首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper reports on the feasibility of using sub-surface horizontal flow constructed wetlands to treat municipal wastewater in Hong Kong. Two different hydraulic retention times (10-day and 5-day) and different types of treatments (with and without vegetation) were investigated. Better performance in the planted treatments was obtained in both hydraulic retention time treatments. Nutrients were better removed in treatments with plants (DOC 68% and 72%; NH4-N 92% and 95%; TKN 65% and 62%; PO4-P 79% and 72%; TP 67% and 52% for 10-day HRT; 5-day HRT treatments). In the unplanted treatments, negative values were achieved in the removal of phosphate in wastewater and the presence of plants could further polish the wastewater so phosphate concentrations decreased in the planted treatments. The effluent concentrations in the planted treatments meet the Inland Water A effluent standard, and they can be used in recreation park in Hong Kong (1 mg L−1 of NOx; 15 mg L−1 of NH3; 1 mg L−1 of TP).  相似文献   

2.
The properties and behaviour of solids retained in a pilot plant constituted of an up-flow anaerobic sludge blanket (UASB) reactor and two constructed wetlands (CWs) were monitored over a 3-year period. The UASB (25.5 m3) was fed with raw municipal wastewater at a flow rate of 61–112 m3 d?1 and a volumetric loading rate (VLR) of 0.75–1.70 kg TCOD m?3 d?1. The CWs (75 m2 each) were operated in series and received a fraction (17–20 m3 d?1) of the UASB effluent. The applied surface loading rates (SLR) were in the range of 3800–8700 g TCOD m?2 d?1 (UASB) and 11–15 g BOD5 m?2 d?1 (CWs). The overall system removed 95% TSS, 85% TCOD and 87% BOD5 on average. For influent VSS, the UASB removed 72.1% and gave a hydrolysis of 63.5%, while the average surplus sludge generation was 8.7%. Over the 3-year period, TSS and VSS accumulated in the CWs at rates of 1.07 and 0.56 kg m?2 year?1, respectively. The aerobic biodegradability of the accumulated solids ranged from 23 to 92 mg O2 g VSS?1 d?1 and increased downstream in the CWs. About 59% of the VSS that entered the CWs was removed by hydrolysis, while 24% accumulated on granular media. These low solids accumulation rates were especially remarkable considering the high COD and BOD5 loading rates applied. The system lay-out appear to be promising in terms of preventing clogging.  相似文献   

3.
Nitrogen transformations were studied in flooded and non-flooded vertical flow columns with and without a rice plant. Influent (average concentration: NH4+-N: 40 mg L?1; NO3?-N: 0.15 mg L?1; and NO2?-N: 4.0 mg L?1) was supplied at 1.25 cm d?1 during stage 1 (20 May–5 August) and at 2.50 cm d?1 at stage 2 (6 August–26 October), which resulted in an average nitrogen loading of 156 g m?2 during the entire experimental period. Total nitrogen (T-N) removal efficiencies exceeded 90% in vertical flow systems with rice plants. Nitrogen assimilated by the rice plants in the flooded column accounted for 60% of the total input nitrogen, while that in the non-flooded column accounted for 36% of the total input. The remaining nitrogen appeared to be removed through biogeochemical pathways. Although some nitrogen flowed out, most input nitrogen was also removed even in the flooded and non-flooded unplanted columns.A high-resolution vertical distribution investigation showed the changes of nitrogen forms in soil water. In the flooded condition, there were high ammonium and high nitrite concentrations in the upper layers. The concentrations of ammonium and nitrite simultaneously decreased with depth increasing, suggesting that anaerobic ammonia oxidation (anammox) may occur in these anaerobic conditions. In contrast, the distributions of nitrogen in the non-flooded columns with elevated water level suggested that nitrification–denitrification route was the major removal mechanism, whether or not rice plants were present.  相似文献   

