首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
1. The intramuscular oxygen partial pressure (pO2) in human gastrocnemius muscle was monitored during exercise and compared with metabolite concentrations reflecting the energy and the redox state in the tissue. Ten normal subjects and ten patients with peripheral vascular occlusive disease were investigated. 2. In normal subjects the pO2 at the end of exercise was related to the intensity of the exercise, expressed as effect (J/s) per contraction. 3. In both patients and normal subject the pO2 was related to the [ATP]/[ADP] ratio, the [lactate/[pyruvate] ratio and the phosphocreatine concentration in the muscle tissue at rest and during exercise. 4. At each pO2 value, a lower [lactate/[pyruvate] ratio was found in the muscle tissue of the patients compared with that of normal subjects. This was interpreted as a beneficial effect of the higher oxidative-enzyme capacity in the muscle of the patients. 5. The results show the importance of pO2 for the regulation of the energy and the redox state of the tissue. During exercise the changes induced in pO2 and thus the energy state will stimulate the respiratory rate. This might be an important link in triggering the oxidative-enzyme capacity in response to physical training as well as in peripheral vascular occlusive disease.  相似文献   

5.
To examine the effect of ambient temperature on metabolism during fatiguing submaximal exercise, eight men cycled to exhaustion at a workload requiring 70% peak pulmonary oxygen uptake on three separate occasions, at least 1 wk apart. These trials were conducted in ambient temperatures of 3 degrees C (CT), 20 degrees C (NT), and 40 degrees C (HT). Although no differences in muscle or rectal temperature were observed before exercise, both muscle and rectal temperature were higher (P < 0.05) at fatigue in HT compared with CT and NT. Exercise time was longer in CT compared with NT, which, in turn, was longer compared with HT (85 +/- 8 vs. 60 +/- 11 vs. 30 +/- 3 min, respectively; P < 0.05). Plasma epinephrine concentration was not different at rest or at the point of fatigue when the three trials were compared, but concentrations of this hormone were higher (P < 0.05) when HT was compared with NT, which in turn was higher (P < 0.05) compared with CT after 20 min of exercise. Muscle glycogen concentration was not different at rest when the three trials were compared but was higher at fatigue in HT compared with NT and CT, which were not different (299 +/- 33 vs. 153 +/- 27 and 116 +/- 28 mmol/kg dry wt, respectively; P < 0.01). Intramuscular lactate concentration was not different at rest when the three trials were compared but was higher (P < 0.05) at fatigue in HT compared with CT. No differences in the concentration of the total intramuscular adenine nucleotide pool (ATP + ADP + AMP), phosphocreatine, or creatine were observed before or after exercise when the trials were compared. Although intramuscular IMP concentrations were not statistically different before or after exercise when the three trials were compared, there was an exercise-induced increase (P < 0.01) in IMP. These results demonstrate that fatigue during prolonged exercise in hot conditions is not related to carbohydrate availability. Furthermore, the increased endurance in CT compared with NT is probably due to a reduced glycogenolytic rate.  相似文献   

6.
7.
The purpose of the study was to examine the roles of active pyruvate dehydrogenase (PDH(a)), glycogen phosphorylase (Phos), and their regulators in lactate (Lac(-)) metabolism during incremental exercise after ingestion of 0.3 g/kg of either NaHCO(3) [metabolic alkalosis (ALK)] or CaCO(3) [control (CON)]. Subjects (n = 8) were studied at rest, rest postingestion, and during constant rate cycling at three stages (15 min each): 30, 60, 75% of maximal O(2) uptake (VO(2 max)). Radial artery and femoral venous blood samples, leg blood flow, and biopsies of the vastus lateralis were obtained during each power output. ALK resulted in significantly (P < 0.05) higher intramuscular Lac(-) concentration ([Lac(-)]; ALK 72.8 vs. CON 65.2 mmol/kg dry wt), arterial whole blood [Lac(-)] (ALK 8.7 vs. CON 7.0 mmol/l), and leg Lac(-) efflux (ALK 10.0 vs. CON 4.2 mmol/min) at 75% VO(2 max). The increased intramuscular [Lac(-)] resulted from increased pyruvate production due to stimulation of glycogenolysis at the level of Phos a and phosphofructokinase due to allosteric regulation mediated by increased free ADP (ADP(f)), free AMP (AMP(f)), and free P(i) concentrations. PDH(a) increased with ALK at 60% VO(2 max) but was similar to CON at 75% VO(2 max). The increased PDH(a) may have resulted from alterations in the acetyl-CoA, ADP(f), pyruvate, NADH, and H(+) concentrations leading to a lower relative activity of PDH kinase, whereas the similar values at 75% VO(2 max) may have reflected maximal activation. The results demonstrate that imposed metabolic alkalosis in skeletal muscle results in acceleration of glycogenolysis at the level of Phos relative to maximal PDH activation, resulting in a mismatch between the rates of pyruvate production and oxidation resulting in an increase in Lac(-) production.  相似文献   

