首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过在塑料水箱中水培空心菜(Ipomoea aquatica),研究浮床空心菜对氮循环细菌数量、分布和氮素净化效果的影响。研究结果表明,浮床空心菜氮循环细菌总数、氨化菌、亚硝化菌、硝化菌数量极显著高于空白对照(P<0.01),浮床空心菜反硝化菌数量与空白对照差异不显著(P>0.05);氨化菌在根内、根面、水体中的分布差异不大,亚硝化菌主要分布在根内和根面,硝化菌主要分布在根面,反硝化菌主要分布在水体中;试验结束时,浮床空心菜系统和空白对照对氨氮的去除率分别为91.8%和88.5%,对总氮的去除率分别为48.2%和62.1%。通过浮床空心菜各种氮循环细菌数量、分布与氮素浓度的相关性分析,发现浮床空心菜系统中氮素的去除是植物吸收,根系表面的氨化作用,以及水体中硝化、反硝化共同作用的结果,而空白对照系统中氮素的主要去除途径是微生物的硝化/反硝化作用以及氨挥发。  相似文献   

2.
The freshwater benthic pearl clam, Hyriopsis schlegeli, was experimentally exposed to Cryptosporidium parvum oocysts, and it was verified that the oocysts were eliminated predominantly via the fecal route, retaining their ability to infect cultured cells (HCT-8). The total fecal oocyst elimination rate was more than 90% within 5 days after exposure to the oocysts. H. schlegeli was able to survive in the final settling pond of a sewage plant for long periods, as confirmed by its pearl production. In the light of these findings, the clam was placed in the final settling pond in a trial to test its long-term efficacy in depleting oocysts contaminating the pond water. The number of clams placed was set to ensure a theoretical oocyst removal rate of around 50%, and the turbidity and the density of feed microbes in the overflow trough water of the pond were about 35% and 40 to 60% lower, respectively, than in the control water throughout the year. It was found that the clam feces containing oocysts were sufficiently heavy for them to settle to the bottom of the pond, despite the upward water flow. From these results, we concluded that efficient depletion of oocysts in the sewage water of small or midscale sewage treatment plants can be achieved by appropriate placement of H. schlegeli clams.  相似文献   

3.
Non-native species can alter ecosystem functions performed by native species often by displacing influential native species. However, little is known about how ecosystem functions may be modified by trait-mediated indirect effects of non-native species. Oysters and other reef-associated filter feeders enhance water quality by controlling nutrients and contaminants in many estuarine environments. However, this ecosystem service may be mitigated by predation, competition, or other species interactions, especially when such interactions involve non-native species that share little evolutionary history. We assessed trophic and other interference effects on the critical ecosystem service of water filtration in mesocosm experiments. In single-species trials, typical field densities of oysters (Crassostrea virginica) reduced water-column chlorophyll a more strongly than clams (Mercenaria mercenaria). The non-native filter-feeding reef crab Petrolisthes armatus did not draw down chlorophyll a. In multi-species treatments, oysters and clams combined additively to influence chlorophyll a drawdown. Petrolisthes did not affect net filtration when added to the bivalve-only treatments. Addition of the predatory mud crab Panopeus herbstii did not influence oyster feeding rates, but it did stop chlorophyll a drawdown by clams. However, when Petrolisthes was also added in with the clams, the clams filtered at their previously unadulterated rates, possibly because Petrolisthes drew the focus of predators or habituated the clams to crab stimuli. In sum, oysters were the most influential filter feeder, and neither predators nor competitors interfered with their net effect on water-column chlorophyll. In contrast, clams filtered less, but were more sensitive to predators as well as a facilitative buffering effect of Petrolisthes, illustrating that non-native species can indirectly affect an ecosystem service by aiding the performance of a native species.  相似文献   

