首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most of type II restriction endonucleases show an absolute requirement for divalent metal ions as cofactors for DNA cleavage. While Mg2+ is the natural cofactor other metal ions can substitute it and mediate the catalysis, however Ca2+ (alone) only supports DNA binding. To investigate the role of Mg2+ in DNA cleavage by restriction endonucleases, we have studied the Mg2+ and Mn2+ concentration dependence of DNA cleavage by SepMI and EhoI. Digestion reactions were carried out at different Mg2+ and Mn2+ concentrations at constant ionic strength. These enzymes showed different behavior regarding the ions requirement, SepMI reached near maximal level of activity between 10 and 20 mM while no activity was detected in the presence of Mn2+ and in the presence of Ca2+ cleavage activity was significantly decreased. However, EhoI was more highly active in the presence of Mn2+ than in the presence of Mg2+ and can be activated by Ca2+. Our results propose the two-metal ion mechanism for EhoI and the one-metal ion mechanism for SepMI restriction endonuclease. The analysis of the kinetic parameters under steady state conditions showed that SepMI had a Km value for pTrcHisB DNA of 6.15 nM and a Vmax of 1.79 × 10?2 nM min?1, while EhoI had a Km for pUC19 plasmid of 8.66 nM and a Vmax of 2 × 10?2 nM min?1.  相似文献   

2.
Denitrification beds are a cost-effective technology for removing nitrate from point source discharge. To date, field trials and operational beds have primarily used wood media as the carbon source; however, the use of alternative more labile carbon media could provide for increased removal rate, lower installation costs and reduced bed size. While previous laboratory experiments have investigated the potential of alternative carbon sources, these studies were typically of short duration and small scale and did not necessarily provide reliable information for denitrification bed design purposes. To address this issue, we compared nitrate removal, hydraulic and nutrient leaching characteristics of nine different carbon substrates in 0.2 m3 barrels, at 14 and 23.5 °C over a 23-month period. Mean nitrate removal rates for the period 10–23 months were 19.8 and 15 g N m?3 d?1 (maize cobs), 7.8 and 10.5 g N m?3 d?1 (green waste), 5.8 and 7.8 g N m?3 d?1 (wheat straw), 3.0 and 4.9 g N m?3 d?1 (softwood), and 3.3 and 4.4 g N m?3 d?1 (hardwood) for the 14 and 23.5 °C treatments, respectively. Maize cobs provided a 3–6.5-fold increase in nitrate removal over wood media, without prohibitive decrease in hydraulic conductivity, but had higher rates of nutrient leaching at start-up. Significant difference in removal rate occurred between the 14 and 23.5 °C treatments, with the mean Q10 temperature coefficient = 1.6 for all media types in the period 10–23 months.  相似文献   

3.
The properties and behaviour of solids retained in a pilot plant constituted of an up-flow anaerobic sludge blanket (UASB) reactor and two constructed wetlands (CWs) were monitored over a 3-year period. The UASB (25.5 m3) was fed with raw municipal wastewater at a flow rate of 61–112 m3 d?1 and a volumetric loading rate (VLR) of 0.75–1.70 kg TCOD m?3 d?1. The CWs (75 m2 each) were operated in series and received a fraction (17–20 m3 d?1) of the UASB effluent. The applied surface loading rates (SLR) were in the range of 3800–8700 g TCOD m?2 d?1 (UASB) and 11–15 g BOD5 m?2 d?1 (CWs). The overall system removed 95% TSS, 85% TCOD and 87% BOD5 on average. For influent VSS, the UASB removed 72.1% and gave a hydrolysis of 63.5%, while the average surplus sludge generation was 8.7%. Over the 3-year period, TSS and VSS accumulated in the CWs at rates of 1.07 and 0.56 kg m?2 year?1, respectively. The aerobic biodegradability of the accumulated solids ranged from 23 to 92 mg O2 g VSS?1 d?1 and increased downstream in the CWs. About 59% of the VSS that entered the CWs was removed by hydrolysis, while 24% accumulated on granular media. These low solids accumulation rates were especially remarkable considering the high COD and BOD5 loading rates applied. The system lay-out appear to be promising in terms of preventing clogging.  相似文献   