8.
The genetically obese Zucker rat has a reduced capacity to deposit dietary protein in skeletal muscle. To determine whether amino acid uptake by muscle of obese Zucker rats is impaired, soleus strip (SOL) and epitrochlearis (EPI) muscles from 10-wk-old lean and obese Zucker rats were studied in vitro by use of [14C]alpha-aminoisobutyric acid (AIB). Muscles from fasted rats were incubated under basal conditions at rest or after a 1-h treadmill run at 8% grade. To equate total work completed, lean and obese rats ran at 27 and 20 m/min, respectively. Muscles were pinned at resting length, preincubated for 30 min at 37 degrees C in Krebs-Ringer bicarbonate buffer containing 5 mM glucose under 95% O2-5% CO2, and then incubated up to 3 h in Krebs-Ringer bicarbonate with 0.5 mM AIB, [14C]AIB, and [3H]inulin as a marker of extracellular fluid. Basal AIB uptake in EPI and SOL from obese rats was significantly reduced by 40 and 30% (P less than 0.01), respectively, compared with lean rats. For both lean and obese rats, exercise increased (P less than 0.05) basal AIB uptake in EPI and SOL, but the relative increases were greater in the obese rats (EPI 54% and SOL 71% vs. EPI 32% and SOL 37%). These results demonstrate that genetically obese Zucker rats have reduced basal skeletal muscle amino acid uptake and suggest that physical inactivity may partially contribute to this defect.  相似文献   

9.
10.
11.
This is the first study to examine the effects of endurance training on the activation state of glycogen phosphorylase (Phos) and pyruvate dehydrogenase (PDH) in human skeletal muscle during exercise. We hypothesized that 7 wk of endurance training (Tr) would result in a posttransformationally regulated decrease in flux through Phos and an attenuated activation of PDH during exercise due to alterations in key allosteric modulators of these important enzymes. Eight healthy men (22 +/- 1 yr) cycled to exhaustion at the same absolute workload (206 +/- 5 W; approximately 80% of initial maximal oxygen uptake) before and after Tr. Muscle biopsies (vastus lateralis) were obtained at rest and after 5 and 15 min of exercise. Fifteen minutes of exercise post-Tr resulted in an attenuated activation of PDH (pre-Tr: 3.75 +/- 0.48 vs. post-Tr: 2.65 +/- 0.38 mmol.min(-1).kg wet wt(-1)), possibly due in part to lower pyruvate content (pre-Tr: 0.94 +/- 0.14 vs. post-Tr: 0.46 +/- 0.03 mmol/kg dry wt). The decreased pyruvate availability during exercise post-Tr may be due to a decreased muscle glycogenolytic rate (pre-Tr: 13.22 +/- 1.01 vs. post-Tr: 7.36 +/- 1.26 mmol.min(-1).kg dry wt(-1)). Decreased glycogenolysis was likely mediated, in part, by posttransformational regulation of Phos, as evidenced by smaller net increases in calculated muscle free ADP (pre-Tr: 111 +/- 16 vs. post-Tr: 84 +/- 10 micromol/kg dry wt) and P(i) (pre-Tr: 57.1 +/- 7.9 vs. post-Tr: 28.6 +/- 5.6 mmol/kg dry wt). We have demonstrated for the first time that several signals act to coordinately regulate Phos and PDH, and thus carbohydrate metabolism, in human skeletal muscle after 7 wk of endurance training.  相似文献   

