相似文献   

6.
The effects of Ca2+ on ethanolaminephosphotransferase [EC 2.7.8.1] and cholinephosphotransferase [EC 2.7.8.2] activities in rabbit platelet membranes were studied using endogenous diglyceride and CDP-[3H]ethanolamine or CDP-[14C]choline as substrates. Both transferases required Mn2+, Co2+, or Mg2+ as a metal cofactor and the optimal concentrations of the metals for both activities were about 5, 10, and 5 mM, respectively. When 5 mM Mg2+ was used as a cofactor, both transferase activities were inhibited by a low concentration of Ca2+ (half maximal inhibition at approx. 15 microM). In the presence of 5 mM Mn2+, however, approx. 5 mM Ca2+ was required to produce half maximal inhibition. The Ca2+-induced inhibition was reversible and the rate of the inhibition was not affected either by the concentrations of the CDP-compound or by exogenously added diacylglycerol. The relationship between Ca2+ and both Mg2+ and Mn2+ on the transferase activities was competitive. 45Ca2+ binding (and/or uptake) to the platelet membranes was inhibited by Mn2+, Mg2+, and Co2+, in a concentration-dependent manner. However, the inhibitory effects of the three metal ions on the total Ca2+ binding (and/or uptake) did not correlate with the activation of both transferase activities by the three metal ions in the presence of Ca2+. These results suggest that both transferase activities are regulated by low concentrations of Ca2+ in the presence of optimal concentrations of Mg2+, and that the inhibition is mediated directly by Ca2+, which interacts with a specific metal cofactor binding site(s) of the transferases.  相似文献   

7.
In order to determine the ratio of activities of major endonucleases of rat liver chromatin, a stepwise fractionation of cell nuclear extracts by chromatography on phosphocellulose and gel filtration through Toyopearl HW60 was carried out. This procedure resulted in partially purified preparations of Ca2+,Mg2+-dependent endonuclease (55 +/- 10 kD), Ca2+,Mg2+-dependent endonuclease (30 +/- 10 kD), Mn2+-dependent endonuclease (30 +/- 5 kD) and acid cation-independent endonuclease. The Ca2+,Mg2+-dependent endonuclease with Mr of 55 +/- 10 kD made up to 57% of the nuclear extract activity in the presence of Ca2+ + Mg2+ and revealed a high calcium-magnesium synergism. Under the same experimental conditions, the 30 +/- 10 kD enzyme made up to 33% of the nuclear extract activity and revealed a low synergism. The activity of Mn2+-dependent endonuclease made up to 26% of the total nuclear extract activity in the presence of Mn2+, that of acid endonuclease--11% of the extract activity in 1 mM EDTA at pH 5.0. It was assumed that the low molecular weight Ca2+,Mg2+-dependent endonuclease represents a product of limited proteolysis of high molecular weight Ca2+,Mg2+-dependent endonuclease.  相似文献   

8.
Multivalent cations were tested for their ability to replace the Ca2+ requirements of aggregation factor (AF) complex in activity, stability, and integrity assays. The ability of each cation to replace the Ca2+ required for the cell aggregation-enhancing activity of AF was examined by replacing the usual 10 mM Ca2+ with the test cation at various concentrations in the serial dilution assay of the AF. The other alkaline earth cations, Mg2+, Sr2+, and Ba2+, could not replace Ca2+; two transition elements, Mn2+ and Cd2+, partially replaced calcium. All 15 of the available lanthanides (including La3+ and Y3+) produced normal activity but only at 10-400-fold lower cation concentrations than Ca2+. An AF preparation is stable and remains active for months in 1 mM Ca2+ but decays rapidly when Ca2+ is lowered. Sr2+ and Ba2+ at 20 mM but not at 1 mM could replace 1 mM Ca2+ and give long term stability. AF was not stable in the presence of Mg2+, even at 100 mM. High Mn2+ concentrations did not stabilize AF even though AF was partially active in Mn2+. Cd2+ gave full stability at 75 mM and La3+ at about 0.1 mM. When Ca2+ is chelated, the macromolecular subunits of the AF slowly dissociate. Permeation chromatography and analytical ultracentrifugation showed that the cations that stabilized activity maintained the integrity of AF complex while those that failed to stabilize activity allowed the complex to dissociate into subunits, indicating that these two Ca2+ requirements are related. The cation specificities for activity and for stability-integrity are different indicating that these are separate Ca2+-dependent functions.  相似文献   

