首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sonic hedgehog (Shh) is crucial for motoneuron development in chick and mouse. However, zebrafish embryos homozygous for a deletion of the shh locus have normal numbers of motoneurons, raising the possibility that zebrafish motoneurons may be specified differently. Unlike other vertebrates, zebrafish express three hh genes in the embryonic midline: shh, echidna hedgehog (ehh) and tiggywinkle hedgehog (twhh). Therefore, it is possible that Twhh and Ehh are sufficient for motoneuron formation in the absence of Shh. To test this hypothesis we have eliminated, or severely reduced, all three Hh signals using mutations that directly or indirectly reduce Hh signaling and antisense morpholinos. Our analysis shows that Hh signals are required for zebrafish motoneuron induction. However, each of the three zebrafish Hhs is individually dispensable for motoneuron development because the other two can compensate for its loss. Our results also suggest that Twhh and Shh are more important for motoneuron development than Ehh.  相似文献   

3.
Endocardial cells form the inner endothelial layer of the heart tube, surrounded by the myocardium. Signaling pathways that regulate endocardial cell specification and differentiation are largely unknown and the origin of endocardial progenitors is still being debated. To study pathways that regulate endocardial differentiation in a zebrafish model system, we isolated zebrafish NFATc1 homolog which is expressed in endocardial but not vascular endothelial cells. We further demonstrate that Hedgehog (Hh) but not VegfA or Notch signaling is required for early endocardial morphogenesis. Pharmacological inhibition of Hh signaling with cyclopamine treatment resulted in nearly complete loss of the endocardial marker expression. Simultaneous knockdown of the two zebrafish sonic hedgehog homologs, shh and twhh or Hh co-receptor smoothened (smo) resulted in similar defects in endocardial morphogenesis. Inhibition of Hh signaling resulted in the loss of fibronectin (fn1) expression in the presumptive endocardial progenitors as early as the 10-somite stage which suggests that Hh signaling is required for the earliest stages of endocardial specification. We further show that the endoderm plays a critical role in migration but not specification or differentiation of the endocardial progenitors while notochord-derived Hh is a likely source for the specification and differentiation signal. Mosaic analysis using cell transplantation shows that Smo function is required cell-autonomously within endocardial progenitor cells. Our results argue that Hh provides a critical signal to induce the specification and differentiation of endocardial progenitors.  相似文献   

4.
Prostaglandin endoperoxide synthases (PTGS), commonly referred to as cyclooxygenases (COX-1 and COX-2), catalyze the key step in the synthesis of biologically active prostaglandins (PGs), the conversion of arachidonic acid (AA) into prostaglandin H2 (PGH2). Although COX and prostaglandins have been implicated in a wide variety of physiologic processes, an evaluation of the role of prostaglandins in early mammalian development has been difficult due to the maternal contribution of prostaglandins from the uterus: COX null mouse embryos develop normally during embryogenesis. Here, we verify that inhibition of COX-1 results in zebrafish gastrulation arrest and shows that COX-1 expression becomes restricted to the posterior mesoderm during somitogenesis and to posterior mesoderm organs at pharyngula stage. Inhibition of COX-1 signaling after gastrulation results in defective vascular tube formation and shortened intersomitic vessels in the posterior body region. These defects are rescued completely by PGE(2) treatment or, to a lesser extent, by PGF(2alpha), but not by other prostaglandins, such as PGI(2), TxB(2), or PGD(2). Functional knockdown of COX-1 using antisense morpholino oligonucleotide translation interference also results in posterior vessel defect in addition to enlarged posterior nephric duct, phenocopying the defects caused by inhibition of COX-1 activity. Together, we provide the first evidence that COX-1 signaling is required for development of posterior mesoderm organs, specifically in the vascular tube formation and posterior nephric duct development.  相似文献   