12.
13.
The characteristics of glucose and amino acid metabolism over a 98-hour incubation period were studied in a primary culture of neonatal rat skeletal muscle cells. The cells formed large myotubes in culture, were spontaneously highly contractile, and had cell phosphocreatine levels exceeding ATP concentrations. Medium glucose fell from 7.2±0.2 to 1.5±0.1 mM between 0 and 98 hours; intracellular glucose was readily detectable, indicating glycolysis was limited by phosphorylation, not glucose transport. Alanine levels in the medium increased from 0.06±0.01 to 0.82±0.04 mM between 0 and 48 hours and decreased to 0.72±0.04 mM by 98 hours. The period of net alanine production correlated with the rise in the cell mass action ratio of the alanine aminotransferase reaction. Cell aspartate, glutamate, and calculated oxalacetate levels were inversely related to the cell NADH/NAD+ ratio, as represented by the intracellular lactate/pyruvate ratio (r=0.78–0.88). The branched chain amino acids (leucine, isoleucine, valine) were actively utilized, e.g., medium leucine fell from 0.70±0.01 to 0.30±0.06 mM between 0 and 98 hours. In addition, arginine and serine consumption was observed in conjunction with ornithine, proline, and glycine production. Conclusions: (1) A major driving force for the high rates of alanine production by skeletal muscle cells in tissue culture is the active utilization of branched chain amino acids. (2) Intracellular aspartate and glutamate pools are linked, probably via the malate-aspartate shuttle, to the cell NADH/NAD+ redox state. (3) Muscle cells in tissue culture metabolize significant amounts of arginine and serine in association with the production of ornithine and proline, and these pathways may possibly be related to creatine production.  相似文献   

14.
This study compared the effects of inspiring either a hyperoxic (60% O(2)) or normoxic gas (21% O(2)) while cycling at 70% peak O(2) uptake on 1) the ATP derived from substrate phosphorylation during the initial minute of exercise, as estimated from phosphocreatine degradation and lactate accumulation, and 2) the reliance on carbohydrate utilization and oxidation during steady-state cycling, as estimated from net muscle glycogen use and the activity of pyruvate dehydrogenase (PDH) in the active form (PDH(a)), respectively. We hypothesized that 60% O(2) would decrease substrate phosphorylation at the onset of exercise and that it would not affect steady-state exercise PDH activity, and therefore muscle carbohydrate oxidation would be unaltered. Ten active male subjects cycled for 15 min on two occasions while inspiring 21% or 60% O(2), balance N(2). Blood was obtained throughout and skeletal muscle biopsies were sampled at rest and 1 and 15 min of exercise in each trial. The ATP derived from substrate-level phosphorylation during the initial minute of exercise was unaffected by hyperoxia (21%: 52.2 +/- 11.1; 60%: 54.0 +/- 9.5 mmol ATP/kg dry wt). Net glycogen breakdown during 15 min of cycling was reduced during the 60% O(2) trial vs. 21% O(2) (192.7 +/- 25.3 vs. 138.6 +/- 16.8 mmol glycosyl units/kg dry wt). Hyperoxia had no effect on PDH(a), because it was similar to the 21% O(2) trial at rest and during exercise (21%: 2.20 +/- 0.26; 60%: 2.25 +/- 0.30 mmol.kg wet wt(-1).min(-1)). Blood lactate was lower (6.4 +/- 1.0 vs. 8.9 +/- 1.0 mM) at 15 min of exercise and net muscle lactate accumulation was reduced from 1 to 15 min of exercise in the 60% O(2) trial compared with 21% (8.6 +/- 5.1 vs. 27.3 +/- 5.8 mmol/kg dry wt). We concluded that O(2) availability did not limit oxidative phosphorylation in the initial minute of the normoxic trial, because substrate phosphorylation was unaffected by hyperoxia. Muscle glycogenolysis was reduced by hyperoxia during steady-state exercise, but carbohydrate oxidation (PDH(a)) was unaffected. This closer match between pyruvate production and oxidation during hyperoxia resulted in decreased muscle and blood lactate accumulation. The mechanism responsible for the decreased muscle glycogenolysis during hyperoxia in the present study is not clear.  相似文献   

