首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epithelial cells are polarized, with apical and basal compartments demarcated by tight and adherens junctions. Proper establishment of these subapical junctions is critical for normal development and histogenesis. We report the characterization of the gene let-413 which has a critical role in assembling adherens junctions in Caenorhabditis elegans. In let-413 mutants, adherens junctions are abnormal and mislocalized to more basolateral positions, epithelial cell polarity is affected and the actin cytoskeleton is disorganized. The LET-413 protein contains one PDZ domain and 16 leucine-rich repeats with high homology to proteins known to interact with small GTPases. Strikingly, LET-413 localizes to the basolateral membrane. We suggest that LET-413 acts as an adaptor protein involved in polarizing protein trafficking in epithelial cells.  相似文献   

2.
The apicobasal polarization of epithelia is critical for many aspects of kidney function. Over the last decade there have been major advances in our understanding of the mechanisms that underlie this polarity. Critical to this understanding has been the identification of protein complexes on the apical and basolateral sides of epithelial cells that act in a mutually antagonistic manner to define these domains. Concomitant with the creation of apical and basolateral domains is the formation of highly specialized cell-cell junctions including adherens junctions and tight junctions. Recent research points to variability in the polarity and junctional complexes amongst different species and between different cell types of the kidney. Defects in apicobasal polarity are prominent in several disorders including acute renal failure and polycystic kidney disease.  相似文献   

3.
Polarized cells contain numerous membrane domains, but it is unclear how the formation of these domains is coordinated to create a single integrated cell architecture. Genetic screens of Drosophila melanogaster embryos have identified three complexes, each containing one of the PDZ domain proteins--Stardust (Sdt), Bazooka (Baz) and Scribble (Scrib)--that control epithelial polarity and formation of zonula adherens. We find that these complexes can be ordered into a single regulatory hierarchy that is initiated by cell adhesion-dependent recruitment of the Baz complex to the zonula adherens. The Scrib complex represses apical identity along basolateral surfaces by antagonizing Baz-initiated apical polarity. The Sdt-containing Crb complex is recruited apically by the Baz complex to counter antagonistic Scrib activity. Thus, a finely tuned balance between Scrib and Crb complex activity sets the limits of the apical and basolateral membrane domains and positions cell junctions. Our data suggest a model in which the maturation of epithelial cell polarity is driven by integration of the sequential activities of PDZ-based protein complexes.  相似文献   

4.
The function of epithelial tissues is dependent on their polarised architecture, and loss of cell polarity is a hallmark of various diseases. Here we analyse cell polarisation in the follicular epithelium of Drosophila, an epithelium that arises by a mesenchymal-epithelial transition. Although many epithelia are formed by mesenchymal precursors, it is unclear how they polarise. Here we show how lateral, apical, and adherens junction proteins act stepwise to establish polarity in the follicular epithelium. Polarisation starts with the formation of adherens junctions, whose positioning is controlled by combined activities of Par-3, β-catenin, and Discs large. Subsequently, Par-6 and aPKC localise to the apical membrane in a Par-3-dependent manner. Apical membrane specification continues by the accumulation of the Crumbs complex, which is controlled by Par-3, Par-6, and aPKC. Thus, our data elucidate the genetic mechanisms leading to the stepwise polarisation of an epithelium with a mesenchymal origin.  相似文献   

5.
Cellularization of the Drosophila embryo results in the formation of a cell monolayer with many characteristics of a polarized epithelium. We have used antibodies specific to cellular junctions and nascent plasma membranes to study the formation of the zonula adherens (ZA) in relation to the establishment of basolateral membrane polarity. The same approach was then used as a test system to identify X-linked zygotically active genes required for ZA formation. We show that ZA formation begins during cellularization and that the basolateral membrane domain is established at mid-gastrulation. By creating deficiencies for defined regions of the X chromosome, we have identified genes that are required for the formation of the ZA and the generation of basolateral membrane polarity. We show that embryos mutant for both stardust (sdt) and bazooka (baz) fail to form a ZA. In addition to the failure to establish the ZA, the formation of the monolayered epithelium is disrupted after cellularization, resulting in formation of a multilayered cell sheet by mid-gastrulation. SEM analysis of mutant embryos revealed a conversion of cells exhibiting epithelial characteristics into cells exhibiting mesenchymal characteristics. To investigate how mutations that affect an integral component of the ZA itself influence ZA formation, we examined embryos with reduced maternal and zygotic supply of wild-type Arm protein. These embryos, like embryos mutant for both sdt and baz, exhibit an early disruption of ZA formation. These results suggest that early stages in the assembly of the ZA are critical for the stability of the polarized blastoderm epithelium.  相似文献   

