首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Low-chlorinated benzenes (CBs) are widespread groundwater contaminants and often threaten to contaminate surface waters. Constructed wetlands (CWs) in river floodplains are a promising technology for protecting sensitive surface water bodies from the impact of CBs. The efficiency and seasonal variability of monochlorobenzene (MCB), 1,4-dichlorobenzene (1,4-DCB) and 1,2-dichlorobenzene (1,2-DCB) removal, the impact of planting, and gaseous MCB emissions from the filter surface were investigated over the course of 1 year in both a vegetated pilot-scale CW and an unplanted reference plot (UR). Annual mean concentration decreases of MCB and 1,4-DCB were observed; however, annual mean 1,2-DCB removal was seen only in the upper filter layer. Planting (Phragmites australis) had a statistically significant beneficial effect on removal. The CB removal efficiency in the CW generally decreased with depth, and seasonal variations of removal were evident, with less concentration decrease during summer. Load removal efficiencies of 59-65% (262-358 mg m−2 d−1) for MCB, 59-69% (4.0-5.1 mg m−2 d−1) for 1,4-DCB and 29-42% (0.6-2.1 mg m−2 d−1) for 1,2-DCB were observed in June and July. Volatilization of MCB from the filter surface accounted for 2-4% of the total amount removed. Simple cover layers of organic materials on the filter surface were suitable for MCB emission reduction. Model calculations were carried out to estimate the MCB removal potential attributable to microbial degradation, volatilisation, and plant uptake in the CW and UR. Microbial degradation was the dominating process. The observed positive impact of plants on MCB removal was caused by improved oxygen supply (due to root oxygen release into the rhizosphere and enhanced water table fluctuations), and direct plant uptake.  相似文献   

2.
A free-water surface wetland covering an area of 2800 m2 was operated from March 2002 to June 2004 for agricultural runoff treatment in the Dianchi Valley in China. In the wetland were grown Zizania Caduciflora Turez Hand-mazt and Phragmites australis (Cav.) Trin.ex Steud. The instantaneous inflow rate was measured and the integrated flux was recorded by an ultrasonic flow instrument all year round. The average inflow rate, hydraulic loading rate (HLR) and hydraulic retention time (HRT) were kept at 242 m3 d?1, 12.7 cm d?1 and 2.0 d, respectively. The annual average total phosphorus (TP) in the inflow was 0.87 mg L?1, and the corresponding removal efficiency was calculated to be 59.0%. Biannual plant uptake and removal by harvesting and seed transport was the main pathway for TP removal, while the influent TP load was 12.9 g m?2 year?1. Hydraulic retention time had a significant positive correlation with the removal of P (r2 = 0.88). Water temperature, inflow phosphorus load, inflow and hydraulic load rates were positively correlated with the removal of P. Inflow phosphorus concentrations were negatively correlated with the removal of P. It is shown that the free-water surface wetland was an effective and economical system for agricultural runoff treatment in lake regions.  相似文献   

3.
Nitrogen removal in constructed wetland systems   总被引:1,自引:0,他引:1  
Since the mid 1990s, constructed wetlands have been increasingly used as a low‐energy ‘green’ technique, in the treatment of wastewater and stormwater, driven by the rising cost of fossil fuels and increasing concern about climate change. Among various applications of these wetlands, a significant area is the removal of nitrogenous pollutants to protect the water environment and to enable effective reclamation and reuse of the wastewater. This paper provides a review of the current state of nitrogen removal technology, focusing on existing types of wetlands, the mechanisms of nitrogen removal, major environmental factors relative to nitrogen removal, and the operation and management of the wetlands.  相似文献   

