首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pot experiment was conducted to investigate the potential for phytoextraction of heavy metals and rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) in co-contaminated soil by co-planting a cadmium/zinc (Cd/Zn) hyperaccumulator and lead (Pb) accumulator Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Co-planting with castor decreased the shoot biomass of S. alfredii as compared to that in monoculture. Cadmium concentration in S. alfredii shoot significantly decreased when grown with ryegrass or castor as compared to that in monoculture. However, no reduction of Zn or Pb concentration in S. alfredii shoot was detected in co-planting treatments. Total removal of either Cd, Zn, or Pb by plants was similar across S. alfredii monoculture or co-planting with ryegrass or castor, except enhanced Pb removal in S. alfredii and ryegrass co-planting treatment. Co-planting of S. alfredii with ryegrass or castor significantly enhanced the pyrene and anthracene dissipation as compared to that in the bare soil or S. alfredii monoculture. This appears to be due to the increased soil microbial population and activities in both co-planting treatments. Co-planting of S. alfredii with ryegrass or castor provides a promising strategy to mitigate both metal and PAH contaminants from co-contaminated soils.  相似文献   

2.
A population of the metallophyte, Thlaspi caerulescens, originating from a Cd–Pb–Zn old mining and smelter site at Plombières (Belgium) was studied. T. caerulescens was cultivated hydroponically to investigate Cd uptake and tolerance. Cd was added to Hoagland’s medium at concentration range from 5 to 500 μM. The plants could tolerate 500 μM Cd in the solution showing only minor visible symptoms of toxicity but with a 32% decrease in fresh weight. After 14 days at 500 μM, Cd content in roots and shoots was 707 and 602 mg kg−1 of dry weight (d.w.), respectively. Application of Cd to hydroponically cultivated T. caerulescens induced the accumulation of PCs in plant roots and shoots. Buthionine sulfoximine (BSO) application almost completely reduced (by 98–100%) the accumulation of PCs without simultaneous increase in plants sensitivity to Cd. These results suggest a minor if any role of PCs in tolerance to Cd of the studied population of T. caerulescens in hydroponics. On the other hand, no PC accumulation was detected either in T. caerulescens plants growing in their natural environment at Plombierès or in plants growing in their native soil in a greenhouse. These results suggest that naturally selected tolerance in T. caerulescens population from Plombières is not associated with enhanced PCs synthesis.  相似文献   

3.
Pot experiments were performed to evaluate the phytoremediation capacity of plants of Atriplex halimus grown in contaminated mine soils and to investigate the effects of organic amendments on the metal bioavailability and uptake of these metals by plants. Soil samples collected from abandoned mine sites north of Madrid (Spain) were mixed with 0, 30 and 60 Mg ha−1 of two organic amendments, with different pH and nutrients content: pine-bark compost and horse- and sheep-manure compost. The increasing soil organic matter content and pH by the application of manure amendment reduced metal bioavailability in soil stabilising them. The proportion of Cu in the most bioavailable fractions (sum of the water-soluble, exchangeable, acid-soluble and Fe–Mn oxides fractions) decreased with the addition of 60 Mg ha−1 of manure from 62% to 52% in one of the soils studied and from 50% to 30% in the other. This amendment also reduced Zn proportion in water-soluble and exchangeable fractions from 17% to 13% in one of the soils. Manure decreased metal concentrations in shoots of A. halimus, from 97 to 35 mg kg−1 of Cu, from 211 to 98 mg kg−1 of Zn and from 1.4 to 0.6 mg kg−1 of Cd. In these treatments there was a higher plant growth due to the lower metal toxicity and the improvement of nutrients content in soil. This higher growth resulted in a higher total metal accumulation in plant biomass and therefore in a greater amount of metals removed from soil, so manure could be useful for phytoextraction purposes. This amendment increased metal accumulation in shoots from 37 to 138 mg pot−1 of Cu, from 299 to 445 mg pot−1 of Zn and from 1.8 to 3.7 mg pot−1 of Cd. Pine bark amendment did not significantly alter metal availability and its uptake by plants. Plants of A. halimus managed to reduce total Zn concentration in one of the soils from 146 to 130 mg kg−1, but its phytoextraction capacity was insufficient to remediate contaminated soils in the short-to-medium term. However, A. halimus could be, in combination with manure amendment, appropriate for the phytostabilization of metals in mine soils.  相似文献   