4.
Nitrate removal rates in woodchip media of varying age   总被引:1,自引:0,他引:1  
A variety of low-cost carbonaceous solids have been successfully tested in bioreactors designed for nitrate treatment. In many agricultural and wastewater settings, however, such reactors may be practical only if they are maintenance free for a number of years after installation. Although field installations have demonstrated consistent treatment over multi-year timeframes, the ability to accurately quantify slowly declining reaction rates in field settings is problematic because of variations in reactor flow rates, ambient temperatures and influent chemistry. In this study, laboratory column tests were undertaken on four samples of coarse wood particle media (woodchips), two that were fresh and two that had been in continuous operation in subsurface denitrifying bioreactors for periods of 2 and 7 years respectively. Four experimental runs were undertaken at increasing influent NO3-N concentrations of from 3.1 to 48.8 mg N L?1. Nitrate mass removal rates remained relatively constant and did not systematically increase in successive runs at higher NO3 concentrations indicating that NO3 was not the rate-limiting substrate at these concentrations. Thus, zero-order reaction kinetics were used to model the attenuation reaction (presumably denitrification). The 7-year-old media had a mean NO3-N removal rate of 9.1 mg N L?1 d?1 (6.4 g N m?3 media d?1), which remained within 75% of the rate for the 2-year-old media (12.1 mg N L?1 d?1 or 8.5 g N m?3 media d?11) and within 40–59% of the rate for the fresh chips (15.4–23.0 mg N L?1 d?1 or 10.8–16.1 g N m?3 media d?1). Results support field experience indicating that woodchips loose about 50% of their reactivity during their first year of operation as soluble organic compounds are leached out, but then relatively stable rates persist for a considerable number of years thereafter.  相似文献   

5.
《Ecological Engineering》2007,29(2):154-163
The South Nation River Watershed, in eastern Ontario, Canada, is an agricultural watershed impacted by excess nutrient loading primarily from agricultural activities. A constructed wetland for the treatment of agricultural wastewater from a 150-cow dairy operation in this watershed was monitored in its eighth operating season to evaluate the proportion of total nitrogen (TN) (approximated by total Kjeldahl nitrogen (TKN) due to low NO3) and total phosphorus (TP) removal that could be attributed to storage in Typha latifolia L. and Typha angustifolia L., which dominate this system. Nutrient loading rates were high, with 16.2 kg ha−1 d−1 N and 3.4 kg ha−1 d−1 P entering the wetland and loading the first wetland cell. Plant uptake accounted for 0.7% of TKN removal when the vegetated free water surface cells were considered together. However, separately, in the second wetland cell with lower N and P loading rates, plants accounted for 9% of TKN, 21% of NH4+ and 5% of TP removal. Plant uptake was significant to overall removal given wetland age and nutrient loading. Nutrient storage during the growing season at this constructed wetland helped reduce the nutrient load entering the watershed, already stressed by intensive local agriculture.  相似文献   

6.
Constructed wetlands are becoming increasingly popular worldwide for removing contaminants from domestic wastewater. This study investigated the removal efficiency of nitrogen (N) and phosphorus (P) from wastewater with the simulated vertical-flow constructed wetlands (VFCWs) under three different substrates (i.e., BFAS or blast furnace artificial slag, CBAS or coal burn artificial slag, and MSAS or midsized sand artificial slag), hydraulic loading rates (i.e., 7, 14, and 21 cm d?1), and wetland operational periods (0.5, 1, and 2 years) as well as with and without planting Canna indica L. The wastewater was collected from the campus of South China Agricultural University, Guangzhou, China. Results show that the percent removal of total P (TP) and ammonium N (NH4+-N) by the substrates was BFAS > CBAS > MSAS due to the high contents of Ca and Al in substrate BFAS. In contrast, the percent removal of total N (TN) by the substrates was CBAS > MSAS > BFAS due to the complicated nitrification/denitrification processes. The percent removal of nutrients by all of the substrates was TP > NH4+-N > TN. About 10% more TN was removed from the wastewater after planting Canna indica L. A lower hydraulic loading rate or longer hydraulic retention time (HRT) resulted in a higher removal of TP, NH4+-N, and TN because of more contacts and interactions among nutrients, substrates, and roots under the longer HRT. Removal of NO3?N from the simulated VFCWs is a complex process. A high concentration of NO3?N in the effluent was observed under the high hydraulic loading rate because more NH4+-N and oxygen were available for nitrification and a shorter HRT was unfavorable for denitrification. In general, a longer operational period had a highest removal rate for nutrients in the VFCWs.  相似文献   