6.
The choroid plexus (CP) epithelium develops from the ependyma that lines the ventricular system, and plays a critical role in the development and function of the brain. In addition to being the primary site of CSF production, the CP maintains the blood-CSF barrier via apical tight junctions between epithelial cells. Here we show that the 22-member γ-protocadherin (γ-Pcdh) family of cell adhesion molecules, which we have implicated previously in synaptogenesis and neuronal survival, is highly expressed by both CP epithelial and ependymal cells, in which γ-Pcdh protein localization is, surprisingly, tightly restricted to the apical membrane. Multi-label immunostaining demonstrates that γ-Pcdhs are excluded from tight junctions, basolateral adherens junctions, and apical cilia tufts. RT-PCR analysis indicates that, as a whole, the CP expresses most members of the Pcdh-γ gene family. Immunostaining using novel monoclonal antibodies specific for single γ-Pcdh proteins shows that individual epithelial cells differ in their apically localized γ-Pcdh repertoire. Restricted mutation of the Pcdh-γ locus in the choroid plexus and ependyma leads to significant reductions in ventricular volume, without obvious disruptions of epithelial apical-basal polarity. Together, these results suggest an unsuspected role for the γ-Pcdhs in CSF production and demonstrate a surprising molecular heterogeneity in the CP epithelium.  相似文献   

7.
Changes in cell shape and position drive morphogenesis in epithelia and depend on the polarized nature of its constituent cells. The spectrin-based membrane skeleton is thought to be a key player in the establishment and/or maintenance of cell shape and polarity. We report that apical beta(Heavy)-spectrin (beta(H)), a terminal web protein that is also associated with the zonula adherens, is essential for normal epithelial morphogenesis of the Drosophila follicle cell epithelium during oogenesis. Elimination of beta(H) by the karst mutation prevents apical constriction of the follicle cells during mid-oogenesis, and is accompanied by a gross breakup of the zonula adherens. We also report that the integrity of the migratory border cell cluster, a group of anterior follicle cells that delaminates from the follicle epithelium, is disrupted. Elimination of beta(H) prevents the stable recruitment of alpha-spectrin to the apical domain, but does not result in a loss of apicobasal polarity, as would be predicted from current models describing the role of spectrin in the establishment of cell polarity. These results demonstrate a direct role for apical (alphabeta(H))(2)-spectrin in epithelial morphogenesis driven by apical contraction, and suggest that apical and basolateral spectrin do not play identical roles in the generation of apicobasal polarity.  相似文献   

8.
9.
The gastrointestinal epithelium, which is covered by a single layer of epithelial cells, including enterocytes, intraepithelial lymphocytes, goblet cells, microfold cells, and dendritic cells, serves as a protective barrier separating luminal contents from the underlying tissue compartments. The epithelium plays an important role in the first line of host defense against a variety of pathogens, as well as maintaining the homeostasis in gastrointestinal tract. All these epithelial cells express junction complex proteins and form cell junctions such as adherens and TJs, although the TJs have small differences among different epithelial cells. The TJs, located most apically on the lateral membrane, are required for the proper formation of epithelial cell polarity as well as sustaining of the mucosal barrier. Furthermore, TJs are the key cell junctions modulating the paracellular pathway. Understanding the diversity of the TJs between intestinal epithelial cells and their different roles in defending pathogens' invasion and modifying the paracellular pathway are attractive to exploration.  相似文献   