4.
In this study, zinc (Zn) and cadmium (Cd) tolerance, accumulation and distribution was conducted in Potentilla griffithii H., which has been identified as a new Zn hyperaccumulator found in China. Plants were grown hydroponically with different levels of Zn2+ (20, 40, 80 and 160 mg L?1) and Cd2+ (5, 10, 20 and 40 mg L?1) for 60 days. All plants grew healthy and attained more biomass than the control, except 40 mg L?1 Cd treatment. Zn or Cd concentration in plants increased steadily with the increasing addition of Zn or Cd in solution. The maximum metal concentrations in roots, petioles and leaves were 14,060, 19,600 and 11,400 mg kg?1 Zn dry weight (DW) at 160 mg L?1 Zn treatment, and 9098, 3077 and 852 mg kg?1 Cd DW at 40 mg L?1 Cd treatment, respectively. These results suggest that P. griffithii has a high ability to tolerate and accumulate Cd and Zn, and it can be considered not only as Zn but also as a potential cadmium hyperaccumulator. Light microscope (LM) with histochemical method, scanning electron microscope combined with energy dispersive spectrometry (SEM-EDS) and transmission electron microscope (TEM) were used to determine the distribution of Zn and Cd in P. griffithii at tissue and cellular levels. In roots, SEM-EDS confirmed that the highest Zn concentration was found in xylem parenchyma cells and epidermal cells, while for Cd, a gradient was observed with the highest Cd concentration in rhizodermal and cortex cells, followed by central cylinder. LM results showed that Zn and Cd distributed mainly along the walls of epidermis, cortex, endodermis and some xylem parenchyma. In leaves, Zn and Cd shared the similar distribution pattern, and both were mostly accumulated in epidermis and bundle sheath. However, in leaves of 40 mg L?1 Cd treatment, which caused the phytotoxicity, Cd was also found in the mesophyll cells. The major storage site for Zn and Cd in leaves of P. griffithii was vacuoles, to a lesser extent cell wall or cytosol. The present study demonstrates that the predominant sequestration of Zn and Cd in cell walls of roots and in vacuoles of epidermis and bundle sheath of leaves may play a major role in strong tolerance and hyperaccumulation of Zn and Cd in P. griffithii.  相似文献   

5.
Metal hyperaccumulation is of great interest in recent years because of its potential application for phytoremediation of heavy metal contaminated soils. In this study, a field survey and a hydroponic experiment were conducted to study the accumulation characteristics of lead (Pb), zinc (Zn) and cadmium (Cd) in Arabis paniculata Franch., which was found in Yunnan Province, China. The field survey showed that the wild population of A. paniculata was hyper-tolerant to extremely high concentrations of Pb, Zn and Cd, and could accumulate in shoots an average level of 2300 mg kg?1 dry weight (DW) Pb, 20,800 mg kg?1 Zn and 434 mg kg?1 Cd, with their translocation factors (TFs) all above one. Under the hydroponic culture, stimulatory effects of Pb, Zn and Cd on shoot dry biomass were noted from 24 to 193 μM Pb, 9 to 178 μM Cd and all Zn supply levels in nutrient solution, while the effects were not obvious in the roots. Chlorophyll concentrations in Pb, Zn and Cd treatments showed an inverted U-shaped pattern, consistent with the change of plant biomass. Pb, Zn and Cd concentrations in the shoots and roots increased sharply with increasing Pb, Zn and Cd supply levels. They reached > 1000 mg kg?1 Pb, 10,000 mg kg?1 Zn and 100 mg kg?1 Cd DW in the 24 μM Pb, 1223 μM Zn and 9 μM Cd treatment, respectively, in which the plants grew healthy and did not show any symptoms of phytotoxicity. The TFs of Zn were basically higher than one and the amount of Zn taken by shoots ranged from 78.7 to 90.4% of the total Zn. However, the TFs of Pb and Cd were well below one, and 55.0–67.5% of total Pb and 57.8–83.5% of total Cd was accumulated in the shoots. These results indicate that A. paniculata has a strong ability to tolerate and hyperaccumulate Pb, Zn and Cd. Meanwhile, suitable levels of Pb, Zn and Cd could stimulate the biomass production and chlorophyll concentrations of A. paniculata. Thus, it provides a new plant material for understanding the mechanisms of stimulatory effect and co-hyperaccumulation of multiple heavy metals.  相似文献   