5.
Autocrine VEGF signaling is required for vascular homeostasis   总被引:14,自引:0,他引:14  
Vascular endothelial growth factor (VEGF) is essential for developmental and pathological angiogenesis. Here we show that in the absence of any pathological insult, autocrine VEGF is required for the homeostasis of blood vessels in the adult. Genetic deletion of vegf specifically in the endothelial lineage leads to progressive endothelial degeneration and sudden death in 55% of mutant mice by 25 weeks of age. The phenotype is manifested without detectable changes in the total levels of VEGF mRNA or protein, indicating that paracrine VEGF could not compensate for the absence of endothelial VEGF. Furthermore, wild-type, but not VEGF null, endothelial cells showed phosphorylation of VEGFR2 in the absence of exogenous VEGF. Activation of the receptor in wild-type cells was suppressed by small molecule antagonists but not by extracellular blockade of VEGF. These results reveal a cell-autonomous VEGF signaling pathway that holds significance for vascular homeostasis but is dispensable for the angiogenic cascade.  相似文献   

6.
7.
8.
Mouse embryonic stem cells can differentiate in vitro into cells of the nervous system, neurons and glia. This differentiation mimics stages observed in vivo, including the generation of primitive ectoderm and neurectoderm in embryoid body culture. We demonstrate here that embryonic stem cell lines mutant for components of the Hedgehog signaling cascade are deficient at generating neurectoderm-containing embryoid bodies. The embryoid bodies derived from mutant cells are also unable to respond to retinoic acid treatment by producing nestin-positive neural stem cells, a response observed in cultures of heterozygous cells, and contain cores apparently arrested at the primitive ectoderm stage. The mutant cultures are also deficient in their capacity to differentiate into mature neurons and glia. These data are consistent with a role for Hedgehog signaling in generating neurectoderm capable of producing the appropriate neuronal and glial progenitors in ES cell culture.  相似文献   

9.
Studies with embryonic explants and embryonic stem cells have suggested a role for Hedgehog (Hh) signaling in hematopoiesis. However, targeted deletion of Hh pathway components in the mouse has so far failed to provide in vivo evidence. Here we show that zebrafish embryos mutant in the Hh pathway or treated with the Hh signaling inhibitor cyclopamine display defects in adult hematopoietic stem cell (HSC) formation but not in primitive hematopoiesis. Hh is required in the trunk at three consecutive stages during vascular development: for the medial migration of endothelial progenitors of the dorsal aorta (DA), for arterial gene expression, and for the formation of intersomitic vessel sprouts. Interference with Hh signaling during the first two stages also interferes with HSC formation. Furthermore, HSC and DA formation also share Vegf and Notch requirements, which further distinguishes them from primitive hematopoiesis and underlines their close relationship during vertebrate development.  相似文献   

10.
Certain developmental mutants of Myxococcus xanthus can be complemented (extracellularly) by wild-type cells. Insertions of Tn5 lac (a transposon which couples beta-galactosidase expression to exogenous promoters) into developmentally regulated genes were used to investigate extracellular complementation of the A group mutations. A- mutations reduced developmental beta-galactosidase expression from 18 of 21 Tn5 lac insertions tested and that expression was restored to A- Tn5 lac cells by adding wild-type cells. The earliest A-dependent Tn5 lac normally expresses beta-galactosidase at 1.5 hr of development indicating a developmental block at 1-2 hr in A- mutants. A substance which can rescue the expression of this early Tn5 lac is released by wild-type (A+) but not by A- cells. This substance appears in a cell-free wash of wild-type cells or in starvation buffer conditioned by wild-type cells 1-2 hr after development is initiated. The conditioned starvation buffer also restores normal morphological development to an A- mutant.  相似文献   

11.
Hedgehog ligands interact with receptor complexes containing Patched (PTC) and Smoothened (SMO) proteins to regulate many aspects of development. The mutation W535L (SmoM2) in human Smo is associated with basal cell skin cancers, causes constitutive, ligand-independent signaling through the Hedgehog pathway, and provides a powerful means to test effects of unregulated Hedgehog signaling. Expression of SmoM2 in Xenopus embryos leads to developmental anomalies that are consistent with known requirements for regulated Hedgehog signaling in the eye and pancreas. Additionally, it results in failure of midgut epithelial cytodifferentiation and of the intestine to lengthen and coil. The midgut mesenchyme shows increased cell numbers and attenuated expression of the differentiation marker smooth muscle actin. With the exception of the pancreas, differentiation of foregut and hindgut derivatives is unaffected. The intestinal epithelial abnormalities are reproduced in embryos or organ explants treated directly with active recombinant hedgehog protein. Ptc mRNA, a principal target of Hedgehog signaling, is maximally expressed at stages corresponding to the onset of the intestinal defects. In advanced embryos expressing SmoM2, Ptc expression is remarkably confined to the intestinal wall. Considered together, these findings suggest that the splanchnic mesoderm responds to endodermal Hedgehog signals by inhibiting the transition of midgut endoderm into intestinal epithelium and that attenuation of this feedback is required for normal development of the vertebrate intestine.  相似文献   

