首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An annular flume was used to measure the effect of increasing current velocity on mussel (Mytilus edulis) feeding rate and the stability of mussel beds sampled from the mouth of the Exe estuary (SW England). It was found that, in contrast to earlier flume studies, the feeding rates of mussels from open coast sites were unaffected by current velocities up to 0.8 m s–1. Algal cell depletion in the water column above mussels was a function of current velocity, increasing with declining currents below 0.05 m s–1. The erodability/stability of the mussel bed, measured in terms of critical erosion velocity, sediment mass eroded and mean erosion rate, was found to be a function of the nature of the substrate and the density of the mussels. Erosion of mussel beds on sandy substrate showed a non-linear relationship with mussel bed density. In comparison with the sand (0% mussel cover), sediment resuspension was about five and four times higher for 25% and 50% cover, respectively. This was due to the increased turbulence and scouring around the clumps of mussels in low-density parts of the bed, and this resulted in some mussels detaching from the bed. At ~100% mussel cover, the sandy bed was more protected by the dense surface layer of mussels, and none became detached during erosion due to the high number of byssal attachments between individuals. The sediment resuspension from the 100% mussel cover was about three times lower than the 0% cover. Erosion of the bed with 50% cover resulted in burial of a large proportion of the mussels, with a 6 cm increase in sediment level. However, the mussels returned to the surface and recovered in 1–2 days, due to a combination of migration upwards and substrate settlement. Channels on the edge of the main Exmouth mussel bed were characterised by a more stable substrate comprising pebbles and sand with varying mussel densities. At these sites, where mussels experience high current velocities on spring tides (up to 0.9 m s–1), there was no difference between the erodability of pebble/sand substrate with 0% and 100% mussel cover. The sediment erosion was also lower than the 100% mussel cover on the sandy substrate, particularly at currents >0.4 m s–1. Sampling of different parts of the mussel bed at Exmouth showed mussels at low densities were made up of smaller clumps with a lower mass ratio of mussels to attached substrate (pebbles/sand), thus providing a greater degree of anchorage. Electronic Publication  相似文献   

2.
This study investigated postlarval dispersal of soft-bottom macrofauna at a spatially complex intertidal mudflat comprising patches of bare sediment and an ecosystem engineer, the mussel Mytilus edulis. At each of four sites in Guard Point Cove, Maine, USA, we took core samples and deployed bedload traps in bare sediment and mussel bed habitats to estimate ambient densities, rates of sediment flux, and several measures of postlarval dispersal. Univariate and multivariate nonmetric multidimensional scaling (nMDS) results showed few significant site effects and no habitat×site interactions. In contrast, there were numerous significant habitat effects. Compared to the bare sediment, the mussel bed habitat had: fewer species; higher ambient density and proportional abundance of the oligochaete Tubificoides benedeni (the dominant species in both habitats); lower ambient densities and proportional abundances of major taxa and the nonoligochaetes as a group; and higher sediment flux and relative (i.e., per capita) dispersal of nonoligochaetes. Macrofauna species dispersed in relative proportions that were different from those in the ambient assemblage. Per capita T. benedeni transport rates were low in mussel beds compared to those for nonoligochaetes, consistent with the view that beds represent favorable habitat for oligochaetes. The number of total macrofauna individuals trap−1 day−1 was negatively correlated with ambient density and positively correlated with sediment flux in both habitats, but these relationships were significant only in the mussel bed. The results indicate that altered transport rates of sediment and postlarvae are important mechanisms by which mussels act as ecosystem engineers to modify soft-bottom habitats. Differential transport rates caused by aggregations of mussels and other foundation species must be considered in explanations of spatial pattern in soft-bottom communities.  相似文献   