6.
Bechmeria nivea (L.) Gaud. (Ramie) is a promising species for Cd phytoextraction with large biomass and fast growth rate. Nevertheless, little information is available on its tolerance mechanisms towards Cd. Determination of Cd distribution and chemical speciation in ramie is essential for understanding the mechanisms involved in Cd accumulation, transportation and detoxification. In the present study, ramie plants were grown in hydroponics with increasing Cd concentrations (0, 1, 3, 7 mg l?1). The subcellular distribution and chemical forms of Cd in different tissues were determined after 20 days exposure to this metal. To assess the effect of Cd uptake on plant performance, nitrate reductase activity in leaves and root activity were analyzed during the entire experimental period. Increased Cd level in the medium caused a proportional increase in Cd uptake, and the highest Cd concentration occurred in roots, followed by stems and leaves. Subcellular fractionation of Cd-containing tissues indicated that about 48.2–61.9% of the element was localized in cell walls and 30.2–38.1% in soluble fraction, and the lowest in cellular organelles. Cd taken up by ramie rapidly equilibrated among different chemical forms. Results showed that the greatest amount of Cd was found in the extraction of 1 M NaCl and 2% HAC, and the least in residues in all test tissues. In roots, the subdominant amount of Cd was extracted by d-H2O and 80% ethanol, followed by 0.6 M HCl. While in stems and leaves, the amount of 0.6 M HCl-extractable Cd was comparable with that extracted by 80% ethanol or d-H2O. 1 mg l?1 Cd stimulated nitrate reductase activity in leaves and root activity, while a concentration-dependent inhibitory effect was observed with increasing Cd concentration, particularly at 7 mg l?1 Cd. It could be suggested that the protective mechanisms evolved by ramie play an important role in Cd detoxification at relatively low Cd concentrations (below 3 mg l?1 Cd) but become restricted to maintain internal homeostasis with higher Cd stress.  相似文献   

7.
Picris divaricata Vant., a plant species native to subtropical China, was recently identified as the first Cd/Zn hyperaccumulator from Asteraceae. P. divaricata was grown from wild collected seed for 4 months in a series of pH adjusted test soils with added Zn levels 0–7000 mg kg−1 and Cd levels 0–150 mg kg−1. Plants did not hyperaccumulate Zn (threshold >3000 μg g−1) and weakly hyperaccumulated Cd with little or no dose–response.P. divaricata has multicellular simple trichomes concentrated on the leaf margins and midrib. X-ray analysis showed that Zn was concentrated in larger trichomes and epidermal cells adjacent to the trichome but virtually absent in other leaf tissues. Within the trichomes, Zn was localized in ovate spots around the tips of individual cells. These tips and other locations in the trichome cell contained black electron dense material when examined with transmission electron microscopy, some of which was identified as SiO2. Silicon and Mn were concentrated in the same areas as Zn. Si has been previously associated with alleviating Zn, Mn and Cd toxicity. Our results support this observation and further investigation is warranted.Calcium and P were concentrated in the distal tips of trichomes, similar to patterns previously observed for calcicole plants grown in elevated Ca soils. Overall, nonsecretory trichomes from many plant families may have a common origin as tissues adapted to handle a variety of environmental metals.  相似文献   