4.
Tolerance to drought remains poorly described for Jatropha curcas accessions from different geographical and climatic origins. To address this issue we studied the response of two J. curcas accessions, one from Indonesia (wet tropical climate) and the other from Cape Verde islands (semi-arid climate). Potted seedlings (with 71 days) of both accessions were subjected to continuous well watered conditions (control) or to a drought stress period followed by re-watering. To mimic natural conditions in which drought stress develops gradually, stress was imposed progressively by reducing irrigation (10% reduction every 2 days, on a weight base), for a period of 28 days, until a field capacity of 15% (maximum stress) was achieved, followed by one week under well-watered conditions. We measured soil and plant water status, growth and biomass partitioning, leaf morphology, leaf gas exchange and chlorophyll a fluorescence. Both accessions maintained high leaf relative water content (70–80%) even at maximum stress. Net photosynthesis (An) was not affected by mild to moderate stress but it abruptly dropped at severe stress. This was due to reduced stomatal conductance, which showed earlier decline than An. Plant growth (stem elongation, leaf emergence and total leaf area) was reduced, minimizing water loss, but no significant differences were found between accessions. Drought stress did not reduce chlorophyll contents but led to reduced chlorophyll a/b. Both accessions showed fast recovery of both stomatal and photochemical parameters suggesting a good tolerance to water stress. Both J. curcas accessions showed a-dehydration-avoidant behaviour, presenting a typical water saving strategy due to strict stomatal regulation, regardless of their provenance.  相似文献   

5.
Understanding the dynamics of performance and bacterial community of biofilm under oligotrophic stress is necessary for the process optimization and risk management in biofilm systems for raw water pretreatment. In this study, biofilm obtained from a pilot-scale biofilm reactor was inoculated into a pilot-scale experimental tank for the treatment of oligotrophic raw water. Results showed that the removal of NH4 +–N was impaired in biofilm systems when influent NH4 +–N was less than 0.35 mg L?1 or NH4 +–N loading rate of less than 7.51 mg L?1 day?1. The dominant bacteria detected in biofilm of different carrier were obvious distinct from phylum to genus level under oligotrophic stress. The dominant bacteria in elastic stereo media carrier changed from Proteobacteria (51.1%) to Firmicutes (32.7%), while Proteobacteria was always dominant in suspended ball carrier after long-term operation under oligotrophic conditions. Oligotrophic stress largely decreased the functional bacteria for the removal of nitrogen and organics including many genera in Proteobacteria and Nitrospirae, but increased several genera with spore forming organisms or potential bacterial pathogens in ESM carrier mainly including Bacillus, Mycobacterium, Pseudomonas, etc.  相似文献   

6.
In three submersed freshwater macrophyte species grown in a greenhouse over broad experimental ranges of light and water temperature, total chlorophyll (a + b) increased with decreasing irradiance and, in two of the three species, with increasing temperature. In contrast, light and temperature had only minor and inconsistent influences on chlorophyll a : b in these species.From results of this and other investigations involving experimentally-controlled light conditions, it appears that total chlorophyll in submersed macrophytes is inversely related to irradiance above photon flux densities minimally required for plant growth. However, the general applicability of this statement to the species investigated here (or others) is uncertain, because thermal gradients in macrophyte dominated littoral zones may promote gradients in macrophyte total chlorophyll with depth in a direction opposite to that expected solely in response to light.  相似文献   

7.
Removal of lake sediments is one effective approach to reduce internal nutrients of eutrophic lakes, the consequence of which is, however, unavoidably exacerbated by the disposal of the dredged sludge. A novel method is reported here to recycle the dredged sludge in an eco-friendly manner by combining solidification/stabilization treatment and floating-bed technology. The objective of the present study was to utilize the dredged lake sludge to produce ecological sludge floating-bed (ESFB) and to evaluate the water purification efficacy of ESFB combined concurrently with Acorus calamus. In doing so, dredged sludge (main material), treated industrial slag (binder) and expanded perlite (lightweight agent) were introduced as the raw materials for the production of ESFB, and then physical strength, water-resistance, toxicity characteristic leaching procedure were measured and field trial was carried out, correspondingly. For the water purification experiment, the mesocosm systems were made to evaluate the nitrogen, phosphorus and Chl-a removal efficacy of planted ESFB. The results show that with the optimum mixing ratio (sludge: 72.5%, BOF slag: 12.5% and expanded perlite: 15%), the solidified product has strong compressive strength of 1.55 MPa and flexural strength of 0.24 MPa. The heavy metal concentrations in the leachate are far lower than the detection limit. The relative softening coefficient and water absorption of solidified product were 90.3% and 11.3%. The results of the consequent water purification experiment suggest that the planted ESFB have promising removal efficiency on nitrogen, phosphorus and Chl-a. The final relative growth rate (RGR) of A. calamus was 0.31. The highest removal rate of total nitrogen (TN), total phosphorus (TP), ammonium nitrogen (NH4+-N), total dissolve phosphorus (TDP) and chlorophyll-a (Chl-a) reached 36.3%, 35.7%, 44.3%, 38.1% and 47.9%, respectively.  相似文献   