9.
The deoxyribonuclease induced in KB cells by herpes simplex virus (HSV) type 1 and type 2 has been purified. Both enzymes are able to completely degrade single- and double-stranded DNA yielding 5'-monophosphonucleotides as the sole products. A divalent cation, either Mg2+ or Mn2+, is an absolute requirement for catalysis and a reducing agent is necessary for enzyme stability. The maximum rate of reaction is achieved with 5 mM MgCl2 for both HSV-1 and HSV-2 DNase. The optimum concentration for Mn2+ is 0.1 to 0.2 mM and no exonuclease activity is observed when the concentration of Mn2+ is greater than 1 mM. The rate of reaction at the optimal Mg2+ concentration is 3- to 5-fold greater than that at the optimal Mn2+ concentration. In the presence of Mg2+, the enzymes are inhibited upon the addition of Mn2+, Ca2+, and Zn2+. The enzymatic reaction is also inhibited by spermine and spermidine, but not by putrescine. Crude and purified HSV-1 and HSV-2 DNase can degrade both HSV-1 and HSV-2 DNA, but native HSV-1 DNA is hydrolyzed at only 22% of the rate and HSV-2 DNA at only 32% of the rate of Escherichia coli DNA. Although HSV-1 and HSV-2 DNase were similar, minor differences were observed in most other properties such as pH optimum, inhibition by high ionic strength, activation energy, and sedimentation coefficient. However, the enzymes differ immunologically.  相似文献   

10.
Stimulation of pyruvate dehydrogenase phosphatase activity by polyamines   总被引:6,自引:0,他引:6  
Pyruvate dehydrogenase phosphatase requires Mg2+ or Mn2+, and its activity in the presence of Mg2+ is markedly stimulated by Ca2+. At saturating Mg2+ and Ca2+ concentrations, the polyamines spermine, spermidine and putrescine stimulated the activity of pyruvate dehydrogenase phosphatase 1.5- to 3-fold. Spermine was the most active of the polyamines. At a physiological concentration of Mg2+ (1 mM) and saturating Ca2+ concentration, the stimulation by 0.5 mM spermine was 4- to 5-fold, and at 0.3 mM Mg2+, the stimulation was 20- to 30-fold. In the absence of Mg2+ or Ca2+, spermine had no effect. These results suggest that a polybasic factor may be involved in the regulation of pyruvate dehydrogenase phosphatase activity.  相似文献   

11.
E. coli DNA topoisomerase I catalyzes the hydrolysis of short, single stranded oligodeoxynucleotides. It also forms a covalent protein-DNA complex with negatively supercoiled DNA in the absence of Mg2+ but requires Mg2+ for the relaxation of negatively supercoiled DNA. In this paper we investigate the effects of various divalent metals on catalysis. For the relaxation reaction, maximum enzyme activity plateaus after 2.5 mM Mg2+. However, the rate of cleavage of short oligodeoxynucleotide increased linearly between 0 and 15 mM Mg2+. In the oligodeoxynucleotide cleavage reaction, Ca2+, Mn2+, Co2+, and Zn2+ inhibit enzymatic activity. When these metals are coincubated with Mg2+ at equimolar concentrations, the normal effect of Mg2+ is not detectable. Of these metals, only Ca2+ can be substituted for Mg2+ as a metal cofactor in the relaxation reaction. And when Mg2+ is coincubated with Mn2+, Co2+, or Zn2+ at equimolar concentrations, the normal effect of Mg2+ on relaxation is not detectable. We propose that Mg2+ allows the protein-DNA complex to assume a conformation necessary for strand passage and enhance the rate of enzyme turnover.  相似文献   

12.
Native soluble and particulate guanylate cyclase from several rat tissues preferred Mn2+ to Mg2+ as the sole cation cofactor. Wtih 4mM cation, activities with Mg2+ were less than 25% of the activities with Mn2+. The 1 mM NaN3 markedly increased the activity of soluble and particulate preparations from rat liver. Wtih NaN3 activation guanylate cyclase activities wite similar with Mn2+ and Mg2+. Co2+ was partially effective as a cofactor in the presence of NaN3, while Ca2+ was a poor cation with or without NaN3. Activities with Ba, Cu2+, or Zn2+ were not detectable without or with 1 mM NaN3. With soluble liver enzyme both manganese and magnesium activities were dependent upon excess Mn2+ or Mg2+ at a fixed MnGTP or MgGTP concentration of 0.4 mm; apparent Km values for excess Mn2+ and Mg2+ were 0.3 and 0.24 mM, respectively. After NaN3 activation, the activity was less dependent upon free Mn2+ and retained its dependence for free Mg2+, at 0.4 mM MgGTP the apparent Km for excess Mg2+ was 0.3 mM. The activity of soluble liver guanylate cyclase assayed with Mn2+ or Mg2+ was increased with Ca2+. After NaN3 activiation, Ca2+ had no effect or was somewhat inhibitory with either Mn2+. After NaN activation, Ca2+ had no effect or was somewhat inhibitory with either Mn2+ or Mg2+. The stimulatory effect of NaN2 on Mn2+-and Mg2+-dependent guanylate cyclase activity from liver or cerebral cortex supernatant fractions required the presence of the sodium azide-activator factor. With partially purified soluble liver guanylate cyclase and azide-activator factor, the concentration (1 mjM) of NaN3 that gave half-maximal activation with Mn2+ or Mg2+ was imilar. Thus, under some conditions guanylate cyclase can effectively use Mg2+ as a sole cation cofactor.  相似文献   

