首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria play a key role in the maintenance of neuronal function by continuously providing energy. Here, we will give a detailed review about the recent developments in regards to dynamin-related protein 1 (Drp1) induced unbalanced mitochondrial dynamics, excessive mitochondrial division, and neuronal injury in neural system dysfunctions and neurodegenerative diseases, including the Drp1 knockout induced mice embryonic death, the dysfunction of the Drp1-dependent mitochondrial division induced neuronal cell apoptosis and impaired neuronal axonal transportation, the abnormal interaction between Drp1 and amyloid β (Aβ) in Alzheimer's disease (AD), the mutant Huntingtin (Htt) in Huntington's disease (HD), and the Drp1-associated pathogenesis of other neurodegenerative diseases such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Drp1 is required for mitochondrial division determining the size, shape, distribution, and remodeling as well as maintaining of mitochondrial integrity in mammalian cells. In addition, increasing reports indicate that the Drp1 is involved in some cellular events of neuronal cells causing some neural system dysfunctions and neurodegenerative diseases, including impaired mitochondrial dynamics, apoptosis, and several posttranslational modification induced increased mitochondrial divisions. Recent studies also revealed that the Drp1 can interact with Aβ, phosphorylated τ, and mutant Htt affecting the mitochondrial shape, size, distribution, axonal transportation, and energy production in the AD and HD neuronal cells. These changes can affect the health of mitochondria and the function of synapses causing neuronal injury and eventually leading to the dysfunction of memory, cognitive impairment, resting tremor, posture instability, involuntary movements, and progressive muscle atrophy and paralysis in patients.  相似文献   

2.
Alterations in mitochondrial function may have a central role in the pathogenesis of many neurodegenerative diseases. The study of mitochondrial dysfunction has typically focused on ATP generation, calcium homeostasis and the production of reactive oxygen species. However, there is a growing appreciation of the dynamic nature of mitochondria within cells. Mitochondria are highly motile organelles, and also constantly undergo fission and fusion. This raises the possibility that impairment of mitochondrial dynamics could contribute to the pathogenesis of neuronal injury. In this review we describe the mechanisms that govern mitochondrial movement, fission and fusion. The key proteins that are involved in mitochondrial fission and fusion have also been linked to some inherited neurological diseases, including autosomal dominant optic atrophy and Charcot–Marie–Tooth disease 2A. We will discuss the evidence that altered movement, fission and fusion are associated with impaired neuronal viability. There is a growing collection of literature that links impaired mitochondrial dynamics to a number of disease models. Additionally, the concept that the failure to deliver a functional mitochondrion to the appropriate site within a neuron could contribute to neuronal dysfunction provides an attractive framework for understanding the mechanisms underlying neurologic disease. However, it remains difficult to clearly establish that altered mitochondrial dynamics clearly represent a cause of neuronal dysfunction.  相似文献   

3.
Paola Martinelli 《BBA》2010,1797(1):1-10
Fine tuning of integrated mitochondrial functions is essential in neurons and rationalizes why mitochondrial dysfunction plays an important pathogenic role in neurodegeneration. Mitochondria can contribute to neuronal cell death and axonal dysfunction through a plethora of mechanisms, including low ATP levels, increased reactive oxygen species, defective calcium regulation, and impairment of dynamics and transport. Recently, mitochondrial proteases in the inner mitochondrial membrane have emerged as culprits in several human neurodegenerative diseases. Mitochondrial proteases degrade misfolded and non-assembled polypeptides, thus performing quality control surveillance in the organelle. Moreover, they regulate the activity of specific substrates by mediating essential processing steps. Mitochondrial proteases may be directly involved in neurodegenerative diseases, as recently shown for the m-AAA protease, or may regulate crucial mitochondrial molecules, such as OPA1, which in turn is implicated in human disease. The mitochondrial proteases HTRA2 and PARL increase the susceptibility of neurons to apoptotic cell death. Here we review our current knowledge on how disturbances of the mitochondrial proteolytic system affect neuronal maintenance and axonal function.  相似文献   