8.
Early stages of biofilm succession in a lentic freshwater environment   总被引:1,自引:0,他引:1  
Sekar  R.  Venugopalan  V.P.  Nandakumar  K.  Nair  K.V.K.  Rao  V.N.R. 《Hydrobiologia》2004,512(1-3):97-108
Initial events of biofilms development and succession were studied in a freshwater environment at Kalpakkam, East Coast of India. Biofilms were developed by suspending Perspex (Plexiglass) panels for 15 days at bimonthly intervals from January 1996 to January 1997. Changes in biofilm thickness, biomass, algal density, chlorophyll a concentration and species composition were monitored. The biofilm thickness, biomass, algal density and chlorophyll a concentration increased with biofilms age and colonization was greater during summer (March, May and July) than other months. The initial colonization was mainly composed of Chlorella vulgaris, Chlorococcum humicolo (green algae), Achnanthes minutissima, Cocconeis scutellum, C. placentula (diatoms) and Chroococcus minutus (cyanobacteria) followed by colonial green algae such as Pediastrum tetras, P. boryanumand Coleochaete scutata, cyanobacteria (Gloeocapsa nigrescens), low profile diatoms (Amphora coffeaeformis, Nitzschia amphibia, and Gomphonema parvulum) and long stalked diatoms (Gomphoneis olivaceumand Gomphonema lanceolatum). After the 10th day, the community consisted of filamentous green algae (Klebshormidium subtile, Oedogonium sp., Stigeoclonium tenue and Ulothrix zonata) and cyanobacteria (Calothrix elenkinii, Oscillatoria tenuis and Phormidium tenue). Based on the percentage composition of different groups in the biofilm, three phases of succession could be identified: the first phase was dominated by green algae, the second by diatoms and the third phase by cyanobacteria. Seasonal variation in species composition was observed but the sequence of colonization was similar throughout the study period.  相似文献   

9.
The purpose of this microcosm experiment was to determine whether the freshwater snail Bellamya aeruginosa affected phytoplankton community and water quality. Three treatments of different snail densities (low, medium, and high) and a control (no snails) were set up in twelve enclosures. Chlorophyll a (chl a), transparency (SD), water temperature (WT), dissolved oxygen (DO), pH, nutrients, and abundance of phytoplankton were determined on days 0, 3, 7, 11, 15, 23, 31, 46, and 61. The total chl a concentration decreased and SD increased in the treatments, whereas the proportion of cyanobacteria chl a increased. Bellamya seemed to result indirectly in a decrease of DO, by reducing the algal biomass rather than by respiration. A significant decrease in nitrogen–phosphorus ratios was observed in the treatments. In the enclosed system the abundance of colonial green algae decreased over time whereas that of cyanobacteria and flagellates increased. Principal response curves showed that both phytoplankton community and water quality in the medium and high-density treatments were consistently different from in the control. These results indicate that the presence of snails resulted in a significant change of water physicochemical properties and phytoplankton community.  相似文献   

10.
We investigated gonad development and reproductive effort (RE) of the Manila clam Ruditapes philippinarum at Jeju Island, Korea. Gonad maturation and RE were determined using histology and an indirect enzyme-linked immunosorbent assay (ELISA). In June 2006, most of the clams (80%) in the lagoon were in the resting stage. Spawning clams first appeared in late July, and most clams spawned from early August to mid-September. The condition index increased gradually from early July to late August, then declined from early to mid-September, suggesting that spawning occurred during this period. The gonadosomatic index assessed by ELISA also increased dramatically from June (0.9), peaked in early August (19.7) then declined from late August to mid-September, indicating that clams at the study site had only one spawning pulse during the spawning period. Spawning at Jeju Island was one month later than Manila clams on the west coast of Korea. The delayed spawning and low RE of the clams could be in part, be explained by lower food availability, as the level of chlorophyll-a recorded in this study was much lower than that found in water from the west and south coast.  相似文献   