8.
We propose Lobella sokamensis Deharveng and Weiner, 1984 juvenile as a new soil quality indicator to assess heavy metal polluted soils. L. sokamensis is a collembola commonly found with earthworms, and it plays a key role in decomposing dead earthworms. The soil quality assessment of cadmium (Cd), copper (Cu), antimony (Sb), and zinc (Zn) on the survival of L. sokamensis adults were performed in artificial soil. The LC50 values for L. sokamensis adults exposed to Cd, Cu, Sb and Zn for 5 days were calculated to be 4729, 4472, 4702, and 2521 mg kg−1, respectively. L. sokamensis juveniles (10–12 days) were also exposed to Cd, Cu, Sb, and Zn, and 5 days-LC50 values for Cd, Cu, Sb, and Zn were 282, 229, 447, and 163 mg kg−1, respectively. Both adult and juvenile survivals of L. sokamensis in metal spiked soil were inhibited. We found that the soil quality assessment using L. sokamensis juveniles were sensitive enough to evaluate soil pollution, compared to conventional Folsomia candida assay which is widely used. In addition, L. sokamensis has advantage for easy detection in soil due to the big and orange-colored body. The 5 days-soil quality assessment using L. sokamensis juveniles appears to be rapid protocols for the collembola assay. This is the first report on the collembola assay of heavy metal contaminated soils using the L. sokamensis as a soil indicator.  相似文献   

9.
Mine tailings are an environmental problem in Southern Spain because wind and water erosion of bare surfaces results in the dispersal of toxic metals over nearby urban or agricultural areas. Revegetation with tolerant native species may reduce this risk. We grew two grasses, Lygeum spartum and Piptatherum miliaceum, and the crop species Cicer arietinum (chickpea) under controlled conditions in pots containing a mine tailings mixed into non-polluted soil to give treatments of 0%, 25%, 50%, 75% and 100% mine tailings. We tested a neutral (pH 7.4) mine tailings which contained high concentrations of Cd, Cu, Pb and Zn. Water-extractable metal concentrations increased in proportion to the amount of tailings added. The biomass of the two grasses decreased in proportion to the rate of neutral mine-tailing addition, while the biomass of C. arietinum only decreased in relation to the control treatment. Neutron radiography revealed that root development of C. arietinum was perturbed in soil amended with the neutral tailings compared to those of the control treatment, despite a lack of toxicity symptoms in the shoots. In all treatments and for all metals, the plants accumulated higher concentrations in the roots than in shoots. The highest concentrations occurred in the roots of P. miliaceum (2500 mg kg?1 Pb, 146 mg kg?1 Cd, 185 mg kg?1 Cu, 2700 mg kg?1 Zn). C. arietinum seeds had normal concentrations of Zn (70–90 mg kg?1) and Cu (6–9 mg kg?1). However, the Cd concentration in this species was ~1 mg kg?1 in the seeds and 14.5 mg kg?1 in shoots. Consumption of these plant species by cattle and wild fauna may present a risk of toxic metals entering the food chain.  相似文献   