4.
《Process Biochemistry》2007,42(3):344-351
A strategy that optimization of medium compositions for maximum biomass followed by feeding of sucrose for maximum polysaccharide synthesis was developed for enhancing polysaccharide production in suspension culture of protocorm-like bodies (PLBs) of Dendrobium huoshanense C.Z. Tang et S.J. Cheng. In growth stage, the original half-strength MS medium was optimized with carbon sources, nitrogen sources and metal ion combinations. The effects of different carbon sources on PLBs growth were remarkable and sucrose at 35 g l−1 was the most suitable. Sole nitrate nitrogen of 30 mmol l−1 was the best for PLBs growth. Metal ions (Ca2+, Fe2+, Mn2+ and Zn2+) showed different influences on PLBs growth. The optimal concentration of Ca2+, Fe2+, Mn2+ and Zn2+ was 4.5 mmol l−1, 0.1 mmol l−1, 0.5 mmol l−1 and 0.06 mmol l−1, respectively. In the optimized medium (sucrose, nitrate, Ca2+, Fe2+, Mn2+ and Zn2+ concentration as described above, the other component concentration seen in half-strength MS), 33.9 g DW l−1 PLBs were harvested after 30 days of culture and biomass increase was improved 245% as compared with that in the original medium. In production stage, polysaccharide synthesis was significantly improved by the feeding sucrose. The maximum polysaccharide production (22 g l−1) was obtained in the case of 50 g l−1 sucrose feeding at day 30 of culture, which was about 109-fold higher than that in the original medium without feeding of sucrose.  相似文献   

5.
《农业工程》2014,34(3):170-177
In order to evaluate the potential effects of rest grazing on organic carbon storage on the Stipa baicalensis steppe in Inner Mongolia, compared the S. baicalensis steppes after rest grazing for 3 years, 6 years, and 9 years, using potassium dichromate heating method, this study analyzed the organic carbon storage of plant and soil in the steppes among different periods of rest grazing. The results indicated that as the rest grazing years prolonged, the biomass included above-ground parts, litters and underground plant parts(roots) of the plant communities all increased, meanwhile the carbon content of the biomass increased with the rest grazing years prolonged. For the zero rest grazing (RG0) steppe and the steppes after a rest grazing of 3 years (RG3a), 6 years (RG6a), 9 years (RG9a), the carbon storage in above-ground parts of plant communities were 42.60 g C/m2, 66.33 g C/m2, 83.46 g C/m2, 100.29 g C/m2 respectively; the carbon storage of litters were 7.85 g C/m2, 9.12 g C/m2, 9.18 g C/m2, 11.54 g C/m2 separately; the carbon storage of underground plant parts (0–100 cm) were 281.40 g C/m2, 576.38 g C/m2, 745.33 g C/m2, 1279.61 g C/m2 respectively; and the carbon storage in 0–100 cm soil were 22991.14 g C/m2, 24687.75 g C/m2, 26564.86 g C/m2,33041.55 g C/m2. The results suggested that as the rest grazing years prolonged, the organic carbon storage in plant communities and soil increased. The carbon storage of underground plant parts and soil organic carbon mainly concentrated in 0–40 cm soil. After rest grazing for 3 years, 6 years, and 9 years, the increased soil organic carbon were as the 81.14%, 85.84%, and 89.46% of the total increased carbon; From the perspective of carbon sequestration cost, the total cost of RG3a, RG6a and RG9a were 2903.40 RMB/hm2, 5806.80 RMB/hm2, and 8710.20 RMB/hm2. The cost reduced with the extension of rest grazing years, 0.17 RMB/kg C, 0.16 RMB/kg C, 0.09 RMB/kg C for RG3a, RG6a and RG9a respectively. From the growth characteristics of grassland plants, the spring was one of the two avoid grazing periods, timely rest grazing could effectively restore and update grassland vegetation, and was beneficial to the sustainable use of grassland. From the available data, the organic carbon storage of RG9a was the highest, while the cost of carbon sequestration was the lowest. Therefore, spring rest grazing should be encouraged to continue for it was proved to be a very efficient grassland use measures.  相似文献   