3.
Prins  T. C.  Smaal  A. C. 《Hydrobiologia》1994,282(1):413-429
The fluxes of particulate and dissolved material between bivalve beds and the water column in the Oosterschelde estuary have been measured in situ with a Benthic Ecosystem Tunnel. On mussel beds uptake of POC, PON and POP was observed. POC and PON fluxes showed a significant positive correlation, and the average C:N ratio of the fluxes was 9.4. There was a high release of phosphate, nitrate, ammonium and silicate from the mussel bed into the water column. The effluxes of dissolved inorganic nitrogen and phosphate showed a significant correlation, with an average N:P ratio of 16.5. A comparison of the in situ measurements with individual nutrient excretion rates showed that excretion by the mussels contributed 31–85% to the total phosphate flux from the mussel bed. Ammonium excretion by the mussels accounted for 17–94% of the ammonium flux from the mussel bed. The mussels did not excrete silicate or nitrate. Mineralization of biodeposition on the mussel bed was probably the main source of the regenerated nutrients.From the in situ observations net budgets of N, P and Si for the mussel bed were calculated. A comparison between the uptake of particulate organic N and the release of dissolved inorganic N (ammonium + nitrate) showed that little N is retained by the mussel bed, and suggested that denitrification is a minor process in the mussel bed sediment. On average, only 2/3 of the particulate organic P, taken up by the mussel bed, was recycled as phosphate. A net Si uptake was observed during phytoplankton blooms, and a net release dominated during autumn. It is concluded that mussel beds increase the mineralization rate of phytoplankton and affect nutrient ratios in the water column. A comparison of N regeneration by mussels in the central part of the Oosterschelde estuary with model estimates of total N remineralization showed that mussels play a major role in the recycling of nitrogen.  相似文献   

4.
Mussels (Mytilus edulis L.) are unusual because they thrive in both rocky shore and soft-bottom habitats. Despite their ecological and economic importance, little is known about their spatial structure. Mussels do not generally recruit to bare soft substrate because larvae and postlarvae cannot attach to a bottom of small sediment particles. They attach to hard objects on the sediment surface (especially other mussels), so soft-bottom mussel beds may be spatially organized in ways that are fundamentally different from those on rocky shores. The purpose of our study was to characterize the scales of spatial variability for several mussel abundance parameters in soft-bottom, intertidal M. edulis beds in coastal Maine. We used a random factor nested-ANOVA design of 200 cm2 Cores within 1 m2 Quadrats within 6 m Transects within Positions within bed Sites along 70 km (euclidean distance) of the Maine coast. Based on the literature and our field observations, we hypothesized that Sites and Positions account for most of the spatial variance in soft-botttom mussel beds. We rejected this hypothesis. Sites and Positions were not important in explaining variation in total mussel density, density of new recruits, or density of larger mussels. Although most of the variance in surface silt-clay fraction did occur at these levels, most mussel variation occurred at smaller spatial scales, specifically at the Quadrat scale for new recruits and total mussels and at the Transect scale for larger mussels. Variance in mussel parameters was not closely linked to the silt-clay fraction of surface sediment or to Site rankings of wind exposure and tidal flow. Variance in total mussel density was due primarily to variance in recruitment. No single scale explained more than about half the mussel variance, and no single scale was best at explaining all the mussel parameters. Greater knowledge about mussel bed spatial variability would be useful because it can help direct scale-dependent sampling regimes, field experiments, and coastal management practices.  相似文献   

5.
1. To manage the environmental flow requirements of sedentary taxa, such as mussels and aquatic insects with fixed retreats, we need a measure of habitat availability over a variety of flows (i.e. a measure of persistent habitat). Habitat suitability measures in current environmental flow assessments are measured on a ‘flow by flow’ basis and thus are not appropriate for these taxa. Here, we present a novel measure of persistent habitat suitability for the dwarf wedgemussel (Alasmidonta heterodon), listed as federally endangered in the U.S.A., in three reaches of the Delaware River. 2. We used a two‐dimensional hydrodynamic model to quantify suitable habitat over a range of flows based on modelled depth, velocity, Froude number, shear velocity and shear stress at three scales (individual mussel, mussel bed and reach). Baseline potentially persistent habitat was quantified as the sum of pixels that met all thresholds identified for these variables for flows ≥40 m3 s?1, and we calculated the loss of persistently suitable habitat by sequentially summing suitable habitat estimates at lower flows. We estimated the proportion of mussel beds exposed at each flow and the amount of change in the size of the mussel bed for one reach. 3. For two reaches, mussel beds occupied areas with lower velocity, shear velocity, shear stress and Froude number than the reach average at all flows. In the third reach, this was true only at higher flows. Together, these results indicate that beds were possible refuge areas from the effects of these hydrological parameters. Two reaches showed an increase in the amount of exposed mussel beds with decreasing flow. 4. Baseline potentially persistent habitat was less than half the areal extent of potentially suitable habitat, and it decreased with decreasing flow. Actually identified beds and modelled persistent habitat showed good spatial overlap, but identified beds occupied only a portion of the total modelled persistent habitat, indicating either that additional suitable habitat is available or the need to improve habitat criteria. At one site, persistent beds (beds where mussels were routinely collected) were located at sites with stable substratum, whereas marginal beds (beds where mussels were infrequently collected or that were lost following a large flood event) were located in scoured areas. 5. Taken together, these model results support a multifaceted approach, which incorporates the effects of low and high flow stressors, to quantify habitat suitability for mussels and other sedentary taxa. Models of persistent habitat can provide a more holistic environmental flow assessment of rivers.  相似文献   