10.
BACKGROUND: The Par-3/Par-6/aPKC complex is a key regulator of cell polarity in a number of systems. In Drosophila, this complex acts at the zonula adherens (adherens junctions) to establish epithelial polarity and helps to orient the mitotic spindle during asymmetric neuroblast divisions. In MDCKII cells, this complex localizes to the zonula occludens (tight junctions) and appears to regulate epithelial polarity. However, the in vivo role of this complex during vertebrate embryogenesis is not known, due to the lack of relevant mutations. RESULTS: We have positionally cloned the zebrafish heart and soul (has) mutation, which affects the morphogenesis of several embryonic tissues, and show that it encodes atypical protein kinase C lambda (aPKC lambda). We find that loss of aPKC lambda affects the formation and maintenance of the zonula adherens in the polarized epithelia of the retina, neural tube, and digestive tract, leading to novel phenotypes, such as the formation of multiple lumens in the developing intestine. In addition, has mutants display defects in gut looping and endodermal organ morphogenesis that appear to be independent of the defects in epithelial polarity. Finally, we show that loss of aPKC lambda leads to defects in spindle orientation during progenitor cell divisions in the neural retina. CONCLUSIONS: Our results show that aPKC lambda is required for the formation and maintenance of the zonula adherens during early epithelial development in vertebrates and demonstrate a previously undescribed yet critical role for this protein in organ morphogenesis. Furthermore, our studies identify the first genetic locus regulating the orientation of cell division in vertebrates.  相似文献   

11.
Proper assembly and maintenance of epithelia are critical for normal development and homeostasis. Here, using the Drosophila ovary as a model, we identify a role for the B1 isoform of the ecdysone receptor (EcR-B1) in this process. We performed a reverse genetic analysis of EcR-B1 function during oogenesis and demonstrate that silencing of this receptor isoform causes loss of integrity and multilayering of the follicular epithelium. We show that multilayered follicle cells lack proper cell polarity with altered distribution of apical and basolateral cell polarity markers including atypical-protein kinase C (aPKC), Discs-large (Dlg), and Scribble (Scrib) and aberrant accumulation of adherens junctions and F-actin cytoskeleton. We find that the EcR-B1 isoform is required for proper follicle cell polarity both during early stages of oogenesis, when follicle cells undergo the mitotic cell cycle, and at midoogenesis when these cells stop dividing and undergo several endocycles. In addition, we show that the EcR-B1 isoform is required during early oogenesis for follicle cell survival and that disruption of its function causes apoptotic cell death induced by caspase.  相似文献   

12.
Several protein complexes that are involved in epithelial apicobasal polarity have been identified. However, the mechanism by which these complexes interact to form an integrated polarized cell morphology remains unclear. Crumbs (Crb) and Lethal giant larvae (Lgl) are components of distinct complexes that regulate epithelial polarization in Drosophila melanogaster, but may not interact directly as they localize to the apical and basolateral membrane, respectively. Nevertheless, a genetic screen identifies marked functional interactions between crb and lgl. These interactions extend to other genes within the crb (stardust, sdt) and lgl (discs large, dlg; scribble, scrib) pathways. Our findings suggest that the crb and lgl pathways function competitively to define apical and basolateral surfaces. They also suggest that in the absence of lgl pathway activity, the crb pathway is not required to maintain epithelial polarity. Moreover, we show that crb and lgl cooperate in zonula adherens formation early in development. At later stages, epithelial cells in these mutants acquire normal polarity, indicating the presence of compensatory mechanisms. We find that bazooka (baz) functions redundantly with crb/sdt to support apical polarity at mid- to late-embryogenesis. Despite regaining cell polarity, however, epithelial cells in crb and lgl pathway mutants fail to re-establish normal overall tissue architecture, indicating that the timely acquisition of polarized cell structure is essential for normal tissue organization.  相似文献   

13.
14.
Activation of the Met receptor tyrosine kinase through its ligand, hepatocyte growth factor (HGF), promotes an epithelial-mesenchymal transition and cell dispersal. However, little is known about the HGF-dependent signals that regulate these events. HGF stimulation of epithelial cell colonies leads to the enhanced recruitment of the CrkII and CrkL adapter proteins to Met-dependent signaling complexes. We provide evidence that signals involving CrkII and CrkL are required for the breakdown of adherens junctions, the spreading of epithelial colonies, and the formation of lamellipodia in response to HGF. The overexpression of a CrkI SH3 domain mutant blocks these HGF-dependent events. In addition, the overexpression of CrkII or CrkL promotes lamellipodia formation, loss of adherens junctions, cell spreading, and dispersal of colonies of breast cancer epithelial cells in the absence of HGF. Stable lines of epithelial cells overexpressing CrkII show enhanced activation of Rac1 and Rap1. The Crk-dependent breakdown of adherens junctions and cell spreading is inhibited by the expression of a dominant negative mutant of Rac1 but not Rap1. These findings provide evidence that Crk adapter proteins play a critical role in the breakdown of adherens junctions and the spreading of sheets of epithelial cells.  相似文献   