6.
Response surface methodology (RSM) has been used to optimize the critical parameters responsible for higher Cd2+ removal by a unicellular cyanobacterium Synechocystis pevalekii. A three-level Box–Behnken factorial design was used to optimize pH, biomass and metal concentration for Cd2+ removal. A coefficient of determination (R2) value (0.99), model F-value (86.40) and its low p-value (F < 0.0001) along with lower value of coefficient of variation (5.61%) indicated the fitness of response surface quadratic model during the present study. At optimum pH (6.48), biomass concentration (0.25 mg protein ml?1) and metal concentration (5 μg ml?1) the model predicted 4.29 μg ml?1 Cd2+ removal and experimentally, 4.27 μg ml?1 Cd2+ removal was obtained.  相似文献   

7.
Ca2+ and Mg2+ content of cellulose fibres is of relevance for a wide range of applications e.g. textile processing, pulp/paper, food. Sorption of Ca2+ and Mg2+ ions were found on lyocell type regenerated cellulose fibres. Higher affinity was found for Ca2+ ions compared to Mg2+ ions. At pH 9, fibre saturation was observed at a calcium binding capacity of 18–20 mmol/kg. A carboxylic group content of 18 mmol COOH per kg fibre material was determined based on the Methylene Blue absorption. This indicates a 1:1 molar stoichiometry between the carboxylic groups present in the fibres and the bound Ca2+ ions. Thus it is proposed that the salt in fibre shows the general composition (Cell-O? Ca2+ X?), X? being an anion bound in the salt to achieve charge neutrality.The sorption of Ca2+ also can be demonstrated by complex formation with 1,2-dihydroxy-9,10-anthraquinone (alizarin) which forms a red-violet Ca2+-complex. Colour fixation thus can be used as an indicator for the Ca2+-ions bound in the fibre.  相似文献   

8.
The effect of Ca2+ applied in high concentrations (50 and 300 µM) was addressed on the generation of reactive oxygen species in isolated mitochondria from guinea-pig brain. The experiments were performed in the presence of ADP, a very effective inhibitor of mitochondrial permeability transition. Moderate increase in H2O2 release from mitochondria was induced by Ca2+ applied in 50 µM, but not in 300 µM concentration as measured with Amplex red fluorescent assay starting with a delay of 100-150 sec after exposure to Ca2+. Parallel measurements of membrane potential (ΔΨm) by safranine fluorescence showed a transient depolarization by Ca2+ followed by the recovery of ΔΨm to a value, which was more negative than that observed before addition of Ca2+ indicating a relative hyperpolarization. NAD(P)H fluorescence was also increased by Ca2+ given in 50 µM concentration. In mitochondria having high ΔΨm in the presence of oligomycin or ATP, the basal rate of release of H2O2 was significantly higher than that observed in a medium containing ADP and Ca2+ no longer increased but rather decreased the rate of H2O2 release. With 300 µM Ca2+ only a loss but no tendency of a recovery of ΔΨm was detected and H2O2 release was unchanged. It is suggested that in the presence of nucleotides the effect of Ca2+ on mitochondrial ROS release is related to changes in ΔΨm; in depolarized mitochondria, in the presence of ADP, moderate increase in H2O2 release is induced by calcium, but only in ≤ 100 µM concentration, when after a transient Ca2+-induced depolarization mitochondria became more polarized. In highly polarized mitochondria, in the presence of ATP or oligomycin, where no hyperpolarization follows the Ca2+-induced depolarization, Ca2+ fails to stimulate mitochondrial ROS generation. These effects of calcium (≤ 300 µM) are unrelated to mitochondrial permeability transition.  相似文献   