6.
7.
The physical habitat characteristics associated with spatial distribution patterns of the freshwater mussel Pronodularia japanensis, which is used for oviposition by the Tokyo bitterling Tanakia tanago, were investigated in a small stream within a Tokyo bitterling protected area. The distribution of the mussels was found to be in an under-dispersed, non-random spatial pattern. Mussel occurrence correlated negatively with sediment softness, and positively with flow velocity, while mussel abundance was associated negatively with sediment softness and positively with sediment type (particle size). Furthermore, mussels were scarce in riverbed areas with a lack of sediment. These correlations suggest that the population dynamics of mussels and Tokyo bitterling may be influenced by changes in stream sediment conditions. To conserve the symbiosis between Tokyo bitterlings and mussels, a suitable benthic environment is required.  相似文献   

8.
The importance of positive effects of ecosystem engineers on associated communities is predicted to increase with environmental stress. However, incorporating such non-trophic interactions into ecological theory is not trivial because facilitation of associated species is conditional on both the type of engineer and the type of abiotic stress. We tested the influence of two allogenic ecosystem engineers (lugworms, Arenicola marina L. and cockles, Cerastoderma edule L.) on the main primary producers (microphytobenthos) of the tidal flats, under different abiotic stresses controlled by reefs of blue mussels (Mytilus edulis L.). We added 25,000 cockles or 2,000 lugworms to 5 × 5 m plots, both in a muddy site with high sedimentation rates located coastward of a mussel bed, and in a sandy site without mussels and characterized by high hydrodynamic stress. After a year, cockles increased algal biomass in the sandy area, but not in the mussel bed site, where high values were measured in all plots. However, lugworms did not affect algal biomass in any of the sites. Field measurements suggest that cockles outweighed negative effects of water currents in the site without mussels by locally increasing sediment stability, whereas mussels overruled the effects of cockles in the wake of the reefs through hydrodynamic stress alleviation and/or biodeposition. Our results suggest that non-trophic interactions by ecosystem engineering bivalves control primary production of intertidal areas, and that the sediment-stabilizing effect of cockles plays a crucial role where the overruling effects of mussel beds are not present.  相似文献   

9.
The brown algaFucus vesiculosus formamytili (Nienburg) Nienhuis covered about 70% of mussel bed (Mytilus edulis) surface area in the lower intertidal zone of Königshafen, a sheltered sandy bay near the island of Sylt in the North Sea. Mean biomass in dense patches was 584 g ash-free dry weight m?2 in summer. On experimental mussel beds, fucoid cover enhanced mud accumulation and decreased mussel density. The position of mussels underneath algal canopy was mainly endobenthic (87% of mussels with >1/3 of shell sunk into mud). In the absence of fucoids, mussels generated epibenthic garlands (81% of mussels with <1/3 of shell buried in mud). Mussel density underneath fucoid cover was 40 to 73% of mussel density without algae. On natural beds, barnacles (Balanidae), periwinkles (Littorina littorea) and crabs (particularly juveniles ofCarcinus maenas) were significantly less abundant in the presence of fucoids, presumably because most of the mussels were covered with sediment, whereas in the absence of fucoids, epibenthic mussel clumps provided substratum as well as interstitial hiding places. The endobenthic macrofauna showed little difference between covered and uncovered mussel beds. On the other hand, grazing herbivores — the flat periwinkleLittorina mariae, the isopodJaera albifrons and the amphipodsGammarus spp. — were more abundant at equivalent sites with fucoid cover. The patchy growth ofFucus vesiculosus on mussel beds in the intertidal Wadden Sea affects mussels and their epibionts negatively, but supports various herbivores and increases overall benthic diversity.  相似文献   

10.
In the past decade, theoretical ecologists have emphasized that local interactions between predators and prey may invoke emergent spatial patterning at larger spatial scales. However, empirical evidence for the occurrence of emergent spatial patterning is scarce, which questions the relevance of the proposed mechanisms to ecological theory. We report on regular spatial patterns in young mussel beds on soft sediments in the Wadden Sea. We propose that scale-dependent feedback, resulting from short-range facilitation by mutual protection from waves and currents and long-range competition for algae, induces spatial self-organization, thereby providing a possible explanation for the observed patterning. The emergent self-organization affects the functioning of mussel bed ecosystems by enhancing productivity and resilience against disturbance. Moreover, self-organization allows mussels to persist at algal concentrations that would not permit survival of mussels in a homogeneous bed. Our results emphasize the importance of self-organization in affecting the emergent properties of natural systems at larger spatial scales.  相似文献   