10.
The hypothesis tested in this study was if medicinal plants could be grown as alternative crops in heavy metal polluted soils without contamination of the final marketable produce. Furthermore, medicinal crops may offer a phytoremediation option for mildly heavy metal polluted agricultural soils. The effect of metal-enriched soils was evaluated in five medicinal species (Bidens tripartita L., Leonurus cardiaca L., Marrubium vulgare L., Melissa officinalis L. and Origanum heracleoticum L.). Soils were sampled in the vicinities of the Non-Ferrous Metals Combine (Pb–Zn smelter) near Plovdiv, Bulgaria, from plots at 0.5 km (soil 1), 3 km (soil 2), 6 km (soil 3) and 9 km (control soil) from the smelter. Cadmium, Pb and Zn concentration in soil 1 were above the critical total (HNO3-extractable) concentrations for these elements in soils. Generally, heavy metals in soil 1 decreased dry mater yields of the five species relative to the control. However, the essential oil content of M. vulgare, M. officinalis and O. heracleoticum was within the usual range for respective species and was not affected by the treatments. The overall metal uptake was in the order: B. tripartita > M. vulgare > O. heracleoticum > L. cardiaca > M. officinalis for Cd, L. cardiaca = M. vulgare > B. tripartita = M. officinalis = O. heracleoticum for Pb, L. cardiaca = M. vulgare > O. heracleoticum > B. tripartita = M. officinalis for Cu and B. tripartita > L. cardiaca = M. vulgare > M. officinalis = O. heracleoticum for Mn and Zn. Overall, metal concentration in plant parts was in the order: roots > leaves > flowers > stems for Cd, Pb and Cu, leaves > roots > flowers > stems for Mn and Zn. The concentration of Cd, Pb, Cu and Zn in plant tissue correlated to the exchangeable (EXCH) and the carbonate (CARB) bound fractions of metals in soil. Heavy metals caused disruptions of the plasma membrane of some root cortical cells and alterations in chloroplasts thylakoids in plants grown in soil 1. Metal content in teas prepared from the species was negligible, the essential oils were free of metals. Generally, the transfer factor (TF) was less than 1, indicating the tested species did not have a significant phytoextraction potential. This study demonstrated the three essential oil species M. vulgare, M. officinalis and O. heracleoticum can be grown as alternative high-value crops in metal polluted agricultural soils around the smelter and provide metal-free marketable produce.  相似文献   

11.
A study quantifying the effect of NaCl on growth and Cd accumulation of Spartina alterniflora subjected to Cd stress was conducted. Seedlings were cultivated in the presence of 1 or 3 mM Cd alone, or combined with NaCl (50 or 100 mM). The results showed that NaCl magnified the phytotoxicity of moderate Cd stress (1 mM Cd) on plants due to reduced levels of plant biomass, plant height, and chlorophyll a + b, while no synergistic effects were recorded under severe Cd stress (3 mM Cd). Proline and Ca2 + accumulated along with additional NaCl under moderate Cd stress, instead of reduced or unchanged levels under severe Cd stress owing to different adoption strategies caused by NaCl under different Cd stresses. NaCl reduced the oxidative stress in Cd-treated plants through increasing levels of antioxidative enzymes (catalase (CAT) and peroxidase (POD)) under moderate Cd stress. With NaCl addition, Cd2 + contents in S. alterniflora increased and reduced under moderate and severe Cd stress, respectively. However, total Cd2 + amounts increased with increasing NaCl concentration due to biological dilution. NaCl improved the increase of Cd2 + translocation factor (TF) under moderate Cd stress, indicating that NaCl might improve Cd2 + uptake and translocation from roots to shoots, and enhance the phytoextraction of S. alterniflora on Cd; while phytostabilization of Cd under severe Cd stress may be possible due to the reduced TF. Thus, NaCl alleviated phytotoxicity caused by Cd stress through improved management of osmotic solutes and oxidative status, and affected Cd accumulations in S. alterniflora differently under moderate and severe Cd stresses.  相似文献   