9.
Arbutus unedo seedlings were grown in a greenhouse and submitted to three irrigation treatments (salinity period) using solutions with an EC of 0.85 dS m?1 (control treatment), 5.45 dS m?1 (S1) and 9.45 dS m?1 (S2). After 16 weeks, growth and ornamental characters, leaf water potentials, gas exchange and ion concentrations were determined. After the salinity period, plants were exposed to a relief period for 1 month, whereby half of the plants were transplanted to field conditions and the other half into 24 cm diameter plastic pots. Salinity induced a significant decrease in shoot biomass and leaf area but root/shoot ratio was increased. Plant height was significantly inhibited by salinity. The ornamental characters were affected in the treated plants, with symptoms of salt injury, such as burning of leaf margin. Leaf water potentials decreased with increasing salinity, more significantly at predawn than at midday. The relationship between net photosynthesis (Pn) and leaf conductance (gl) was linear for all treatments and the same values of Pn are associated with lower values of gl for the saline treatments than for control treatment. The concentration of Cl? in leaves increased with increasing salinity and was higher than the corresponding concentration of Na+. Na+ and Cl? contents were higher in the leaves than in the roots in both saline treatments. The K+ and Ca2+ levels were lower in the treated plants than in control plants and applied salinity reduced the K+/Na+ ratio in leaves, stems and roots, the decrease being much greater for leaves than for roots. The Ca2+/Na+ ratio fell with salinity in all parts of the plants. At the end of the relief period leaf water potentials were recovered mainly in field conditions. S2 treatment showed lower values of Pn and gl than control and S1 treatments in pot conditions and in field conditions S1 showed the lowest values for Pn and gl.  相似文献   

10.
In this study, a membrane biofilm reactor performance for toluene as a model pollutant is presented. A composite membrane consisting of a porous polyacrylonitrile (PAN) support layer coated with a very thin (0.3 μm) dense polydimethylsiloxane (PDMS) top layer was used. Batch experiments were performed to select an appropriate inocula (slaughterhouse wastewater treatment sludge with a specific toluene consumption rate of 118 ± 23 μg g?1 VSS L?1) among the three available sources of inoculums. The maximum elimination capacity gas-side reactor volume based (EC)v and membrane based (EC)m, max obtained were 609 g m?3 h?1 and 1.2 g m?2 h?1 respectively, which is much higher than other membrane bioreactors. Further experiments involved the study of the membrane biofilm reactor flexibility when operational parameters as temperature, loading rate etc. were modified. In all cases, the membrane biofilm reactor showed a rapid adaptation and new steady-states were obtained within hours. Overall, the results illustrate that membrane bioreactors can potentially be a good option for treatment of air pollutants such as toluene.  相似文献   

11.
Denitrifying bioreactors are currently being tested as an option for treating nitrate (NO3?) contamination in groundwater and surface waters. However, a possible side effect of this technology is the production of greenhouse gases (GHG) including nitrous oxide (N2O) and methane (CH4). This study examines NO3? removal and GHG production in a stream-bed denitrifying bioreactor currently operating in Southern Ontario, Canada. The reactor contains organic carbon material (pine woodchips) intended to promote denitrification. Over a 1 year period, monthly averaged removal of influent (stream water) NO3? ranged from 18 to 100% (0.3–2.5 mg N L?1). Concomitantly, reactor dissolved N2O and CH4 production, averaged 6.4 μg N L?1 (2.4 mg N m?2 d?1), and 974 μg C L?1 (297 mg C m?2 d?1) respectively, where production is calculated as the difference between inflow and effluent concentrations. Gas bubbles entrapped in sediments overlying the reactor had a composition ranging from 19 to 64% CH4, 1 to 6% CO2, and 0.5 to 2 ppmv N2O; however, gas bubble emission rates were not quantified in this study. Dissolved N2O production rates from the bioreactor were similar to emission rates reported for some agricultural croplands (e.g. 0.1–15 mg N m?2 d?1) and remained less than the highest rates observed in some N-polluted streams and rivers (e.g. 110 mg N m?2 d?1, Grand R., ON). Dissolved N2O production represented only a small fraction (0.6%) of the observed NO3? removal over the monitoring period. Dissolved CH4 production during summer months (up to 1236 mg C m?2 d?1), was higher than reported for some rivers and reservoirs (e.g. 6–66 mg C m?2 d?1) but remained lower than rates reported for some wastewater treatment facilities (e.g. sewage treatment plants and constructed wetlands, 19,500–38,000 mg C m?2 d?1).  相似文献   