4.
5.
Neurons are known to use large amounts of energy for their normal function and activity. In order to meet this demand, mitochondrial fission, fusion, and movement events (mitochondrial dynamics) control mitochondrial morphology, facilitating biogenesis and proper distribution of mitochondria within neurons. In contrast, dysfunction in mitochondrial dynamics results in reduced cell bioenergetics and thus contributes to neuronal injury and death in many neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease, and Huntington’s disease. We recently reported that amyloid-β peptide, thought to be a key mediator of AD pathogenesis, engenders S-nitrosylation and thus hyperactivation of the mitochondrial fission protein Drp1. This activation leads to excessive mitochondrial fragmentation, bioenergetic compromise, and synaptic damage in models of AD. Here, we provide an extended commentary on our findings of nitric oxide-mediated abnormal mitochondrial dynamics.  相似文献   

6.
In the past decade, the genetic causes underlying familial forms of many neurodegenerative disorders, such as Huntington's disease, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, Friedreich ataxia, hereditary spastic paraplegia, dominant optic atrophy, Charcot-Marie-Tooth type 2A, neuropathy ataxia and retinitis pigmentosa, and Leber's hereditary optic atrophy have been elucidated. However, the common pathogenic mechanisms of neuronal death are still largely unknown. Recently, mitochondrial dysfunction has emerged as a potential 'lowest common denominator' linking these disorders. In this review, we discuss the body of evidence supporting the role of mitochondria in the pathogenesis of hereditary neurodegenerative diseases. We summarize the principal features of genetic diseases caused by abnormalities of mitochondrial proteins encoded by the mitochondrial or the nuclear genomes. We then address genetic diseases where mutant proteins are localized in multiple cell compartments, including mitochondria and where mitochondrial defects are likely to be directly caused by the mutant proteins. Finally, we describe examples of neurodegenerative disorders where mitochondrial dysfunction may be 'secondary' and probably concomitant with degenerative events in other cell organelles, but may still play an important role in the neuronal decay. Understanding the contribution of mitochondrial dysfunction to neurodegeneration and its pathophysiological basis will significantly impact our ability to develop more effective therapies for neurodegenerative diseases.  相似文献   

7.
Mitochondrial dysfunction has been reported in a wide array of neurological disorders ranging from neuromuscular to neurodegenerative diseases. Recent studies on neurodegenerative diseases have revealed that mitochondrial pathology is generally found in inherited or sporadic neurodegenerative diseases and is believed to be involved in the pathophysiological process of these diseases. Commonly seen types of mitochondrial dysfunction in neurodegenerative diseases include excessive free radical generation, lowered ATP production, mitochondrial permeability transition, mitochondrial DNA lesions, perturbed mitochondrial dynamics and apoptosis. Mitochondrial medicine as an emerging therapeutic strategy targeted to mitochondrial dysfunction in neurodegenerative diseases has been proven to be of value, though this area of research is still at in its early stage. In this article, we report on recent progress in the development of several mitochondrial therapies including antioxidants, blockade of mitochondrial permeability transition, and mitochondrial gene therapy as evidence that mitochondrial medicine has promise in the treatment of neurodegenerative diseases.  相似文献   

8.
Recent studies suggest that excitotoxicity may contribute to neuronal damage in neurodegenerative diseases including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis. Activated microglia have been observed around degenerative neurons in these diseases, and they are thought to act as effector cells in the degeneration of neural cells in the central nervous system. Neuritic beading, focal bead-like swellings in the dendrites and axons, is a neuropathological sign in epilepsy, trauma, ischemia, aging, and neurodegenerative diseases. Previous reports showed that neuritic beading is induced by various stimuli including glutamate or nitric oxide and is a neuronal response to harmful stimuli. However, the precise physiologic significance of neuritic beading is unclear. We provide evidence that neuritic beading induced by activated microglia is a feature of neuronal cell dysfunction toward neuronal death, and the neurotoxicity of activated microglia is mediated through N-methyl-d-aspartate (NMDA) receptor signaling. Neuritic beading occurred concordant with a rapid drop in intracellular ATP levels and preceded neuronal death. The actual neurite beads consisted of collapsed cytoskeletal proteins and motor proteins arising from impaired neuronal transport secondary to cellular energy loss. The drop in intracellular ATP levels was because of the inhibition of mitochondrial respiratory chain complex IV activity downstream of NMDA receptor signaling. Blockage of NMDA receptors nearly completely abrogated mitochondrial dysfunction and neurotoxicity. Thus, neuritic beading induced by activated microglia occurs through NMDA receptor signaling and represents neuronal cell dysfunction preceding neuronal death. Blockage of NMDA receptors may be an effective therapeutic approach for neurodegenerative diseases.  相似文献   