7.
The effects of wastewater loading rates and two macrophyte species on treatment of sugar factory stabilization pond effluent were investigated in a pilot-scale free water surface constructed wetland (FWS CW) system in western Kenya. For 12 months, four CWs were operated at a hydraulic loading rate of 75 mm day−1 and four at 225 mm day−1. Half the CWs were planted with Cyperus papyrus and half with Echinochloa pyramidalis. Water samples were taken at the inlets and outlets and analyzed for TP, TDP, NH4-N, and TSS. Mass removal rates of the selected water quality parameters were compared during three periods designated the short rain (period 1), dry (period 2), and long rain (period 3) seasons. There was a significant linear relationship between the mass removal rate of TP, NH4-N, and TSS and the mass load, and season had a significant effect on the mass removal rate of TSS, NH4-N, and TDP. Mass loading rates for TDP were about 78% of those for TP, whereas TDP comprised 78–99% of TP mass outflow rates, indicating a release of dissolved P within the CWs. The only significant difference between the two macrophyte species was associated with mass removal of NH4-N, with more efficient removal in CWs planted with C. papyrus than those with E. pyramidalis. TP mass removal rates were 50–80% higher when a mean water loss for CWs 6–8 during periods 1 and 2 was assumed to represent evapotranspiration for all CWs in period 3 instead of pan evaporation data. This illustrated the importance of accurate estimations of evapotranspiration for pollutant mass removal rates in CWs in tropical climates.  相似文献   

8.
The ability of vertical flow (VF) constructed wetland systems to treat high-strength (ca. 300 mg L?1 of COD and ca. 300 mg L?1 total-nitrogen) wastewater under tropical climatic conditions was studied during a 5-month period. Nine 0.8-m diameter experimental VF units (depth 0.6 m) were used: three units were planted with Typha angustifolia L., another three units were planted with Cyperus involucratus Rottb and three units were unplanted. Each set of units were operated at hydraulic loading rates (HLRs) of 20, 50 and 80 mm d?1. Cyperus produced more shoots and biomass than the Typha, which was probably stressed because of lack of water. The high evapotranspirative water loss from the Cyperus systems resulted in higher effluent concentrations of COD and total-P, but the mass removal of COD did not differ significantly between planted and unplanted systems. Average mass removal rates of COD, TKN and total-P at a HLR of 80 mm d?1 were 17.8, 15.4 and 0.69 g m?2 d?1. The first-order removal rate constants at a HLR of 80 mm d?1 for COD, TKN and total-P were 49.8, 30.1 and 13.5 m year?1, respectively, which is in the higher range of k-values reported in the literature. The oxygen transfer rates were ca. 80 g m?2 d?1 in the planted systems as opposed to ca. 60 g m?2 d?1 in the unplanted systems. The number of Nitrosomonas was two to three orders of magnitude higher in the planted systems compared to the unplanted systems. Planted systems thus had significantly higher removal rates of nitrogen and phosphorus, higher oxygen transfer rates, and higher quantities of ammonia-oxidizing bacteria. None of the systems did, however, fully nitrify the wastewater, even at low loading rates. The vertical filters did not provide sufficient contact time between the wastewater and the biofilm on the gravel medium of the filters probably because of the shallow bed depth (0.6 m) and the coarse texture of the gravel. It is concluded that vertical flow constructed wetland systems have a high capacity to treat high-strength wastewater in tropical climates. The gravel and sand matrix of the vertical filter must, however, be designed in a way so that the pulse-loaded wastewater can pass through the filter medium at a speed that will allow the water to drain before the next dose arrives whilst at the same time holding the water back long enough to allow sufficient contact with the biofilm on the filter medium.  相似文献   