12.
Effects of reactor height/diameter ratios ranged from 24 to 4 corresponding to reactor settling velocities from 12 to 2 m h?1 on aerobic granulation were investigated. It was found that granules appeared after 1-week operation and granule volume percentages exceeded 50% after 2–3 weeks in four reactors. In addition, similar granule fraction of 94–96% was found at steady state in all four reactors. Sludge volume index (SVI), average sludge size, biomass density and granule settling velocity at steady state were around 50 ml g?1, 1800 μm, 53 g l?1 and 40 m h?1, respectively, in four reactors. Extracellular polymeric substances (EPS) and specific oxygen uptake rate (SOUR) were around 38 mg g?1 VSS and 40 mg O2 g?1 VSS h?1, respectively. Denaturing gradient gel electrophoresis (DGGE) fingerprint of sludge in four reactors showed the same microbial population shift during the start-up period and same microbial community structure during steady-state period. These results recommended strongly that reactor height/diameter ratio or reactor setting velocity in the used range in this study did not affect granule formation, physical characteristics, microbial community structure of granules and stable operation of granular sludge reactor. Reactor height/diameter ratio thus can be very flexible in the practice, which is important for the application of aerobic granule technology.  相似文献   

13.
We measured the biomass production and ecosystem carbon CO2 exchange in a high yield grassland dominated by Miscanthus sinensis. The experimental grassland is managed by mowing once a year in winter every year and the harvested biomass on the ground is left to become the humus. The maximum aboveground and belowground biomasses were 1117 and 2803 g d.w. m?2 in our grassland. Although the high potential of our grassland for biomass production led to higher carbon uptake than with other types of grassland, the large biomass contributed to a higher respired carbon loss. Biomass increase led to a linear increase in ecosystem respiration. Over the 3 years, RE10 increased with increasing aboveground biomass. The potential gross primary production at a photosynthetic photon flux density of 2000 μmol m2 s?1 logarithmic increased with LAI. These responses of CO2 exchange to biomass production suggest this grassland behaved as weak CO2 sink or near carbon neutral (?78 and 17 g C m?2 year?1) in current management.  相似文献   

14.
Integration of partial nitrification (nitritation) and anaerobic ammonium oxidation (anammox) in constructed wetlands creates a sustainable design for nitrogen removal. Three wetland treatment systems were operated with synthetic wastewater (60 mg NH3–N L?1) in a batch mode of fill – 1-week reaction – drain. Each treatment system had a surface flow wetland (unplanted, planted, and planted plus aerated, respectively) with a rooting substrate of sandy loam and limestone pellets, followed by an unplanted subsurface flow wetland. Meanwhile, three surface flow wetlands with a substrate of sandy loam and pavestone were operated in parallel to the former surface flow wetlands. Influent and effluent were monitored weekly for five cycles. Aeration reduced nitrogen removal due to hindered nitrate reduction. Vegetation maintained pH near neutral and moderate dissolved oxygen, significantly improved ammonia removal by anammox, and had higher TN removal due to coexistence of anammox and denitrification in anaerobic biofilm layers. Nitrite production was at a peak at the residence time of 4–5 d. Relative to pavestone, limestone increased the nitrite mass production peak by 97%. The subsurface flow wetlands removed nitrogen via nitritation and anammox, having an anammox activity of up to 2.4 g N m?3 d?1 over a startup operation of two months.  相似文献   