15.
The suitability of an established myogenic line (L6) for the study of skeletal muscle intermediary metabolism was investigated. Myoblasts were grown in tissue culture for ten days at which time they had differentiated into multinucleated myotubes. Myotube preparations were then incubated for up to 96 hours in 10 ml of Dulbecco's modified Eagle medium containing 10% fetal calf serum. Glucose was utilized at a nearly linear rate, 3.0 nmol/min/mg protein. Intracellular glucose was detectable throughout the incubation, even when medium glucose was as low as 16 mg%. During the initial 28 hours of incubation, when net lactate production was observed, only 35% of the glucose utilized was converted to lactate. Alanine was produced in parallel to lactate at an average rate of 0.6 nmol/min/mg protein. In concert with active glutamine utilization, high rates of ammoniagenesis were observed as medium glutamine decreased from 3.3 mM to 0.49 mM and medium ammonia increased from 2.3 mM to 6.2 mM, between zero time and 96 hours of incubation, respectively. The cells maintained stable ATP and citrate levels, and physiologic intracellular lactate/pyruvate ratios (10–24) throughout 96 hours of incubation. These results suggest (1) glucose utilization by skeletal muscle in tissue culture is limited by phosphorylation, not transport; (2) as much as 50% of glucose-derived pyruvate enters mitochondrial pathways; (3) glutamine carbon may be utilized simultaneously with glucose consumption and this process accounts for high rates of ammoniagenesis.  相似文献   

16.
Our laboratory recently showed that six sessions of sprint interval training (SIT) over 2 wk increased muscle oxidative potential and cycle endurance capacity (Burgomaster KA, Hughes SC, Heigenhauser GJF, Bradwell SN, and Gibala MJ. J Appl Physiol 98: 1895-1900, 2005). The present study tested the hypothesis that short-term SIT would reduce skeletal muscle glycogenolysis and lactate accumulation during exercise and increase the capacity for pyruvate oxidation via pyruvate dehydrogenase (PDH). Eight men [peak oxygen uptake (VO2 peak)=3.8+/-0.2 l/min] performed six sessions of SIT (4-7x30-s "all-out" cycling with 4 min of recovery) over 2 wk. Before and after SIT, biopsies (vastus lateralis) were obtained at rest and after each stage of a two-stage cycling test that consisted of 10 min at approximately 60% followed by 10 min at approximately 90% of VO2 peak. Subjects also performed a 250-kJ time trial (TT) before and after SIT to assess changes in cycling performance. SIT increased muscle glycogen content by approximately 50% (main effect, P=0.04) and the maximal activity of citrate synthase (posttraining: 7.8+/-0.4 vs. pretraining: 7.0+/-0.4 mol.kg protein -1.h-1; P=0.04), but the maximal activity of 3-hydroxyacyl-CoA dehydrogenase was unchanged (posttraining: 5.1+/-0.7 vs. pretraining: 4.9+/-0.6 mol.kg protein -1.h-1; P=0.76). The active form of PDH was higher after training (main effect, P=0.04), and net muscle glycogenolysis (posttraining: 100+/-16 vs. pretraining: 139+/-11 mmol/kg dry wt; P=0.03) and lactate accumulation (posttraining: 55+/-2 vs. pretraining: 63+/-1 mmol/kg dry wt; P=0.03) during exercise were reduced. TT performance improved by 9.6% after training (posttraining: 15.5+/-0.5 vs. pretraining: 17.2+/-1.0 min; P=0.006), and a control group (n=8, VO2 peak=3.9+/-0.2 l/min) showed no change in performance when tested 2 wk apart without SIT (posttraining: 18.8+/-1.2 vs. pretraining: 18.9+/-1.2 min; P=0.74). We conclude that short-term SIT improved cycling TT performance and resulted in a closer matching of glycogenolytic flux and pyruvate oxidation during submaximal exercise.  相似文献   