9.
《Ecological Engineering》2007,29(2):173-191
In order to investigate the effect of temperature, hydraulic residence time (HRT), vegetation type and porous media material and grain size on the performance of horizontal subsurface flow (HSF) constructed wetlands treating wastewater, five pilot-scale units of dimensions 3 m in length and 0.75 m in width were operated continuously from January 2004 until January 2006 in parallel experiments. Three units contained medium gravel obtained from a quarry. The other two contained one fine gravel and one cobbles, both obtained from a river bed. The three units with medium gravel were planted one with common reeds and one with cattails, and one was kept unplanted. The other two units were planted with common reeds. Planting and porous media combinations were appropriate for comparison of the effect of vegetation and media type on the function of the system. Synthetic wastewater was introduced in the units. During the operation period, four HRTs (i.e., 6, 8, 14 and 20 days) were used, while wastewater temperatures varied from about 2.0 to 26.0 °C. The removal performance of the constructed wetland units was very good, since it reached on an average 89, 65 and 60% for BOD, TKN and ortho-phosphate (P-PO43−), respectively. All pollutant removal efficiencies showed dependence on temperature. It seems that the 8-day HRT was adequate for acceptable removal of organic matter, TKN and P-PO43− for temperatures above 15 °C. Furthermore, based on statistical testing, cattails, finer media and media obtained from a river showed higher removal efficiencies of TKN and P-PO43−.  相似文献   

10.
In order to investigate the effect of temperature, hydraulic residence time (HRT), vegetation type, substrate material and wetland shape on the performance of free-water surface (FWS) constructed wetlands treating wastewater, 5 pilot-scale units were constructed and operated continuously from December 2004 until March 2007 in parallel experiments. Four of the units (A, B, C, D) were rectangular in plan view with dimensions 3.40 m in length and 0.85 m in width, and contained substrate material at a thickness of 0.45 m. The fifth unit (E) had a trapezoidal plan view shape, with a width at the inlet of 1.15 m and at the outlet of 0.55 m, while the length and the thickness of the substrate were the same as in the other four. All units operated at a water depth of 0.10 m. Units B–E contained clay substrate and unit A contained sand. The four units with clay were planted as follows: two with cattails (B and E), one with common reeds (C), and one with giant reeds (D). Unit A, containing sand, was planted with cattails. Planting and substrate material combinations were appropriate for comparison of the effect of vegetation and material type on the function of the system. Synthetic wastewater was introduced in the units. During the operation period four HRTs (i.e., 6 days, 8 days, 14 days and 20 days) were used, while wastewater temperatures varied from about 0.0 °C to 29.1 °C. The removal performance of the five constructed wetland units was good, since it reached on the average 77.5%, 67.9%, 60.4%, 53.9%, 56.0% and 51.7% for BOD, COD, TKN, ammonia (NH4-N), ortho-phosphate (PO4-P) and total phosphorus (TP), respectively. BOD and phosphorus removal efficiencies showed dependence on temperature in most units. The 14-day HRT was found adequate for acceptable removal of organic matter, nitrogen and phosphorus for most temperatures. A 20-day HRT is recommended for acceptable removal of BOD and PO4-P in the cold season. The unit with the trapezoidal plan view shape showed the best performance, with mean removals of 80.1%, 73.5%, 70.4%, 68.6%, 64.7% and 63.5% for BOD, COD, TKN, NH4-N, PO4-P and TP, respectively. The cattail was found statistically more efficient than the other two plants in COD and PO4-P removal. The unit that contained the clay substrate was found statistically more efficient in phosphorus removal than the unit containing sand. HSF CW units were found more efficient than FWS units in removal of most pollutant.  相似文献   