15.
Many factors can influence the improvement of water quality in surface-flow constructed wetlands (SFW). To test if water quality was improved, especially in nutrient and salt content, after passage through SFW, 11 wetland plots of various sizes (50, 200, 800 and 5000 m2) were established within constructed wetlands on agricultural soils in the Ebro River basin (NE Spain) that had been affected by salinization. A set of 15 water quality parameters (e.g., nutrients, salts, sediments, and alkalinity) was obtained from samples collected at the inflow and outflow of the wetlands during the first 4 years after the wetlands were constructed. NO3-N retention rates were as high as 99% in the largest (5000 m2) wetlands. After 4 years, total phosphorus was still being released from the wetlands but not salts. Over the same period, in small wetlands (50, 200, and 800 m2), retention rate relative to the input of NO3-N increased from 40% to almost 60%. Retention of NO3-N amounted to up to 500 g N m?2 per year, for an average load concentration at inflow of ~20 mg l?1. Release of Na+ declined from 16% to 0–2% by volume, for an average load concentration at inflow of ~70 mg l?1. At the current retention rate of NO3-N (76–227 g m?2 per year), 1.5–4% of the catchment should be converted into wetlands to optimize the elimination of NO3-N.  相似文献   

16.
The scorpion toxin maurocalcine acts as a high affinity agonist of the type-1 ryanodine receptor expressed in skeletal muscle. Here, we investigated the effects of the reducing agent dithiothreitol or the oxidizing reagent thimerosal on type-1 ryanodine receptor stimulation by maurocalcine. Maurocalcine addition to sarcoplasmic reticulum vesicles actively loaded with calcium elicited Ca2+ release from native vesicles and from vesicles pre-incubated with dithiothreitol; thimerosal addition to native vesicles after Ca2+ uptake completion prevented this response. Maurocalcine enhanced equilibrium [3H]-ryanodine binding to native and to dithiothreitol-treated reticulum vesicles, and increased 5-fold the apparent Ki for Mg2+ inhibition of [3H]-ryanodine binding to native vesicles. Single calcium release channels incorporated in planar lipid bilayers displayed a long-lived open sub-conductance state after maurocalcine addition. The fractional time spent in this sub-conductance state decreased when lowering cytoplasmic [Ca2+] from 10 μM to 0.1 μM or at cytoplasmic [Mg2+]  30 μM. At 0.1 μM [Ca2+], only channels that displayed poor activation by Ca2+ were readily activated by 5 nM maurocalcine; subsequent incubation with thimerosal abolished the sub-conductance state induced by maurocalcine. We interpret these results as an indication that maurocalcine acts as a more effective type-1 ryanodine receptor channel agonist under reducing conditions.  相似文献   

17.
Recent studies have shown that the mitochondrial DNA mutations are involved in the pathogenesis of hypertension. Our previous study identified mitochondrial tRNAIle A4263G mutation in a large Chinese Han family with maternally-inherited hypertension. This mutation may contribute to mitochondrial Ca2+ cycling dysfuntion, but the mechanism is unclear. Lymphoblastoid cell lines were derived from hypertensive and normotensive individuals, either with or without tRNAIle A4263G mutation. The mitochondrial calcium ([Ca2+]m) in cells from hypertensive subjects with the tRNAIle A4263G mutation, was lower than in cells from normotension or hypertension without mutation, or normotension with mutation (P < 0.05). Meanwhile, cytosolic calcium ([Ca2+]c) in hypertensive with mutation cells was higher than another three groups. After exposure to caffeine, which could increase the [Ca2+]c by activating ryanodine receptor on endoplasmic reticulum, [Ca2+]c/[Ca2+]m increased higher than in hypertensive with mutation cells from another three groups. Moreover, MCU expression was decreased in hypertensive with mutation cells compared with in another three groups (P < 0.05). [Ca2+]c increased and [Ca2+]m decreased after treatment with Ru360 (an inhibitor of MCU) or an siRNA against MCU. In this study we found decreased MCU expression in hypertensive with mutation cells contributed to dysregulated Ca2+ uptake into the mitochondria, and cytoplasmic Ca2+ overload. This abnormality might be involved in the underlying mechanisms of maternally inherited hypertension in subjects carrying the mitochondrial tRNAIle A4263G mutation.  相似文献   