12.
In the embryonic mouse retina, retinoic acid (RA) is unevenly distributed along the dorsoventral axis: RA-rich zones in dorsal and ventral retina are separated by a horizontal RA-poor stripe that contains the RA-inactivating enzyme CYP26A1. To explore the developmental role of this arrangement, we studied formation of the retina and its projections in Cyp26a1 null-mutant mice. Expression of several dorsoventral markers was not affected, indicating that CYP26A1 is not required for establishing the dorsoventral retina axis. Analysis of the mutation on a RA-reporter mouse background confirmed, as expected, that the RA-poor stripe was missing in the retina and its projections at the time when the optic axons first grow over the diencephalon. A day later, however, a gap appeared both in retina and retinofugal projections. As explanation, we found that CYP26C1, another RA-degrading enzyme, had emerged centrally in a narrower domain within the RA-poor stripe. While RA applications increased retinal Cyp26a1 expression, they slightly reduced Cyp26c1. These observations indicate that the two enzymes function independently. The safeguard of the RA-poor stripe by two distinct enzymes during later development points to a role in maturation of a significant functional feature like an area of higher visual acuity that develops at its location.  相似文献   

13.
Hedgehog (Hh) signal transduction is directly required in zebrafish DRG precursors for proper development of DRG neurons. Zebrafish mutations in the Hh signaling pathway result in the absence of DRG neurons and the loss of expression of neurogenin1 (ngn1), a gene required for determination of DRG precursors. Cell transplantation experiments demonstrate that Hh acts directly on DRG neuron precursors. Blocking Hh pathway activation at later stages of embryogenesis with the steroidal alkaloid, cyclopamine, further reveals that the requirement for a Hh signal response in DRG precursors correlates with the onset of ngn1 expression. These results suggest that Hh signaling may normally promote DRG development by regulating expression of ngn1 in DRG precursors.  相似文献   

14.
During the development of the spinal cord, proliferative neural progenitors differentiate into postmitotic neurons with distinct fates. How cells switch from progenitor states to differentiated fates is poorly understood. To address this question, we studied the differentiation of progenitors in the zebrafish spinal cord, focusing on the differentiation of Kolmer-Agduhr″ (KA″) interneurons from lateral floor plate (LFP) progenitors. In vivo cell tracking demonstrates that KA″ cells are generated from LFP progenitors by both symmetric and asymmetric cell divisions. A photoconvertible reporter of signaling history (PHRESH) reveals distinct temporal profiles of Hh response: LFP progenitors continuously respond to Hh, while KA″ cells lose Hh response upon differentiation. Hh signaling is required in LFP progenitors for KA″ fate specification, but prolonged Hh signaling interferes with KA″ differentiation. Notch signaling acts permissively to maintain LFP progenitor cells: activation of Notch signaling prevents differentiation, whereas inhibition of Notch signaling results in differentiation of ectopic KA″ cells. These results indicate that neural progenitors depend on Notch signaling to maintain Hh responsiveness and rely on Hh signaling to induce fate identity, whereas proper differentiation depends on the attenuation of both Notch and Hh signaling.  相似文献   