12.
The hypothesis tested in this study was if medicinal plants could be grown as alternative crops in heavy metal polluted soils without contamination of the final marketable produce. Furthermore, medicinal crops may offer a phytoremediation option for mildly heavy metal polluted agricultural soils. The effect of metal-enriched soils was evaluated in five medicinal species (Bidens tripartita L., Leonurus cardiaca L., Marrubium vulgare L., Melissa officinalis L. and Origanum heracleoticum L.). Soils were sampled in the vicinities of the Non-Ferrous Metals Combine (Pb–Zn smelter) near Plovdiv, Bulgaria, from plots at 0.5 km (soil 1), 3 km (soil 2), 6 km (soil 3) and 9 km (control soil) from the smelter. Cadmium, Pb and Zn concentration in soil 1 were above the critical total (HNO3-extractable) concentrations for these elements in soils. Generally, heavy metals in soil 1 decreased dry mater yields of the five species relative to the control. However, the essential oil content of M. vulgare, M. officinalis and O. heracleoticum was within the usual range for respective species and was not affected by the treatments. The overall metal uptake was in the order: B. tripartita > M. vulgare > O. heracleoticum > L. cardiaca > M. officinalis for Cd, L. cardiaca = M. vulgare > B. tripartita = M. officinalis = O. heracleoticum for Pb, L. cardiaca = M. vulgare > O. heracleoticum > B. tripartita = M. officinalis for Cu and B. tripartita > L. cardiaca = M. vulgare > M. officinalis = O. heracleoticum for Mn and Zn. Overall, metal concentration in plant parts was in the order: roots > leaves > flowers > stems for Cd, Pb and Cu, leaves > roots > flowers > stems for Mn and Zn. The concentration of Cd, Pb, Cu and Zn in plant tissue correlated to the exchangeable (EXCH) and the carbonate (CARB) bound fractions of metals in soil. Heavy metals caused disruptions of the plasma membrane of some root cortical cells and alterations in chloroplasts thylakoids in plants grown in soil 1. Metal content in teas prepared from the species was negligible, the essential oils were free of metals. Generally, the transfer factor (TF) was less than 1, indicating the tested species did not have a significant phytoextraction potential. This study demonstrated the three essential oil species M. vulgare, M. officinalis and O. heracleoticum can be grown as alternative high-value crops in metal polluted agricultural soils around the smelter and provide metal-free marketable produce.  相似文献   

13.
14.
Sulphur (S) deficiency is recognized as a limiting factor for crop production in many regions in the world. In grasslands, S availability has been shown to alter the biomass production of Trifolium repens and Lolium perenne and their specific interactions. To establish the role of N and S availabilities on the competitive interaction for these minerals by T. repens and L. perenne when grown together, two S rates (0 and 30 kg S ha?1) combined with three N rates (0, 50 and 180 kg N ha?1) were investigated in a cut/regrowth experiment over a period of 4 months under glasshouse conditions. N was applied as 15NH4 15NO3 to determine their actual N fertilizer recovery in the harvested fraction of the shoot. S yields were used to estimate their apparent S fertilizer recovery. At final harvest, N reserves of T. repens stolons were analyzed to estimate their implication in the regrowth process. In monoculture and in both cuts (1 and 2), N benefited both species by increasing their N and S yields. S benefited only T. repens. In mixture, at cut 1, L. perenne behaved as a better competitor than T. repens thanks to N, while at cut 2, T. repens dominated the community thanks to strong positive S effect. N recovery of L. perenne grown in mixture was greatly improved by S supply. For T. repens, S enhanced its ability to fix N2 and improved the accumulation of soluble proteins in its stolons. It is clear that the N:S ratio of soil may affect the functionality of grassland plant communities and their structure. Results suggest that (i) the limitations in the availability of soil S could restrict leguminous species growth in high N soil conditions, and (ii) the modulation of S level could be used as a tool to modify the composition of grassland communities.  相似文献   

15.
Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens   总被引:6,自引:0,他引:6  
For phytoextraction to be successful and viable in environmental remediation, strategies that can optimize plant uptake must be identified. Thlaspi caerulescens is an important hyperaccumulator of Cd and Zn, whether adjusting soil pH is an efficient way to enhance metal uptake by T. caerulescens must by clarified. This study used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels. Thlaspi caerulescens tissue metal concentrations and 0.1 M Sr(NO3)2 extractable soil metal concentrations were measured. The soluble metal form of both Cd and Zn was greatly increased with decreasing pH. Lowering pH significantly influenced plant metal uptake. For the high metal soil, highest plant biomass was at the lowest soil pH (4.74). The highest shoot metal concentration was at the second lowest pH (5.27). For low metal soil, due to low pH induced Al and Mn toxicity, both plant growth and metal uptake was greatest at intermediate pH levels. The extraordinary Cd phytoextraction ability of T. caerulescens was further demonstrated in this experiment. In the optimum pH treatments, Thlaspi caerulescens extracted 40% and 36% of total Cd in the low and high metal soils, respectively, with just one planting. Overall, decreasing pH is an effective strategy to enhance phytoextraction. But different soils had various responses to acidification treatment and a different optimum pH may exist. This pH should be identified to avoid unnecessarily extreme acidification of soils.  相似文献   