11.
Dolmer  P.  Kristensen  T.  Christiansen  M. L.  Petersen  M. F.  Kristensen  P. S.  Hoffmann  E. 《Hydrobiologia》2001,465(1-3):115-127
The short-term effect of mussel dredging in a brackish Danish sound was studied. A commercial dredging track was identified and an analysis of the species composition inside the track and at an adjacent control area showed that dredging changed the community structure by reducing the density of polychaetes. In order to investigate the extent and the duration of the dredging impact experimental dredging was conducted. The experimental dredging removed 50% of the mussels in two dredged areas. Immediately after dredging, a significantly lower number of species was measured inside the mussel beds in dredged areas compared to control and boundary areas. This effect lasted for at least 40 days. The analysis of the species composition showed that the dredged area had a significantly lower density, particularly of polychaetes compared to the boundary area. An increased number of species was recorded outside the mussel beds just after dredging, but this effect lasted for less than 7 days. After dredging, brown shrimps, C. crangon invaded the dredged areas. This species is an important predator of smaller invertebrates, and it is suspected that it was feeding on small vulnerable polychaetes exposed at the sediment surface after dredging. The dredging process was observed to form 2–5-cm deep furrows in the seabed, but the sediment texture and the organic content of the sediment was not affected. The biomass accumulation of individual blue mussels was significantly lower in the dredged area compared to the boundary area. This indicates that the disturbance of the mussel bed structure reduced growth and that the lowering of intraspecific food competition caused by a reduced density of mussels did not increase the accumulation of biomass in the mussels which remained in the dredged area.  相似文献   

12.
The fauna associated with hard bottom mussel beds along the exposed Pacific coast of Chile was examined. The abundance of adult (>10 mm body length) purple mussels Perumytilus purpuratus varied between 32 and 75 individuals per 50 cm2, and their biomass between 4.8 and 8.6 g AFDW per 50 cm2 at eight sampling sites between Arica (18°S) and Chiloé (42°S). At all sampling sites, the associated fauna was dominated by suspension-feeding organisms (cirripeds, spionid and sabellid polychaetes, a small bivalve) followed by grazing peracarids and gastropods. Predators and scavengers also reached high abundances while deposit- and detritus-feeding organisms were of minor importance. The majority of organisms associated with these hard bottom mussel beds feed on resources obtained from the water column or growing on the mussels rather than on materials deposited by the mussels. This is in contrast to the fauna associated with mussel beds on soft bottoms, which comprises many species feeding on material accumulated by mussels (faeces and pseudofaeces) and deposited within the mussel bed. Many of the organisms dwelling between mussels both on hard bottoms and on soft bottoms have direct development, but organisms with pelagic development also occur abundantly within mussel beds. We propose that species with direct development are disproportionately favoured by the structurally complex habitat with diverse interstitial spaces between the mussels, which provides ample shelter for small organisms. We conclude that mussels on hard-bottoms primarily provide substratum for associated fauna while mussels on soft bottoms provide both substratum and food resources. Electronic Publication  相似文献   

13.
On the unstable sedimentary tidal flats of the Wadden Sea, a suitable attachment substrate for sessile organisms is generally lacking. Epibenthic mussel beds (Mytilus edulis L.) provide the only and strongly limited settlement sites available for the barnacle, Semibalanus balanoides (L.). Field investigations showed that barnacles were non-randomly distributed within a mussel bed. They preferentially occurred near the siphonal apertures of living mussels but rarely grew on dead mussels or shell fragments. Field experiments revealed that this was due to selective settlement of barnacle cyprid larvae. Growth of barnacles was significantly higher upon living mussels than on empty mussel shells. Moreover, a higher reproductive output was obtained by individuals on living mussels which produced twice as many nauplii larvae than barnacles attached to empty shells. This study shows that selective settlement of S. balanoides cyprid larvae on living mussels is adaptive with respect to individual fitness. Received in revised form: 15 January 2001 Electronic Publication  相似文献   