11.
Denitrifying bioreactors are currently being tested as an option for treating nitrate (NO3?) contamination in groundwater and surface waters. However, a possible side effect of this technology is the production of greenhouse gases (GHG) including nitrous oxide (N2O) and methane (CH4). This study examines NO3? removal and GHG production in a stream-bed denitrifying bioreactor currently operating in Southern Ontario, Canada. The reactor contains organic carbon material (pine woodchips) intended to promote denitrification. Over a 1 year period, monthly averaged removal of influent (stream water) NO3? ranged from 18 to 100% (0.3–2.5 mg N L?1). Concomitantly, reactor dissolved N2O and CH4 production, averaged 6.4 μg N L?1 (2.4 mg N m?2 d?1), and 974 μg C L?1 (297 mg C m?2 d?1) respectively, where production is calculated as the difference between inflow and effluent concentrations. Gas bubbles entrapped in sediments overlying the reactor had a composition ranging from 19 to 64% CH4, 1 to 6% CO2, and 0.5 to 2 ppmv N2O; however, gas bubble emission rates were not quantified in this study. Dissolved N2O production rates from the bioreactor were similar to emission rates reported for some agricultural croplands (e.g. 0.1–15 mg N m?2 d?1) and remained less than the highest rates observed in some N-polluted streams and rivers (e.g. 110 mg N m?2 d?1, Grand R., ON). Dissolved N2O production represented only a small fraction (0.6%) of the observed NO3? removal over the monitoring period. Dissolved CH4 production during summer months (up to 1236 mg C m?2 d?1), was higher than reported for some rivers and reservoirs (e.g. 6–66 mg C m?2 d?1) but remained lower than rates reported for some wastewater treatment facilities (e.g. sewage treatment plants and constructed wetlands, 19,500–38,000 mg C m?2 d?1).  相似文献   

12.
Constructed wetlands (CWs) are efficient at removing excessive nutrients from wastewaters. However, this removal often results in the flux of important greenhouse gases (GHG), such as nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) that could mitigate the environmental benefits of CWs. We studied the efficiency of artificial aeration and 2 different macrophyte species (Phragmites australis, Typha angustifolia) on the removal and transformations of nitrogen and GHG gas flux using CW mesocosms supplied with 60 L m?2 d?1 of wastewater. Removal of total nitrogen (TN) and dissolved organic nitrogen (DON) was generally high in all beds but resulted in a net production of oxidized nitrogen (NOy) in aerated CW mesocosms as compared to ammonium (NH4+) in non-aerated units. Aerated units emitted less N2O when planted with P. australis or left unplanted. Aerated beds and planted mesocosms had lower CH4 fluxes than non-aerated units and unplanted beds, respectively. Our study suggests that planted systems with artificial aeration have the overall best performances in that they lead to a reduction of GHG flux and promote the release of NOy over NH4+ in their effluents.  相似文献   

13.
The ability of riverine ecosystems to retain nutrients depends on different hydrological, chemical and biological conditions including exchange processes between streams and wetlands. We investigated nutrient retention in a stream wetland complex on the time scale of daily hydrological exchange between both systems. Daily mass balances of NO3-N, NH4-N, TP and SRP were calculated with data obtained by two automated measurement stations in a stream reach upstream and downstream of a wetland. The pattern of hydrological exchange between stream and wetland was used to classify characteristic hydrological periods like floods, base and low flows. The nutrient retention function of the stream wetland complex varied considerably during phases of similar hydrologic conditions. Despite re-wetting measures in the wetland, an overall net export of all nutrients except for NH4-N characterised the whole growing season. Nitrate retention occurred during summer flood (retention in the wetland, 23 kg NO3-N d?1, 17% of the input load) and low flow (retention in the stream, 1 kg NO3-N d?1, 2% of the input load). TP retention during summer could be assigned to sedimentation (0.7 kg TP d?1, 7% during flooding in the wetland, 0.2 kg TP d?1, 4% during low flow in the stream). SRP retention was only intermittent. We concluded that the nutrient retention of streams and wetlands can only be optimised by restoration measures that regard both systems as one functional unit in terms of nutrient retention.  相似文献   

14.
An industrial three-cascade-reactor plant treating 45 m3 d?1 of dairy wastewater (DW) was monitored for approx. one year to investigate the effect of variable daily influent loads. It removed more than 85% COD, NH4-N and non-ionic and anionic surfactants from DW within the loads 7–24, 0.4–2.3, 0.4–0.7 and 0.1–0.5 kg d?1, respectively; NH4-N removal, in particular, was almost quantitative. Although the degradation of the above parameters below the lower load thresholds declined to 78.7, 87.5, 50.2 and 64.7%, respectively, their residual concentrations met effluent discharge standards. The biomass settling properties, assessed as sludge volume index (SVI), were satisfactory (generally lower than 150 ml g?1) regardless of the organic load of the influent. The depletion of the pollutant load took mainly place in the first reactor albeit a significant contribution to the removal of the slowly degradable organic matter fraction was given by the two subsequent reactors.  相似文献   