16.
Conventional agriculture is specializing rapidly into the management of few monoculture crops, threatening crop diversity and questioning the sustainability of extensive cropping systems. The grazing of cover crops in integrated crop-livestock systems could be a feasible biologically based technology to restore crop diversity and mitigate ecological issues in cropping systems. However, there is limited evidence on plausible synergies or trade-offs for the practice, and about how grazing plans could affect the herbage production and services from cover crops. This work assessed the effects of cattle grazing on the primary and secondary production of annual ryegrass (Lolium multiflorum) in an integrated ryegrass–soybean rotation system. Specifically, the prediction for synergistic effects of cattle grazing on the ryegrass herbage production, residual crop cover and animal performance were tested in a 2-year (2014 and 2015) study comprising a randomized complete block design of four grazing intensity treatments, replicated three times. A no-cattle grazing treatment (NG), used as control, or continuous grazing with Holstein heifers (~ 220 kg live weight) at targeted sward heights of 5, 10, 15 and 20 cm (hereafter referred as G5, G10, G15 and G20, respectively) was applied to ryegrass plots. The herbage production and residual herbage cover of ryegrass, and the average daily gain (ADG, kg/day) and live weight gain per hectare (LWG, kg/ha) of heifers were analyzed by ANOVA (P < 0.05) and compared by the TukeyHSD test (P < 0.05). Regression models were used to estimate relationships between herbage production, animal performance and sward height. The herbage production was 60% higher (P < 0.01) for the grazing treatments compared to NG. The residual herbage for G15 and G20 was not different than that for NG and increased linearly as sward heights increased, reaching highest values for G15 and G20. Maximum ADG was 1.10 kg/day for ryegrass grazed at a 20.6 cm height, whereas maximum LWG was 427 kg/ha for ryegrass grazed to a 16.1 cm height. The results support the hypothesis for synergistic effects of using annual ryegrass as a dual forage and service cover crop. Moderate grazing intensity to sward height of 12–18 cm with continuous stocking led to optimized forage production and utilization by dairy heifers.  相似文献   

17.
Use of suitable plants that can extract and concentrate excess P from contaminated soil serves as an attractive method of phytoremediation. Plants vary in their potential to assimilate different organic and inorganic P-substrates. In this study, the response of Duo grass (Duo festulolium) to variable rates of soil-applied potassium dihydrogen phosphate (KH2PO4) on biomass yield and P uptake were studied. Duo grown for 5 weeks in soil with 2.5, 5 and 7.5 g KH2PO4 kg?1 soil showed a significantly higher biomass and shoot P content of 8.3, 11.4 and 12.3 g P kg?1 dry weight respectively compared to plants that received no soil added P. Also, the ability of Duo to metabolize different forms of P-substrates was determined by growing them in sterile Hoagland's agar media with different organic and inorganic P-substrates, viz. KH2PO4, glucose-1-phosphate (G1P), inositiol hexaphosphate (IHP), adenosine triphosphate (ATP) and adenosine monophosphate (AMP) for 2 weeks. Plants on agar media with different P-substrates also showed enhanced biomass yield and shoot P relative to no P control and the P uptake was in the order of ATP > KH2PO4 > G1P > IHP = AMP > no P control. The activities of both phytase (E.C.3.1.3.26) and acid phosphatases (E.C.3.1.3.2) were higher in all the P received plants than the control. Duo grass is capable of extracting P from the soil and also from the agar media and thus it can serve as possible candidate for phytoextraction of high P-soil.  相似文献   