18.
Nitrate removal rates in woodchip media of varying age   总被引:1,自引:0,他引:1  
A variety of low-cost carbonaceous solids have been successfully tested in bioreactors designed for nitrate treatment. In many agricultural and wastewater settings, however, such reactors may be practical only if they are maintenance free for a number of years after installation. Although field installations have demonstrated consistent treatment over multi-year timeframes, the ability to accurately quantify slowly declining reaction rates in field settings is problematic because of variations in reactor flow rates, ambient temperatures and influent chemistry. In this study, laboratory column tests were undertaken on four samples of coarse wood particle media (woodchips), two that were fresh and two that had been in continuous operation in subsurface denitrifying bioreactors for periods of 2 and 7 years respectively. Four experimental runs were undertaken at increasing influent NO3-N concentrations of from 3.1 to 48.8 mg N L?1. Nitrate mass removal rates remained relatively constant and did not systematically increase in successive runs at higher NO3 concentrations indicating that NO3 was not the rate-limiting substrate at these concentrations. Thus, zero-order reaction kinetics were used to model the attenuation reaction (presumably denitrification). The 7-year-old media had a mean NO3-N removal rate of 9.1 mg N L?1 d?1 (6.4 g N m?3 media d?1), which remained within 75% of the rate for the 2-year-old media (12.1 mg N L?1 d?1 or 8.5 g N m?3 media d?11) and within 40–59% of the rate for the fresh chips (15.4–23.0 mg N L?1 d?1 or 10.8–16.1 g N m?3 media d?1). Results support field experience indicating that woodchips loose about 50% of their reactivity during their first year of operation as soluble organic compounds are leached out, but then relatively stable rates persist for a considerable number of years thereafter.  相似文献   

19.
This study examined the effects of amendment application methods on the establishment and growth of prairie grass in a landfill remediation. Amendment treatments included three application rates [control, low (765 g m?2), and high (1530 g m?2)] of a wood chip amendment at two different application depths [surface-applied and incorporated]. Grass populations were monitored for 2 years after seeding to assess differences to seasonal precipitation patterns. Initially, total basal area (cm2 m?2) and tiller density (tillers m?2) were greater in the surface treatments, but seed burial may have reduced establishment in the incorporated treatments. The application rate required to improve the initial grass response differed by depth: the low rate was superior in the surface treatments, but when incorporated only the higher application rate improved establishment. Over the 2004 season, tiller density increased in the surface treatments, but not in the incorporated, following the seasonal drought. In contrast, the incorporated treatments experienced a smaller reduction in tillers during the more severe drought conditions of 2005. These results suggest that a moderate application rate of surface-applied amendment is sufficient for aiding the development of the grass portion of the restored community and the extra effort associated with incorporation is not justified.  相似文献   

20.
The mechanical properties of ventricular myocardium of the South American lungfish, Lepidosiren paradoxa, acclimated to 25 °C, were evaluated in vitro at 15, 25 and 35 °C. The inotropism (Fc—% of initial values) of ventricle strips was examined in response to adrenaline (from 10−8 to 10−5 M) and extracellular calcium (from 2.5 to 14.5 mM) in all experimental temperatures. At 15 and 25 °C, Fc rose when extracellular Ca2+ or adrenaline were increased, while Fc remained unchanged at 35 °C. These results suggest that at lower temperatures Ca2+ availability is a limiting step to cardiac performance and can be ameliorated by adrenergic stimulation. In contrast, since inotropic agents failed to increase cardiac inotropism at 35 °C, lungfish myocytes seem to show a high temperature sensitivity, which increases Ca2+-buffering capacity and/or Ca2+ transportation from and to cytosol as well as myofilaments Ca2+ sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号