15.
The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention times (HRT) on the treatment of NB were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system. In the first step of the study, the maximum COD removal efficiencies were found as 88% and 92% at NB concentrations varying between 30 mg L?1 and 210 mg L?1 in ABR. The minimum COD removal efficiency was 79% at a NB concentration of 700 mg L?1. The removal efficiency of NB was nearly 100% for all NB concentrations in the ABR reactor. The methane gas production and the methane gas percentage remained stable (1500 mL day?1 and 48–50%, respectively) as the NB concentration was increased from 30 to 210 mg L?1. In the second step of the study it was found that as the HRT decreased from 10.38 days to 2.5 days the COD removal efficiencies decreased slightly from 94% to 92% in the ABR. For maximum COD and NB removal efficiencies the optimum HRT was found as 2.5 days in the ABR. The total COD removal efficiency was 95% in sequential anaerobic (ABR)/aerobic (CSTR) reactor system at a minimum HRT of 1 day. When the HRT was decreased from 10.38 days to 1 day, the methane percentage decreased from 42% to 29% in an ABR reactor treating 100 mg L?1 NB. Nitrobenzene was reduced to aniline under anaerobic conditions while aniline was mineralized to catechol with meta cleavage under aerobic conditions.  相似文献   

16.
A free-water surface wetland covering an area of 2800 m2 was operated from March 2002 to June 2004 for agricultural runoff treatment in the Dianchi Valley in China. In the wetland were grown Zizania Caduciflora Turez Hand-mazt and Phragmites australis (Cav.) Trin.ex Steud. The instantaneous inflow rate was measured and the integrated flux was recorded by an ultrasonic flow instrument all year round. The average inflow rate, hydraulic loading rate (HLR) and hydraulic retention time (HRT) were kept at 242 m3 d?1, 12.7 cm d?1 and 2.0 d, respectively. The annual average total phosphorus (TP) in the inflow was 0.87 mg L?1, and the corresponding removal efficiency was calculated to be 59.0%. Biannual plant uptake and removal by harvesting and seed transport was the main pathway for TP removal, while the influent TP load was 12.9 g m?2 year?1. Hydraulic retention time had a significant positive correlation with the removal of P (r2 = 0.88). Water temperature, inflow phosphorus load, inflow and hydraulic load rates were positively correlated with the removal of P. Inflow phosphorus concentrations were negatively correlated with the removal of P. It is shown that the free-water surface wetland was an effective and economical system for agricultural runoff treatment in lake regions.  相似文献   

17.
This article describes the enrichment of the fresh-water green microalga Chlorella sorokiniana in selenomethionine (SeMet). The microalga was cultivated in a 2.2 L glass-vessel photobioreactor, in a culture medium supplemented with selenate (SeO42?) concentrations ranging from 5 to 50 mg L?1. Although selenate exposure lowered culture viability, C. sorokiniana grew well at all tested selenate concentrations, however cultures supplemented with 50 mg L?1 selenate did not remain stable at steady state. A suitable selenate concentration in fresh culture medium for continuous operation was determined, which allowed stable long-term cultivation at steady state and maximal SeMet productivity. In order to do that, the effect of dilution rate on biomass productivity, viability and SeMet content of C. sorokiniana at several selenate concentrations were determined in the photobioreactor. A maximal SeMet productivity of 21 μg L?1 day?1 was obtained with 40 mg L?1 selenate in the culture medium. Then a continuous cultivation process at several dilution rates was performed at 40 mg L?1 selenate obtaining a maximum of 246 μg L?1 day?1 SeMet at a low dilution rate of 0.49 day?1, calculated on total daily effluent volume. This paper describes for the first time an efficient long-term continuous cultivation of C. sorokiniana for the production of biomass enriched in the high value amino acid SeMet, at laboratory scale.  相似文献   