11.
Rose Atoll is an important refuge for giant clams (Tridacna maxima) that have been heavily exploited elsewhere in Samoa. During an extensive survey of six islands in the archipelago (50.5?ha surveyed in 420 transects), 97% of a total of 2853 clams were recorded at the atoll (42% of area surveyed). Clam densities were highest in the atoll lagoon, especially around the bases of the pinnacles (mean density=8870?ha-1). Estimated population size for the small atoll (615?ha) was approximately 27800 clams. Twenty four percent of the population consisted of mature clams (?12?cm), 70% of which occupied the pinnacles and shallow lagoon habitat. Estimated mortality was low (Z=0.3) and primarily due to natural mortality (M=0.3). Maximum recorded size (L max ) and asymptotic mean size (L ) were 25.0?cm and 27.8?cm respectively.  相似文献   

12.
Some species of the genus Arcobacter are considered to be emerging food pathogens. With respect to recent vegetable-borne outbreaks, the aim of this work was to investigate the occurrence and diversity of Arcobacter within the production chain of a spinach-processing plant by a combination of cultivation and molecular methods. Samples including spinach, water, and surface biofilm were taken over a period of three years from the entire processing line. Ten 16S rRNA (rrs) gene clone libraries were constructed and analysed using amplified rRNA gene restriction analysis (ARDRA). Approximately 1200 clones were studied that resulted in 44 operational taxonomic units (OTUs). Sequences with high similarities to Arcobacter cryaerophilus (13% of clones, 3 OTUs), A. ellisii (4%, 6 OTUs), A. suis (15%, 3 OTUs), and the type strain of A. nitrofigilis (1%, 7 OTUs) were identified. This represents the first report of the detection of the recently described species A. ellisii, A. suis and, in addition, A. venerupis from alternative habitats. A total of 67% of the clones (22 OTUs) could not be assigned to a genus, which indicated the presence of uncharacterised Arcobacter species.  相似文献   

13.
We conducted a two-year study to assess how plankton composition and water quality impacts the distribution, densities, condition, growth, biochemical composition and reproductive success of juvenile and adult Mercenaria mercenaria (L.) in Long Island's south shore estuaries (LISSE). Juvenile and adult hard clams were placed in suspended cages at 10 locations ranging from the ocean inlets to locations furthest from inlets in Shinnecock Bay (SB), the eastern-most barrier island estuary of LISSE, and Great South Bay (GSB), the western-most barrier island estuary of LISSE. Phytoplankton community composition, temperature, salinity, dissolved oxygen, and clam growth and condition were monitored bi-weekly. A benthic survey of M. mercenaria densities in both estuaries was also conducted. In both 2004 and 2005, juveniles in central bay locations had significantly faster growth rates, lower mortality rates, and higher lipid content relative to sites closest to the inlets. Adult hard clams closest to the Fire Island inlet also had significantly lower condition indexes compared to mid-bay stations and densities of wild M. mercenaria populations in both estuaries were lower near inlets compared to locations further from inlets. In addition to substantial spatial differences within each estuary, differences were also observed between the embayments as juvenile clams in SB grew approximately twice as fast as those in GSB and adults in SB had significantly greater condition indexes than clams in GSB. Instantaneous juvenile growth rates were highly correlated to temperatures below 24 °C (p < 0.0001) and were also significantly correlated with several indicators of suspended food quantity and food quality (centric diatoms, phytoplankton cells > 5 μm, and dinoflagellates (inverse correlation)) which co-varied independently of temperature. In sum, these results suggest tidal exchange in LISSE promotes a water quality regime (cold water, with low food concentration) which would reduce the growth of juvenile clams and the overall reproductive success of adult hard clams located near newly-formed ocean inlets. However, increased exchange for regions furthest from inlets could enhance juvenile clam growth rates by reducing summer peak temperatures (> 24 °C) and densities of poor food sources (dinoflagellates).  相似文献   