15.
Hedgehog (Hh) and Wingless (Wg) morphogens specify cell fate in a concentration-dependent manner in the Drosophila wing imaginal disc. Proteoglycans, components of the extracellular matrix, are involved in Hh and Wg stability, spreading, and reception. In this study, we demonstrate that the glycosyl-phosphatidyl-inositol (GPI) anchor of the glypican Dally-like (Dlp) is required for its apical internalization and its subsequent targeting to the basolateral compartment of the epithelium. Dlp endocytosis from the apical surface of Hh-receiving cells catalyzes the internalization of Hh bound to its receptor Patched (Ptc). The cointernalization of Dlp with the Hh/Ptc complex is dynamin dependent and necessary for full-strength Hh signaling. We also demonstrate that Wg is secreted apically in the disc epithelium and that apicobasal trafficking of Dlp allows Wg transcytosis to favor Wg spreading along the basolateral compartment. Thus, Dlp endocytosis is a common regulatory mechanism of both Hh and Wg morphogen action.  相似文献   

16.
Recent evidence indicates that acquisition of artery or vein identity during vascular development is governed, in part, by genetic mechanisms. The artery-specific expression of a number of Notch signaling genes in mouse and zebrafish suggests that this pathway may play a role in arterial-venous cell fate determination during vascular development. We show that loss of Notch signaling in zebrafish embryos leads to molecular defects in arterial-venous differentiation, including loss of artery-specific markers and ectopic expression of venous markers within the dorsal aorta. Conversely, we find that ectopic activation of Notch signaling leads to repression of venous cell fate. Finally, embryos lacking Notch function exhibit defects in blood vessel formation similar to those associated with improper arterial-venous specification. Our results suggest that Notch signaling is required for the proper development of arterial and venous blood vessels, and that a major role of Notch signaling in blood vessels is to repress venous differentiation within developing arteries. Movies available on-line  相似文献   

17.
Common fragile sites are loci that form chromosome gaps or breaks when DNA synthesis is partially inhibited. Fragile sites are prone to deletions, translocations, and other rearrangements that can cause the inactivation of associated tumor suppressor genes in cancer cells. It was previously shown that ATR is critical to fragile-site stability and that ATR-deficient cells have greatly elevated fragile-site expression (A. M. Casper, P. Nghiem, M. F. Arlt, and T. W. Glover, Cell 111:779-789, 2002). Here we demonstrate that mouse and human cells deficient for BRCA1, due to mutation or knockdown by RNA interference, also have elevated fragile-site expression. We further show that BRCA1 functions in the induction of the G(2)/M checkpoint after aphidicolin-induced replication stalling and that this checkpoint function is involved in fragile-site stability. These data indicate that BRCA1 is important in fragile-site stability and that fragile sites are recognized by the G(2)/M checkpoint pathway, in which BRCA1 plays a key role. Furthermore, they suggest that mutations in BRCA1 or interacting proteins could lead to rearrangements at fragile sites in cancer cells.  相似文献   

18.
Aberrant vascular smooth muscle cell (VSMC) growth is associated with many vascular diseases including atherosclerosis, hypertension, and restenosis. Platelet-derived growth factor-BB (PDGF) induces VSMC proliferation through control of cell cycle progression and protein and DNA synthesis. Multiple signaling cascades control VSMC growth, including members of the mitogen-activated protein kinase (MAPK) family as well as phosphatidylinositol 3-kinase (PI3K) and its downstream effector AKT/protein kinase B (PKB). Little is known about how these signals are integrated by mitogens and whether there are common receptor-proximal signaling control points that synchronize the execution of physiological growth functions. The nonreceptor proline-rich tyrosine kinase 2 (PYK2) is activated by a variety of growth factors and G protein receptor agonists in VSMC and lies upstream of both PI3K and MAPK cascades. The present study investigated the role of PYK2 in PDGF signaling in cultured rat aortic VSMC. PYK2 downregulation attenuated PDGF-dependent protein and DNA synthesis, which correlated with inhibition of AKT and extracellular signal-regulated kinases 1 and 2 (ERK1/2) but not p38 MAPK activation. Inhibition of PDGF-dependent protein kinase B (AKT) and ERK1/2 signaling by inhibitors of upstream kinases PI3K and MEK, respectively, as well as downregulation of PYK2 resulted in modulation of the G(1)/S phase of the cell cycle through inhibition of retinoblastoma protein (Rb) phosphorylation and cyclin D(1) expression, as well as p27(Kip) upregulation. Cell division kinase 2 (cdc2) phosphorylation at G(2)/M was also contingent on PDGF-dependent PI3K-AKT and ERK1/2 signaling. These data suggest that PYK2 is an important upstream mediator in PDGF-dependent signaling cascades that regulate VSMC proliferation.  相似文献   