9.
Mitochondria are dynamic organelles that undergo continuous fission and fusion, which could affect all aspects of mitochondrial function. Mitochondrial dysfunction has been well documented in Alzheimer’s disease (AD). In the past few years, emerging evidence indicates that an imbalance of mitochondrial dynamics is involved in the pathogenesis of AD. In this review, we discuss in detail the abnormal mitochondrial dynamics in AD and how such abnormal dynamics may impact mitochondrial and neuronal function and contribute to the course of disease. Based on this discussion, we propose that mitochondrial dynamics could be a potential therapeutic target for AD.  相似文献   

10.
Alzheimer disease (AD) and Parkinson disease (PD) are the two most common age-related neurodegenerative diseases characterized by prominent neurodegeneration in selective neural systems. Although a small fraction of AD and PD cases exhibit evidence of heritability, among which many genes have been identified, the majority are sporadic without known causes. Molecular mechanisms underlying neurodegeneration and pathogenesis of these diseases remain elusive. Convincing evidence demonstrates oxidative stress as a prominent feature in AD and PD and links oxidative stress to the development of neuronal death and neural dysfunction, which suggests a key pathogenic role for oxidative stress in both AD and PD. Notably, mitochondrial dysfunction is also a prominent feature in these diseases, which is likely to be of critical importance in the genesis and amplification of reactive oxygen species and the pathophysiology of these diseases. In this review, we focus on changes in mitochondrial DNA and mitochondrial dynamics, two aspects critical to the maintenance of mitochondrial homeostasis and function, in relationship with oxidative stress in the pathogenesis of AD and PD.  相似文献   

11.
12.
The structure and function of the mitochondrial network is regulated by mitochondrial biogenesis, fission, fusion, transport and degradation. A well-maintained balance of these processes (mitochondrial dynamics) is essential for neuronal signaling, plasticity and transmitter release. Core proteins of the mitochondrial dynamics machinery play important roles in the regulation of apoptosis, and mutations or abnormal expression of these factors are associated with inherited and age-dependent neurodegenerative disorders. In Parkinson’s disease (PD), oxidative stress and mitochondrial dysfunction underlie the development of neuropathology. The recessive Parkinsonism-linked genes PTEN-induced kinase 1 (PINK1) and Parkin maintain mitochondrial integrity by regulating diverse aspects of mitochondrial function, including membrane potential, calcium homeostasis, cristae structure, respiratory activity, and mtDNA integrity. In addition, Parkin is crucial for autophagy-dependent clearance of dysfunctional mitochondria. In the absence of PINK1 or Parkin, cells often develop fragmented mitochondria. Whereas excessive fission may cause apoptosis, coordinated induction of fission and autophagy is believed to facilitate the removal of damaged mitochondria through mitophagy, and has been observed in some types of cells. Compensatory mechanisms may also occur in mice lacking PINK1 that, in contrast to cells and Drosophila, have only mild mitochondrial dysfunction and lack dopaminergic neuron loss. A better understanding of the relationship between the specific changes in mitochondrial dynamics/turnover and cell death will be instrumental to identify potentially neuroprotective pathways steering PINK1-deficient cells towards survival. Such pathways may be manipulated in the future by specific drugs to treat PD and perhaps other neurodegenerative disorders characterized by abnormal mitochondrial function and dynamics.  相似文献   

13.
Mitochondrial DNA disorders are an important cause of neurological disease, yet despite our awareness of the importance of these conditions, relatively little is known about the neuropathology of these disorders and even less about the mechanisms involved in neuronal dysfunction and death. In this review we detail important features from neuropathological studies available and highlight deficiencies that are currently limiting our understanding of mitochondrial DNA disease. We also discuss possible future approaches that might resolve some of these outstanding issues. Further study of these disorders is critical because mitochondria play a central role in neuronal survival and it is likely that an understanding of the mechanisms involved in neuronal dysfunction and cell death in mitochondrial DNA disease may have implications for other neurodegenerative diseases.  相似文献   

14.
Due to the inhibitory microenvironment and reduced intrinsic growth capacity of neurons, neuronal regeneration of central nervous system remains challenging. Neurons are highly energy demanding and require sufficient mitochondria to support cellular activities. In response to stimuli, mitochondria undergo fusion/fission cycles to adapt to environment. It is thus logical to hypothesize that the plasticity of mitochondrial dynamics is required for neuronal regeneration. In this study, we examined the role of mitochondrial dynamics during regeneration of rat hippocampal neurons. Quantitative analysis showed that injury induced mitochondrial fission. As mitochondrial dysfunction has been implicated in neurodegenerative diseases, we tested the possibility that the mitochondrial therapy may promote neuronal regeneration. Supplying freshly isolated mitochondria to the injured hippocampal neurons not only significantly increased neurite re-growth but also restored membrane potential of injured hippocampal neurons. Together, our findings support the importance of mitochondrial dynamics during regeneration of injured hippocampal neurons and highlight the therapeutic prospect of mitochondria to the injured central nervous system.  相似文献   