13.
Mn2+ and to some degree Fe2+, but not Mg+, Ca2+, ba2+, Sr2+, Co2+, Ni2+, La3+, or Fe3+ were able to serve as effective metal cofactors for sea urchin sperm guanylate cyclase. The apparent Michaelis constant for Mn2+ in the presence of 0.25 mM MnGTP was 0.23 mM. In the presence of a fixed free mn2+ concentration, variation in mngTP resulted in sigmoid velocity-substrate plots and in reciprocal plots that were concave upward. These positive cooperative patterns were observed at both pH 7.0 and 7.8 and in the presence or absence of Triton X-100. When Mn2+ and GTP were equimolar, Ca2+, Ba2+, Sr2+, and Mg2+ increased apparent guanylate cyclase activity. This increase in enzyme activity at least could be accounted for partially by an increase in free Mn2+ concentration caused by the complex formation of GTP with the added metals. However, even at relatively low GTP concentrations and with Mn2+ concentrations in excess of GTP, Ca2+, Sr2+, and Ba2+ significantly increased guanosine 3':5'-monophosphate production. As the total GTP concentration was increased, the degree of stimulation in the presence of Ca2+ decreased, despite maintenance of a fixed total concentration of Ca2+ and a fixed free concentration of Mn2+, suggesting that the concentration of CaGTP and MnGTP were determining factors in the observed response. The concave upward reciprocal plots of velocity against MnGTP concentration were changed to linear plots in the presence of CaGTP or SrGTP. These results suggest that sea urchin sperm guanylate cyclase contains multiple nucleotide binding sites and that stimulation of guanosine 3':5'-monophosphate synthesis by Ca2+, Sr2+, and perhaps other metals may reflect interaction of a metal-GTP complex with enzyme as either an effector or a substrate.  相似文献   

14.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

15.
K Kato  M Goto  H Fukuda 《Life sciences》1983,32(8):879-887
When investigating the effects of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+ and Ni2+) on 3H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of 3H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn2+ congruent to Ni2+ greater than Mg2+ greater than Ca2+ greater than Sr2+ greater than Ba2+. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl2, 2.5 mM CaCl2 or 0.3 mM MnCl2 whereas two components appeared in the presence of 2.5 mM MnCl2 or 1 mM NiCl2. In the former, divalent cations altered the apparent affinity (Kd) without affecting density of the binding sites (Bmax). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg2+, Ca2+, Mn2+ and Ni2+) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABAB sites, the affinity for (-), (+) and (+/-) baclofen, GABA and beta-phenyl GABA increased 2-6 fold in the presence of 2.5 mM MnCl2, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl2 and 1.2 mM MgSO4), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABAB sites for its ligands is probably regulated by divalent cations, through common sites of action.  相似文献   

16.
The effects of some divalent cations on protoplast transfection mediated by polyethylene glycol of Lactobacillus casei ATCC 27092 by PL-1 phage DNA in 50 mM Tris-maleate buffer (pH 6.0) were investigated. The efficiency of transfection increased about 30 times in the presence of 10 mM Ca2+. Sr2+ increased the transfection rate as well, but Ba2+, Mn2+, and Mg2+ did not. Co2+ and Zn2+ inhibited transfection. The simultaneous use of Ca2+ and Mg2+ increased the transfection efficiency. Impairment of transfection caused by lack of Ca2+ could not be reversed by the addition of Ca2+ later. A decrease in the Ca2+ concentration to an ineffective level before transfection ended immediately inhibited transfection. Protoplasts were transfected with a phage adsorption mutant resistant to PL-1, also, and these metal ions had the same effect. Multiplication of phages in the transfected protoplasts was independent of the presence or absence of calcium ions. Calcium ions seemed to be involved in the entry of PL-1 DNA into the host protoplasts.  相似文献   