19.
Hedgehog is required for murine yolk sac angiogenesis.   总被引:13,自引:0,他引:13  
Blood islands, the precursors of yolk sac blood vessels, contain primitive erythrocytes surrounded by a layer of endothelial cells. These structures differentiate from extra-embryonic mesodermal cells that underlie the visceral endoderm. Our previous studies have shown that Indian hedgehog (Ihh) is expressed in the visceral endoderm both in the visceral yolk sac in vivo and in embryonic stem (ES) cell-derived embryoid bodies. Differentiating embryoid bodies form blood islands, providing an in vitro model for studying vasculogenesis and hematopoiesis. A role for Ihh in yolk sac function is suggested by the observation that roughly 50% of Ihh(-/-) mice die at mid-gestation, potentially owing to vascular defects in the yolk sac. To address the nature of the possible vascular defects, we have examined the ability of ES cells deficient for Ihh or smoothened (Smo), which encodes a receptor component essential for all hedgehog signaling, to form blood islands in vitro. Embryoid bodies derived from these cell lines are unable to form blood islands, and express reduced levels of both PECAM1, an endothelial cell marker, and alpha-SMA, a vascular smooth muscle marker. RT-PCR analysis in the Ihh(-/-) lines shows a substantial decrease in the expression of Flk1 and Tal1, markers for the hemangioblast, the precursor of both blood and endothelial cells, as well as Flt1, an angiogenesis marker. To extend these observations, we have examined the phenotypes of embryo yolk sacs deficient for Ihh or SMO: Whereas Ihh(-/-) yolk sacs can form blood vessels, the vessels are fewer in number and smaller, perhaps owing to their inability to undergo vascular remodeling. Smo(-/-) yolk sacs arrest at an earlier stage: the endothelial tubes are packed with hematopoietic cells, and fail to undergo even the limited vascular remodeling observed in the Ihh(-/-) yolk sacs. Our study supports a role for hedgehog signaling in yolk sac angiogenesis.  相似文献   

20.
As insulin's movement from plasma to muscle interstitium is rate limiting for its metabolic action, defining the regulation of this movement is critical. Here, we address whether caveolin-1 is required for the first step of insulin's transendothelial transport, its uptake by vascular endothelial cells (ECs), and whether IL-6 and TNFα affect insulin uptake or caveolin-1 expression. Uptake of FITC-labeled insulin was measured using confocal microscopy in control bovine aortic ECs (bAECs), in bAECs in which caveolin-1 was either knocked down or overexpressed, in murine ECs from caveolin-1(-/-) mice and in bAECs exposed to inflammatory cytokines. Knockdown of caveolin-1 expression in bAECs using specific caveolin-1 siRNA reduced caveolin-1 mRNA and protein expression by ~ 70%, and reduced FITC-insulin uptake by 67% (P < 0.05 for each). Over-expression of caveolin-1 increased insulin uptake (P < 0.05). Caveolin-1-null mouse aortic ECs did not take up insulin and re-expression of caveolin-1 by transfecting these cells with FLAG-tagged caveolin-1 DNA rescued FITC-insulin uptake. Knockdown of caveolin-1 significantly reduced both insulin receptor protein level and insulin-stimulated Akt1 phosphorylation. Knockdown of caveolin-1 also inhibited insulin-induced caveolin-1 and IGF-1 receptor translocation to the plasma membrane. Compared with controls, IL-6 or TNFα (20 ng/ml for 24 h) inhibited FITC-insulin uptake as well as the expression of caveolin-1 mRNA and protein (P < 0.05 for each). IL-6 or TNFα also significantly reduced plasma membrane-associated caveolin-1. Thus, we conclude that insulin uptake by ECs requires expression of caveolin-1 supporting a role for caveolae mediating insulin uptake. Proinflammatory cytokines may inhibit insulin uptake, at least in part, by inhibiting caveolin-1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号