15.
Mitochondria play critical roles in neuronal function and almost all aspects of mitochondrial function are altered in Alzheimer neurons. Emerging evidence shows that mitochondria are dynamic organelles that undergo continuous fission and fusion, the balance of which not only controls mitochondrial morphology and number, but also regulates mitochondrial function and distribution. In this review, after a brief overview of the basic mechanisms involved in the regulation of mitochondrial fission and fusion and how mitochondrial dynamics affects mitochondrial function, we will discuss in detail our and others' recent work demonstrating abnormal mitochondrial morphology and distribution in Alzheimer's disease (AD) models and how these abnormalities may contribute to mitochondrial and synaptic dysfunction in AD. We propose that abnormal mitochondrial dynamics plays a key role in causing the dysfunction of mitochondria that ultimately damage AD neurons.  相似文献   

16.
线粒体是一种高度动态的细胞器,通过不断的融合和分裂维持其动态平衡,参与生理病理功能调节。线粒体融合与分裂主要由融合分裂相关蛋白调控,如Drp1、Fis1、Mfn1、Mfn2、OPA1等,多种诱导因子通过调节线粒体融合分裂相关蛋白表达及活化进而调节线粒体形态和生理功能。现有研究表明线粒体融合分裂的异常可能是许多中枢神经系统疾病的发病机制之一。本文从线粒体融合分裂的分子调控机制及其在缺血性脑中风、帕金森综合征和阿尔兹海默症等中枢神经系统疾病中的研究进展方面进行综述,为相关疾病的防治提供一定参考和线索。  相似文献   

17.
18.
Huntington's disease (HD) is a progressive, fatal neurodegenerative disease caused by expanded polyglutamine repeats in the HD gene. HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment and emotional disturbances. Research into mutant huntingtin (Htt) and mitochondria has found that mutant Htt interacts with the mitochondrial protein dynamin-related protein 1 (Drp1), enhances GTPase Drp1 enzymatic activity, and causes excessive mitochondrial fragmentation and abnormal distribution, leading to defective axonal transport of mitochondria and selective synaptic degeneration. This article summarizes latest developments in HD research and focuses on the role of abnormal mitochondrial dynamics and defective axonal transport in HD neurons. This article also discusses the therapeutic strategies that decrease mitochondrial fragmentation and neuronal damage in HD.  相似文献   

19.
Huntington's disease (HD) is a progressive, fatal neurodegenerative disease caused by expanded polyglutamine repeats in the HD gene. HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment and emotional disturbances. Research into mutant huntingtin (Htt) and mitochondria has found that mutant Htt interacts with the mitochondrial protein dynamin-related protein 1 (Drp1), enhances GTPase Drp1 enzymatic activity, and causes excessive mitochondrial fragmentation and abnormal distribution, leading to defective axonal transport of mitochondria and selective synaptic degeneration. This article summarizes latest developments in HD research and focuses on the role of abnormal mitochondrial dynamics and defective axonal transport in HD neurons. This article also discusses the therapeutic strategies that decrease mitochondrial fragmentation and neuronal damage in HD.  相似文献   

20.
Neurodegenerative diseases represent a heterogeneous group of disorders whose common characteristic is the progressive degeneration of neuronal structure and function. Although much knowledge has been accumulated on the pathophysiology of neurodegenerative diseases over the years, more efforts are needed to understand the processes that underlie these diseases and hence to propose new treatments. Adrenomedullin (AM) is a multifunctional peptide involved in vasodilation, hormone secretion, antimicrobial defense, cellular growth, and angiogenesis. In neurons, AM and related peptides are associated with some structural and functional cytoskeletal proteins that interfere with microtubule dynamics. Furthermore, AM may intervene in neuronal dysfunction through other mechanisms such as immune and inflammatory response, apoptosis, or calcium dyshomeostasis. Alterations in AM expression have been described in neurodegenerative processes such as Alzheimer’s disease or vascular dementia. This review addresses the current state of knowledge on AM and its possible implication in neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号