14.
The faunal assemblages of a mussel bed (Mytilus edulis L.) and ambient sandflat were compared to study how a bioherm of suspension feeding organisms affects benthic communities in a tidal flat. During a survey of mussel beds in the Wadden Sea at the island of Sylt (North Sea), a total of 52 macrofaunal species and 44 meiobenthic plathelminth species were detected. They occupied different microhabitats in the mussel bed. 56% of the macrofauna species were dwelling in the sediment beneath the mussels and 42% were epibenthic or epiphytic. The latter were restricted in their occurrence to the mussel bed. Along a transect from the sandflat to the mussel bed the mean species densities of macrofauna did not differ significantly, while abundances were significantly lower in the mussel bed than in the sandflat. The composition of the assemblages shifted from a dominance of Polychaeta in the sandflat to Oligochaeta in the mussel bed. Surface filter-feeding polychaetes of the sandflat (Tharyx marioni) were displaced by deposit feeding polychaetes under the mussel cover (Capitella capitata, Heteromastus filiformis). The total meiobenthic density was lower and single taxa (Ostracoda, Plathelminthes, Nematoda) were significantly less abundant in the mud of the mussel bed. The plathelminth assemblage was dominated by grazing species (Archaphanostoma agile), and differed in community structure from a sandflat aseemblage. An amensalistic relationship was found between the suspension-feeding mussels and suspension-feeding infauna, while deposit-feeders were enhanced. The presence of epibenthic microhabitats results in a variety of trophic groups co-occurring in a mussel bed. This is hypothesized as trophic group amelioration and described as an attribute of heterotrophic reefs.  相似文献   

15.
The success of restoration initiatives to restore bivalve beds relies on sufficient recruitment of larvae to offset mortality of re‐established populations. Individuals of the nearly extirpated green‐lipped mussel are capable of surviving within the current environment of the Hauraki Gulf, New Zealand; however, it is uncertain what potential factors might inhibit the establishment and persistence of restored mussel beds. Four experimental mussel beds were established within a shallow soft‐sediment embayment and assessments of population dynamics were conducted approximately every 6 months over a 2‐year period. Deployed mussels quickly congregated into contiguous mussel beds that persisted throughout the study; however, only 26.2% of mussels that were initially established survived until the end of the study. The cause of this overall loss of mussels can be attributed to a near lack of observed recruitment, with only three individual recruiting mussels observed throughout the entire study. Despite similar mortality rates within the restored mussel beds to that of natural populations, these populations will be unsustainable long term given the lack of recruitment. Potential causes of the observed mortality and lack of recruitment are discussed, including environmental factors affecting non‐natal mussel stock and sea star predation. This research provides a foundation for the development of best‐practice methods in the restoration of green‐lipped mussels. However, further investigation into recruitment pathways and sources of mortality for adult mussels will be necessary to overcome the observed limitations if future restoration is to be successful.  相似文献   

16.
On rocky shores, cover of macroalgae is often greater growingepibiotically on mussels compared to algae growing directlyattached to rock. A survey of two shores on the east coast ofIreland confirmed that mussel beds contained greater percentagealgal cover and more diverse algal assemblages compared to thoseon rock. The reasons for this difference are not clear. It hasbeen suggested that mussel beds provide a refuge for algae fromgrazing gastropods. Surprisingly, we found no evidence to supportthis. Using wax discs, gastropod grazing patterns were foundto be similar within the mussel beds as on rock. The musselbeds do not appear to provide a refuge for algae from grazingactivity at this scale and we suggest other possible mechanismsfor the prevalence of epibiotic algal cover on mussels. Intertidalgrazers may in fact affect the epibiotic algae on mussels andthereby affect indirectly the persistence of mussel beds. (Received 14 May 2007; accepted 20 October 2007)  相似文献   

17.
The common seastars Leptasterias polaris and Asterias vulgaris show competitive interactions in shallow subtidal communities in the northern Gulf of St. Lawrence, particularly during summer when aggregations of the two seastars forage on mussel beds at 1-2 m in depth. We examined interactions between the two seastars in a different situation, in a mussel bed at 6 m in depth (a rare situation in this region). In the deeper mussel bed, seastars were three times more abundant than in the shallower beds, and the mussels were larger. The deeper bed disappeared rapidly due to the intense predation. Although decreased prey abundance should have favored interference interactions, we did not detect either partitioning of mussels by size or avoidance of A. vulgaris by L. polaris as previously reported when mussels are in short supply in shallower water. The lack of an avoidance behavior by L. polaris, together with the higher proportion of L. polaris than A. vulgaris that were feeding, suggests that in this situation, the dominance of A. vulgaris (observed in shallower water) is attenuated, or that L. polaris may dominate.  相似文献   