17.
Isolation of Ca2+, Mg2+-dependent nuclease from calf thymus chromatin   总被引:1,自引:0,他引:1  
Ca2+,Mg2+-dependent nuclease was isolated from calf thymus chromatin by stepwise chromatography on DEAE-Sepharose, CM-Sephadex and DNA-Sepharose. The enzyme was purified more than 700-fold. SDS-PAGE electrophoresis revealed one protein band possessing an enzymatic activity. The molecular mass of the nuclease as determined by gel filtration is 25700 Da, that determined by 12% SDS polyacrylamide gel electrophoresis is 28,000 Da. In the presence of various ions the enzyme activity decreases in the following order: (Ca2+ + Mn2+) greater than (Ca2+ + Mg2+) greater than Mn2+; the pH optimum is at 8.0. In media with Mg2+, Ca2+, Co2+ and Zn2+ the nuclease is inactive. Some other properties of the enzyme are described.  相似文献   

18.
We could show an ATPase in mitochondrial and microsomal fractions of sheep arteria carotis communis and arteria coronaria of cattle which can be stimulated by Ca2+ of Mg2+, respectively. The enzyme has a higher affinity for Ca2+ than for Mg2+. The maximum activity of the Mg(Ca)-ATPase was found at 2-4 mM Ca2+ or Mg2+, respectively. Higher concentrations of these ions inhibit the enzyme. Mn2+, Sr2+ and Co2+ can substitute Ca2+ in splitting of ATP by the ATPase of both fractions of ateria coronaria of cattle. The ions K+ and Na+, variation of temperature and pH and a variety of pharmacological active compounds has the same effect on the ATPase stimulated by Ca2+ or Mg2+. These findings prove that Ca2+ and Mg2+ act at the same site of the ATPase of the mitochondrial and microsomal fraction of vascular smooth muscle.  相似文献   

19.
Effect of taurine on the properties of guanylate cyclase (GC) of the guinea-pig cardiac sarcoplasmic reticulum was studied. The enzymatic activity increased in the presence of Mn+2 at a concentration of 0.05 mM, reaching the maximal level at a concentration of 7 mM. Mg2+ (0.25-1 mM) did not alter the activity of GC in the absence of Mn2+, but stimulated it in the presence of Mn2+ at a concentration ranging within 0.1 to 1 mM. Taurine activated GC in the presence of Mn2+ (10 mM) and produced no effect on its activity at 0.5-3 mM of Mn2+ without Mg+2. Taurine (0.4-10 mM) potentiated the activity of GC stimulated with Mg+2. The structural analog of taurine, beta-alanine, suppressed the activity of GC 2-2.5-fold both in the absence and presence of Mg+2. Ca2+ (10(-9)--10(-4) mM) stimulated GC. Effect of Mg+2 and taurine on GC activity rose proportionally to an increase in Ca+2 concentration in the incubation medium. The data obtained evidence in favour of potential monitoring of the activity of GC through changes in the intracellular content of Ca+2, Mg+2 and taurine in the presence of Mn+2 at concentrations close to the physiological ones. The effect of taurine on GC is mediated via Mg+2 and Ca+2.  相似文献   

20.
In the presence of 10 micrometer Ca2+ and 5 mM Mg2+ (or 0.25 mM Mg2+), the addition of 100 micrometer Zn2+, Ni2+, Co2+, Fe2+, Cu2+ or 1 mM Mn2+ resulted in varying degrees of stimulation or inhibition of 10(-6) M cyclic GMP and cyclic AMP hydrolysis by the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart in the absence or presence of phosphodiesterase activator. The substrate specificity of the enzyme was altered under several conditions. The addition of Zn2+ in the presence of 5 mM Mg2+ and the absence of activator resulted in the stimulation of cyclic GMP hydrolysis over a narrow substrate range while reducing the V 65% due to a shift in the kinetics from non-linear with Mg2+ alone to linear in the presence of Zn2+ and Mg2+. Zn2+ inhibited the hydrolysis of cyclic GMP and cyclic AMP in the presence of activator with Ki values of 70 and 100 micrometer, respectively. Zn2+ inhibition was non-competitive with substrate, activator and Ca2+ but was competitive with Mg2+. In the presence of 10 micrometer Ca2+ and activator, a Ki of 15 micrometer for Zn2+ vs. Mg2+ was noted in the hydrolysis of 10(-6) M cyclic GMP. Several effects of Zn2+ are discussed which have been noted in other studies and might be due in part to changes in cyclic nucleotide levels following phosphodiesterase inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号