14.
Estuaries of major rivers provide important stopover habitat for migratory birds throughout the world. These estuaries experience large amounts of freshwater inputs from spring runoff. Understanding how freshwater inputs affect food supply for migrating birds, and how birds respond to these changes will be essential for effective conservation of critical estuarine habitats. We estimated trends over time in counts of Western Sandpiper (Calidris mauri) and Pacific Dunlin (Calidris alpina pacifica) during northward migration on the Fraser River estuary, British Columbia, Canada, where shorebirds feed extensively on intertidal biofilm and invertebrates. We also examined whether counts were correlated with a suite of environmental variables related to local conditions (precipitation, temperature, wind speed and direction, solar radiation, tidal amplitude, and discharge rates from the Fraser River) during a total of 540 surveys from 1991 to 2019. Counts of Western Sandpiper declined ~54% (−2.0% per annum) over the entire study period, and 23% from 2009 to 2019 (−0.9% per annum). Counts of Pacific Dunlin did not show a statistically significant change over the study period. Counts of shorebirds were lower when discharge from the Fraser River was high, which we propose results from a complex interaction between the abrupt changes in salinity and the estuarine food web related to the quantity or quality of intertidal biofilm. Counts were also higher when tidal amplitude was lower (neap tides), potentially related to longer exposure times of the mudflats than during spring tides. Effects of wind are likely related to birds delaying departure from the stopover site during unfavorable wind conditions. The negative trend in migrating Western Sandpipers is consistent with declines in nonbreeding areas as observed in Christmas Bird Counts. Understanding causes of population change in migratory shorebirds highlights the need for research on mechanistic pathways in which freshwater inputs affect food resources at estuarine stopovers.  相似文献   

15.
Since periphytic biofilm is an important source of food in lotic ecosystems, it is important to understand how key ecological factors affect the accrual and loss of algal biomass and sediment in the biofilm. We designed a field experiment to evaluate the effects of mesohabitat type (pools and riffles), grazing fish (control and exclusion), and substrate roughness (smooth and rough) on chlorophyll a, ash-free dry mass (AFDM), and total dry mass in a subtropical stream. Mesohabitat type did not influence the effect of grazers on periphyton. However, rough substrates accumulated more total dry mass in pools than in riffles, while smooth substrates accumulated similar amounts of total dry mass in both mesohabitats. The accrual of AFDM and chlorophyll a was greater on rough than on smooth substrates, regardless of mesohabitat. Treatments without fish accrued more total dry mass, AFDM, and chlorophyll a than treatments with fish, showing that fish play a major role in this stream by removing sediment and algal biomass. These results suggest that habitat simplification in the scale of substrate roughness and loss of large grazers may impact the accrual and loss of algal biomass and sediment in lotic ecosystems.  相似文献   

16.
Freshwater mussels (Family Unionidae) are among the most imperiled group of organisms in the world, with nearly 65% of North American species considered endangered. Anthropogenic disturbances, including altered flow regimes, habitat alteration, and pollution, are the major driver of this group''s decline. We investigated the effects of tertiary treated municipal wastewater effluent on survivorship, growth, and condition of freshwater mussels in experimental cages in a small Central Texas stream. We tested the effluent effects by measuring basic physical parameters of native three ridge mussels (Amblema plicata) and of non-native Asian clams (Corbicula fluminea), before and after 72-day exposure at four sites above and below a municipal wastewater treatment plant outfall. Survivorship and growth of the non-native Asian clams and growth and condition indices of the native three ridge mussels were significantly higher at the reference site above the outfall than in downstream sites. We attribute this reduction in fitness below the outfall to elevated nutrient and heavy metal concentrations, and the potential presence of other untested-for compounds commonly found in municipal effluent. These results, along with an absence of native mussels below the discharge, indicate a significant negative impact of wastewater effluent on both native and non-native mussels in the stream.  相似文献   

17.
A pot experiment was conducted in a glasshouse to clarify and quantify the effect of plant part, water regime, growth period, and cultivar on carbon isotope discrimination (CID), and to analyze the relationship between CID, stomatal behavior and water-use efficiency (WUE). The experiment was comprised of two upland rice (Oryza sativa L.) cultivars and three water regimes (100, 70, and 40% of saturation moisture) in a completely randomized design. Plants were harvested at tillering, flowering, and maturity. No significant cultivar differences in above-ground dry matter-based WUE (WUEA) and total dry matter-based WUE (WUET) were observed. WUEA (and WUET) increased with water stress up to tillering, but decreased with water stress after tillering. Significant cultivar differences in CID in all the analyzed plant parts were observed at all harvest times. Reduction in CID with water stress was greatest at tillering, and the effect was less pronounced at flowering and at maturity. At each harvest, the effect was most pronounced in newly developed plant parts. Root and grain tended to have the lowest CID values, and stem the highest, at all harvest times. A negative relationship was observed between CID measured at tillering and WUEA (and WUET) measured over the period from seedling to tillering, whereas a reverse relationship was obtained between CID measured at flowering and WUEA (and WUET) measured over the period from tillering to flowering, and an unclear relationship between CID measured at maturity and WUEA (and WUET) measured over the period from flowering to maturity. The ratio of the intercellular and atmospheric concentration of CO2 (Ci/Ca) were closely associated with CID throughout the water regimes when one cultivar was considered, however, cultivar differences in CID were not related to variations in Ci/Ca. The results indicate that significant cultivar difference existed in CID in all the analyzed plant parts at all harvest times, while corresponding difference in WUEA (and WUET) between the cultivars was not necessarily consistent. Abbreviations: WUE – water-use efficiency; WUEi – instantaneous WUE (or leaf transpiration efficiency); ADM – above-ground dry matter; TDM – total dry matter; WUEA– ADM-based WUE; WUET– TDM-based WUE} CID – carbon isotope discrimination; NL – the newest leaves; FEL – recently fully expanded leaves; FL – flag leaves; P – photosynthesis rate; g – leaf stomatal conductance to water vapor; Ci– intercellular CO2 concentration; Ca– atmospheric CO2 concentration; T – transpiration rate; gs – total conductance of CO2  相似文献   