17.
In recovery from exercise, phosphocreatine resynthesis results in the net generation of protons, while the net efflux of protons restores pH to resting values. Because proton efflux rate declines as pH increases, it appears to have an approximately linear pH-dependence. We set out to examine this in detail using recovery data from human calf muscle. Proton efflux rates were calculated from changes in pH and phosphocreatine concentration, measured by 31P magnetic resonance spectroscopy, after incremental dynamic exercise to exhaustion. Results were collected post hoc into five groups on the basis of end-exercise pH. Proton efflux rates declined approximately exponentially with time. These were rather similar in all groups, even when pH changes were small, so that the apparent rate constant (the ratio of efflux rate to pH change) varied widely. However, all groups showed a consistent pattern of decrease with time; the halftimes of both proton efflux rate and the apparent rate constant were longer at lower pH. At each time-point, proton efflux rates showed a significant pH-dependence [slope 17 (3) mmol · l−1 · min−1 · pH unit−1 at the start of recovery, mean (SEM)], but also a significant intercept at resting pH [16 (3) mmol · l−1 · min−1 at the start of recovery]. The intercept and the slope both decreased with time, with halftimes of 0.37 (0.06) and 1.4 (0.4) min, respectively. We conclude that over a wide range of end-exercise pH, net proton efflux during recovery comprises pH-dependent and pH-independent components, both of which decline with time. Comparison with other data in the literature suggests that lactate/proton cotransport can be only a small component of this initial recovery proton efflux. Accepted: 5 May 1997  相似文献   

18.
Eight healthy men cycled at a work load corresponding to approximately 70% of maximal O2 uptake (VO2max) to fatigue (exercise I). Exercise to fatigue at the same work load was repeated after 75 min of rest (exercise II). Exercise duration averaged 65 and 21 min for exercise I and II, respectively. Muscle (quadriceps femoris) content of glycogen decreased from 492 +/- 27 to 92 +/- 20 (SE) mmol/kg dry wt and from 148 +/- 17 to 56 +/- 17 (SE) mmol/kg dry wt during exercise I and II, respectively. Muscle and blood lactate were only moderately increased during exercise. The total adenine nucleotide pool (TAN = ATP + ADP + AMP) decreased and inosine 5'-monophosphate (IMP) increased in the working muscle during both exercise I (P less than 0.001) and II (P less than 0.01). Muscle content of ammonia (NH3) increased four- and eight-fold during exercise I and II, respectively. The working legs released NH3, and plasma NH3 increased progressively during exercise. The release of NH3 at the end of exercise II was fivefold higher than that at the same time point in exercise I (P less than 0.001, exercise I vs. II). It is concluded that submaximal exercise to fatigue results in a breakdown of the TAN in the working muscle through deamination of AMP to IMP and NH3. The relatively low lactate levels demonstrate that acidosis is not a necessary prerequisite for activation of AMP deaminase. It is suggested that the higher average rate of AMP deamination during exercise II vs. exercise I is due to a relative impairment of ATP resynthesis caused by the low muscle glycogen level.  相似文献   

19.
20.
The ability of human skeletal muscle to provide anaerobically derived ATP during short-term, intense activity is examined. The paper emphasizes the information obtained from direct measurements of substrates, intermediates, and products of the pathways in muscle that provide anaerobically derived ATP. The capacity of muscle to provide ATP via anaerobic pathways is approximately 370 mmol/kg dry muscle (dm) during dynamic exercise lasting approximately 3 min. Anaerobic glycolysis provided approximately 80%, phosphocreatine (PCr) degradation approximately 16%, and depletion of the ATP store approximately 4% of the total ATP provided. When the blood flow to the working muscles is reduced or occluded, the anaerobic capacity decreases to approximately 300 mmol/kg dm. This reduction is due to a lower glycolytic capacity associated with an inability to remove lactate from the muscles. Directly measured maximal rates of anaerobically derived ATP provision from PCr degradation and glycolysis during intense muscular activity are each approximately 9-10 mmol.kg-1 dm.s-1. Evidence suggests that both of these pathways are activated instantaneously at the onset of maximal activity. Spring training does little to the capacity or rates of the pathways, although a 10-20% increase in glycolytic ATP provision has been reported. The only study comparing direct and indirect estimates of the anaerobic capacity in humans suggests that O2 deficit measured at the mouth accurately predicts the anaerobic capacity of a single muscle group and that O2 debt does not. There are many unresolved issues regarding the capacity of the PCr and glycogenolytic--glycolytic systems to provide ATP during short-term intense muscular activity in humans.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号