15.
Cell rearrangements require dynamic changes in cell–cell contacts to maintain tissue integrity. We investigated the function of Cdc42 in maintaining adherens junctions (AJs) and apical polarity in the Drosophila melanogaster neuroectodermal epithelium. About one third of cells exit the epithelium through ingression and become neuroblasts. Cdc42-compromised embryos lost AJs in the neuroectoderm during neuroblast ingression. In contrast, when neuroblast formation was suppressed, AJs were maintained despite the loss of Cdc42 function. Loss of Cdc42 function caused an increase in the endocytotic uptake of apical proteins, including apical polarity factors such as Crumbs, which are required for AJ stability. In addition, Cdc42 has a second function in regulating endocytotic trafficking, as it is required for the progression of apical cargo from the early to the late endosome. The Par complex acts as an effector for Cdc42 in controlling the endocytosis of apical proteins. This study reveals functional interactions between apical polarity proteins and endocytosis that are critical for stabilizing dynamic basolateral AJs.  相似文献   

16.
Desmosomes (DSMs), together with adherens junctions (AJs) and tight junctions (TJs), constitute the apical cell junctional complex (AJC). While the importance of the apical and basolateral polarity machinery in the organization of AJs and TJs is well established, how DSMs are positioned within the AJC is not understood. Here we use highly polarized DLD1 cells as a model to address how DSMs integrate into the AJC. We found that knockout (KO) of the desmosomal ARM protein Pkp3, but not other major DSM proteins, uncouples DSMs from the AJC without blocking DSM assembly. DLD1 cells also exhibit a prominent extraDSM pool of Pkp3, concentrated in tricellular (tC) contacts. Probing distinct apicobasal polarity pathways revealed that neither the DSM’s association with AJC nor the extraDSM pool of Pkp3 are abolished in cells with defects in Scrib module proteins responsible for basolateral membrane development. However, a loss of the apical polarity protein, Par3, completely eliminates the extraDSM pool of Pkp3 and disrupts AJC localization of desmosomes, dispersing these junctions along the entire length of cell–cell contacts. Our data are consistent with a model whereby Par3 facilitates DSM assembly within the AJC, controlling the availability of an assembly competent pool of Pkp3 stored in tC contacts.  相似文献   

17.
18.
The tight junction: a multifunctional complex   总被引:2,自引:0,他引:2  
  相似文献   

19.
We have characterized the modulation of cell-cell adhesion and the structure of adherens junctions in the human colon adenocarcinoma HT-29 cell line that differentiates into enterocytes after glucose substitution for galactose in the medium. We demonstrate that differentiated cells (HT-29 Gal) rapidly established E-cadherin-mediated interactions in aggregation assays. This effect is not due to an increase in E-cadherin expression during this early stage of cell differentiation, but rather results from the maturation of preexisting adherens junctions. These junctions are characterized by the redistribution of E-cadherin to the basolateral membrane and its co-localization with the actin cytoskeleton. Subcellular fractionation studies indicate that actin-associated E-cadherins bind beta-catenin and p120ctn. Furthermore, the p120ctn/E-cadherin association is upregulated. These data reveal a cooperative interaction between p120ctn and E-cadherin that corresponds to mature functional adherens junctions able to initiate tight cell-cell adhesion required for epithelium architecture and further affirm the gatekeeper role of p120ctn.  相似文献   

20.
Adherens junctions (AJs) are crucial for maintaining the integrity of epithelial tissues and are often disrupted during tumour progression. Rho family proteins have been shown to regulate adherens junctions. We find that activation of the effector kinase ROCK and acto-myosin contraction disrupts AJs downstream of Rho. In contrast, signalling through the Rho effector Dia1 is required to ensure a dynamically stable interface between cells and the maintenance of adherens junction complexes. The ability of Dia1 to regulate the actin network is crucial for the localization of adherens junction components to the cell periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号