18.
Flavobacterium columnare is a bacterial fish pathogen that affects many freshwater species worldwide. The natural reservoir of this pathogen is unknown, but its resilience in closed aquaculture systems posits biofilm as the source of contagion for farmed fish. The objectives of this study were (i) to characterize the dynamics of biofilm formation and morphology under static and flow conditions and (ii) to evaluate the effects of temperature, pH, salinity, hardness, and carbohydrates on biofilm formation. Nineteen F. columnare strains, including representatives of all of the defined genetic groups (genomovars), were compared in this study. The structure of biofilm was characterized by light microscopy, confocal laser scanning microscopy, and scanning electron microscopy. F. columnare was able to attach to and colonize inert surfaces by producing biofilm. Surface colonization started within 6 h postinoculation, and microcolonies were observed within 24 h. Extracellular polysaccharide substances and water channels were observed in mature biofilms (24 to 48 h). A similar time course was observed when F. columnare formed biofilm in microfluidic chambers under flow conditions. The virulence potential of biofilm was confirmed by cutaneous inoculation of channel catfish fingerlings with mature biofilm. Several physicochemical parameters modulate attachment to surfaces, with the largest influence being exerted by hardness, salinity, and the presence of mannose. Maintenance of hardness and salinity values within certain ranges could prevent biofilm formation by F. columnare in aquaculture systems.  相似文献   

19.
The distribution and abundance of chironomid larvae were investigated in experimental rice fields at the Bukit Merah Agricultural Experimental Research Station, Penang, Northern Malaysia. The mean density of chironomid larvae during the period of the study (including two cultivation seasons) was 121 larvae m?2. Chironomus kiiensis (48.6%) was the most abundant species, while four other species, Polypedilum trigonus (4.8%), Tanytarsus formosanus (22.6%), Tanypus punctipennis (13.9%), and Clinotanypus sp. (10.1%) occurred less frequently, although they were present during all wet phases of rice cultivation. Generally, water depth, rice plant height, conductivity, and nitrate–nitrogen content of the water only weakly influenced the abundance of the larvae. Other environmental parameters such as pH, dissolved oxygen, daytime water temperature, total suspended solids, phosphate, and sediment total organic matter did not significantly affect larval populations. The community structure of chironomids in this rice agroecosystem followed the dynamic changes of the field including agronomic practices, patterns of water availability, and phases of rice plant growth.  相似文献   

20.
稻作系统对淡水养殖池塘富营养化的修复效应及应用前景   总被引:4,自引:0,他引:4  
冯金飞  李凤博  吴殿星  方福平 《生态学报》2014,34(16):4480-4487
养殖池塘富营养化是目前制约我国淡水养殖业可持续发展的关键因素。稻作系统具有显著的净化水质能力,如何将稻作系统和淡水养殖系统进行生态耦合实现氮、磷养分的循环利用,是淡水养殖池塘富营养化生态修复的一个重要研究方向。通过文献调研和实地考察,综合分析了浮床种稻-原位修复、稻田湿地-异位修复、稻鱼生态种养3种耦合方式对养殖池塘富营养化的修复效应,以及氮、磷养分综合利用效率,归纳总结了不同模式的技术特点以及应用中存在的问题,并就修复技术研究和生态补偿提出了培育生态修复专用水稻品种,加强稻作系统生态修复理论研究和技术推广,建立养殖池塘富营养化修复的生态补偿机制等建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号