18.
The anthropogenic impact of xenobiotics contributes to environmental risk for the aquatic environment and thus, must be controlled. Elodea canadensis, a cosmopolitan aquatic macrophyte with an important role in the ecology of many littoral zones, may provide an integrated record of pollution. Therefore, it was interesting to investigate the accumulation of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in this species and in water and bottom sediments collected from rivers with various levels of contamination. Of these rivers one control and one polluted was selected for the collection of E. canadensis for an experiment to compare the ability of this species to accumulate Cu and Zn. These elements were supplemented at concentrations (mg L−1) of 0.01, 0.02, 0.03, 0.05, 0.08 and 0.14 as CuSO4·5H2O, and 0.4, 0.6, 0.9, 1.4, 2.03 and 3.04 as ZnSO4·7H2O and in a mixture containing (mg L−1) 0.01Cu + 0.4Zn, 0.02Cu + 0.6Zn, 0.03Cu + 0.9Zn, 0.05Cu + 1.4Zn, 0.08Cu + 2.03Zn and 0.14Cu + 3.04Zn. After the experiment, E. canadensis from the polluted river contained significantly higher Cu and Zn concentrations when applied separately and also significantly higher Cu and Zn concentrations when applied as a mixture compared to the control river. These higher concentrations in E. canadensis from the polluted river were found in all combinations in the experiment. Thus, E. canadensis habituated in polluted sites to the exposure, and long-term influence of elevated metal levels appeared to be better adapted, and it also exhibited a higher increase in biomass than plants from the control river in all the experimental Cu and Zn solutions. Younger leaves of E. canadensis were more resistant to the effects of Cu and Zn than older leaves. Both Cu and Zn negatively affected the cell structure of older leaves, although the influence of Cu on plasma membrane integrity and chloroplast distribution was stronger than that of Zn. The influence of the Cu + Zn mixture on E. canadensis resulted in less pronounced cell disintegration than the influence of Cu added separately.The explanation of differences in the E. canadensis biomass increase and metal concentrations under the binary Cu and Zn impact needs further examination.  相似文献   

19.
A physiologically based extraction test (PBET) was run for the extraction of six metals (Cu, Zn, Cd, Cr, Ni and Pb) in four composts containing high concentrations of heavy metals. An aqueous solution of pepsin plus citric, acetic, and malic acids buffered to pH 2 was used to simulate the gastric mixture, and an extraction of 1 h at 37 °C was run with a solid:liquid ratio of 1:100. The results were compared to those obtained using water and CaCl2–DTPA solution. The PBET extracted far more metals than water, but less than CaCl2–DTPA for Cu, Pb and Cr, while giving similar or slightly lower results for Cd, Zn, and Ni.  相似文献   

20.
In order to better understand the processes that regulate the accumulation in the apoplasm of heavy metals and their mobilization by the plant metabolites it is essential to study the mechanisms that regulate the interactions between metal ions and pectins. In such a context, the sorption of Cd(II), Zn(II), Cu(II) and Pb(II) from single and multi-metal solutions, by a Ca-polygalacturonate gel with a degree of esterification of 18.0 (PGAM1) and 65.5% (PGAM2) was studied in the 3.0–6.0 pH range in the presence of CaCl2 2.5 mM. The sorption of Cr(III) from single metal solution was also considered. The results show that the amount of each metal ion sorbed increases with increasing the initial metal ion concentration and pH. The data from the single metal solution tests show that at pH 6.0 the affinity of the metal ions towards the PGAM1 matrix follows the order: Cr(III) > Cu(II) ? Pb(II) ? Zn(II) ? Cd(II). The simultaneous sorption of the bivalent metal ions by the PGAM1 gels indicates that Pb(II) is selectively sorbed. The FT-IR spectra show that the carboxylate groups are mainly responsible for the metal ion coordination. The ability of PGAM2 to accumulate Cr(III), Cu(II), and Pb(II) was lower than that found in the PGAM1 systems whereas the sorption of Zn(II) and Cd(II) was negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号