18.
Polyhydroxyalkanoates (PHAs) have been recognized as good substitutes for the non-biodegradable petrochemically produced polymers. However, their high (real or estimated) current production cost limits their industrial applications. This work exploits two strategies to enhance PHAs substitution potential: the increase in PHA volumetric productivity in high density cultures and the use of waste glycerol (GRP), a by-product from the biodiesel industry, as primary carbon source for cell growth and polymer synthesis. Cupriavidus necator DSM 545 was used to accumulate poly(3-hydroxybutyrate) (P(3HB)) from GRP and from commercial glycerol (PG) as control substrate. On PG, productivities between 0.6 gPHB L?1 h?1 and 1.5 gPHB L?1 h?1 were attained. The maximum cell DW was 82.5 gDW L?1, the P(3HB) content being 62%. When GRP was used, 68.8 gDW L?1 with a P(3HB) accumulation of 38% resulting in a final productivity of 0.84 gPHB L?1 h?1 was obtained. By decreasing the biomass concentration at which accumulation was triggered, a productivity of 1.1 gPHB L?1 h?1 (50% P(3HB), w/w) was attained using GRP. P(3HB) molecular weights (Mw) ranged from 7.9 × 105 to 9.6 × 105 Da.  相似文献   

19.
The treatment capacity of constructed wetlands is expected to be high in tropical areas because of the warm temperatures and the associated higher rates of microbial activity. A pilot scale horizontal subsurface flow constructed wetland system filled with river sand and planted with Phragmites vallatoria (L.) Veldkamp was set up in the southern part of Vietnam to assess the treatment capacity and the removal rate kinetics under tropical conditions. The system received municipal wastewater at four hydraulic loading rates (HLRs) of 31, 62, 104 and 146 mm day?1. Removals of TSS, BOD5 and COD were efficient at all HLRs with mean removal rates of 86–95%, 65–83% and 57–84%, respectively. Removals of N and P decreased with HLRs and were: NH4-N 0–91%; TN 16–84% and TP 72–99%. First-order area-based removal rate constants (k, m year?1) estimated from sampling along the length of the wetland from inlet to outlet at the four HLRs were in the range of 25–95 (BOD5), 22–30 (COD), 31–115 (TSS), 5–24 (TN and TKN) and 41–84 (TP) at background concentrations (C*) of 5, 10, 0, 1.5 and 0 mg L?1, respectively. The estimated k-values should not be used for design purposes, as site-specific differences and stochastic variability can be high. However, the study shows that domestic wastewater can be treated in horizontal subsurface flow constructed wetland systems to meet even the most stringent Vietnamese standards for discharge into surface waters.  相似文献   

20.
This research investigated the effects of various nutrients on arsenic (As) removal by arsenic hyperaccumulator Pteris vittata L. in a Hoagland nutrient solution (HNS). The treatments included different concentrations of Ca and K in 20% strength of HNS, different strengths of HNS (10, 20 and 30%), different strengths of HNS (10 and 20%) with and without CaCO3, and different concentrations of Ca, K, NO3, NH4, and P in 20% strength of HNS. The plants were grown in nutrient solution containing 1 mg As L?1 for 4 weeks except the Ca/K experiment where the plants were grown in nutrient solution containing 10 or 50 mg As L?1 for 1 week. Adding up to 4 mM Ca or 3 mM K to 20% strength HNS significantly (P < 0.05) increased plant arsenic accumulation when the solution contained 10 mg As L?1. Plant arsenic removal was reduced with increasing Ca and K concentrations at 50 mg As L?1. Lower strength of HNS (10%) resulted in the greatest plant arsenic removal (79%) due to lower competition of P with As for plant uptake. Addition of CaCO3 to 20% strength of HNS significantly increased arsenic removal by P. vittata. Among the nutrients tested, NO3 and CaCO3 were beneficial to plant arsenic removal while NH4, P and Cl had adverse effects. This experiment demonstrated that it is possible to optimize plant arsenic removal by adjusting nutrients in the growth medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号