18.
1. We asked whether unionid mussels influence the distribution and abundance of co‐occurring benthic algae and invertebrates. In a yearlong field enclosure experiment in a south‐central U.S. river, we examined the effects of living mussels versus sham mussels (shells filled with sand) on periphyton and invertebrates in both the surrounding sediment and on mussel shells. We also examined differences between two common unionid species, Actinonaias ligamentina (Lamarck 1819) and Amblema plicata (Say 1817). 2. Organic matter concentrations and invertebrate densities in the sediment surrounding mussels were significantly higher in treatments with live mussels than treatments with sham mussels or sediment alone. Organic matter was significantly higher in the sediment surrounding Actinonaias than that surrounding Amblema. Actinonaias was more active than Amblema and may have increased benthic organic matter through bioturbation. 3. Living mussels increased the abundance of periphyton on shells and the abundance and richness of invertebrates on shells, whereas effects of sham mussels were similar to sediment alone. Differences in the amount of periphyton growing on the shells of the two mussel species reflected differences in mussel activity and shell morphology. 4. Differences between living and sham mussel treatments indicate that biological activities of mussels provide ecosystem services to the benthic community beyond the physical habitat provided by shells alone. In treatments containing live mussels we found significant correlations between organic matter and chlorophyll a concentrations in the sediment, organic matter concentrations and invertebrate abundance in the sediment and the amount of chlorophyll a on the sediment and invertebrate abundance. There were no significant correlations among these response variables in control treatments. Thus, in addition to providing biogenic structure as habitat, mussels likely facilitate benthic invertebrates by altering the availability of resources (algae and organic matter) through nutrient excretion and biodeposition. 5. Effects of mussels on sediment and shell periphyton concentrations, organic matter concentrations and invertebrate abundance, varied seasonally, and were strongest in late summer during periods of low water volume, low flow, and high water temperature. 6. Our study demonstrates that freshwater mussels can strongly influence the co‐occurring benthic community, but that effects of mussels are context‐dependent and may vary among species.  相似文献   

19.
Aggregations of mussels harbor a variety of associated animals and make it possible for diverse species to coexist at the shore. Species composition and diversity of the associated fauna are controlled by the position of mussel beds or patches, e.g. tidal level, age structure of mussels, quality of ambient water and by mussel species. When patches of mussels were surrounded by algal growth, a difference in the species composition of the associated fauna was recognized between the patches and algal mats. Mechanisms promoting coexistence are discussed. Biodeposit production by mussels may affect the environment both within the bed and the ambient waters. Reducing sediments showing low Eh values caused by the accumulation of biodeposits was observed in calm waters where the polychaete Capitella capitata, an indicator for organic enrichment, occurred both in the intertidal mussel bed and the subtidal sandy bottom communities. In a shallow subtidal sandy bottom of the Gulf of Thailand, where heavy bioturbation by the spatangoid urchin Brissus latecarinatus was occurring, small patches of the mussel Modiolus metcalfi increased species diversity and equitability in this habitat. Species composition was different between mussel patches and pure sandy bottoms. Electronic Publication  相似文献   

20.
Ecological engineers have important effects on biodiversity because they often increase habitat complexity and moderate environmental conditions, implying that their influence on associated fauna will vary across gradients of environmental stress. To test this, we quantified the positive effects of mussel beds on associated benthic communities around the entire South African coastline (~3500 km). We hypothesised that molluscan assemblages would show stronger affinities to the presence of mussel beds with increasing levels of heat-stress. Biomimetic loggers used to characterise thermal properties within and outside mussel beds found that solitary mussels experienced significantly greater daily maximum temperatures than mussels within beds across all locations. However, the magnitude of such differences did not appear to vary with latitude or time of year but rather was strongly influenced by biogeographic region. Differences in the abundance, diversity and community structure of molluscs within and outside mussel beds showed similar biogeographic variability, with differences in total molluscan abundances being most pronounced along the cool temperate west coast during summer and least pronounced along the warm temperate south coast during winter. Greater affinity of molluscan assemblages for mussel beds within cooler biogeographic regions suggests that evolutionary history and/or other abiotic factors may be the primary cause for the stronger influence of mussel beds on the west coast. This highlights the complex, context-dependant nature of ecosystem engineering and the varying degrees to which associated organisms affiliate with these biogenic structures. Such findings have important implications for the use of ecosystem engineers as umbrella species in ecological conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号