4.
《Ecological Engineering》2007,29(2):154-163
The South Nation River Watershed, in eastern Ontario, Canada, is an agricultural watershed impacted by excess nutrient loading primarily from agricultural activities. A constructed wetland for the treatment of agricultural wastewater from a 150-cow dairy operation in this watershed was monitored in its eighth operating season to evaluate the proportion of total nitrogen (TN) (approximated by total Kjeldahl nitrogen (TKN) due to low NO3) and total phosphorus (TP) removal that could be attributed to storage in Typha latifolia L. and Typha angustifolia L., which dominate this system. Nutrient loading rates were high, with 16.2 kg ha−1 d−1 N and 3.4 kg ha−1 d−1 P entering the wetland and loading the first wetland cell. Plant uptake accounted for 0.7% of TKN removal when the vegetated free water surface cells were considered together. However, separately, in the second wetland cell with lower N and P loading rates, plants accounted for 9% of TKN, 21% of NH4+ and 5% of TP removal. Plant uptake was significant to overall removal given wetland age and nutrient loading. Nutrient storage during the growing season at this constructed wetland helped reduce the nutrient load entering the watershed, already stressed by intensive local agriculture.  相似文献   

5.
人工湿地的氮去除机理   总被引:86,自引:1,他引:86  
卢少勇  金相灿  余刚 《生态学报》2006,26(8):2670-2677
湖泊等水环境的富营养化给人类带来诸多损害,如环境、生态和经济等方面的损害。富营养化的原因和控制途径引起了包括中国在内的很多国家的关注。我国针对水环境的富营养化问题开展了大量的工作。氮是引发水环境富营养化的主要营养物之一。外源氮负荷(分点源和非点源两部分)是水环境污染负荷的重要组成部分。传统污水处理技术应用于收集系统欠缺的非点源污染的治理时成本过高。人工湿地是有效削减水环境中外源氮负荷的重要技术手段,在处理非点源污染源带来的氮负荷时更是如此。人工湿地具有氮去除效果好、耐冲击负荷能力强、投资低和生态环境友好等优点。因此人工湿地非常适合于水环境富营养化的防治。阐明人工湿地中氮的去除机理对水环境的富营养化等具有重要的意义。防渗人工湿地的氮去除机理主要包括挥发、氨化、硝化/反硝化、植物摄取和基质吸附。未防渗的人工湿地中,周围水体与人工湿地的氮交换影响着人工湿地中氮的去除。一般情况下,人工湿地中硝化/反硝化是最主要的氮去除机理。pH值小于7.5时,氨挥发可忽略。pH值在9.3以上时,氨挥发很显著。处理生活污水的人工湿地中氮的去除主要是依靠微生物的硝化/反硝化作用。在进水负荷低、气候适宜、植物物种适宜和收割频率与时机适宜的条件下,植物收割可能成为主要的去氮途径。人工合理导向的湿地的氮去除效果通常优于天然湿地。合理的设计(填料的搭配、植物物种的配置以及布水和集水的优化)对人工湿地系统中氮去除的改善有重要影响。合理的运行,如有效的水位控制,正确的植物培育、合理的植物收割等,能有效地改善湿地中的氮去除。  相似文献   

6.
Constructed wetlands are very popular in terms of wastewater treatment today. Formation of redox potential gradients inside such a system strongly influences the wastewater-treatment efficiency. Individual oxidation forms of sulfur, and dissolved and precipitated manganese forms were determined in the vegetation bed of the constructed wetland. The aim of the speciation analysis was to contribute to the characterization of its redox properties. Sulfur was mostly oxidized at the inflow. The concentration of sulfates at the inflow varied from 25 to 55 mg/l, while concentration of sulfides was always lower than 6.0 mg/l and mostly even lower than 1.0 mg/l. However, sulfates were reduced during the pretreatment and the wastewater flow through the vegetation bed. The concentration of total manganese varied from 0.2 to 0.8 mg/l. Approximately 60% of Mn was precipitated at the inflow. The content of precipitated Mn forms declined to ca. 40-50% at the inflow zone, this content was almost constant across the vegetation bed to the outflow when water was sampled from 60-cm depth. However, the content of precipitated Mn forms increased to ca. 74% for samples from 20-cm depth. With respect to the aeration of the system, manganese can be precipitated as MnO2 in these samples.  相似文献   

7.
This contribution summarizes the nutrient and metal removal of a free water surface constructed wetland, compares it with the previous small-scale prototype and discusses the observed differences. Several locally available macrophyte species were transplanted into the wetland. Eichhornia crassipes (water hyacinth) showed a fast growth and it soon became dominant, attaining 80% cover of the wetland surface. Typha domingensis (cattail) and Panicum elephantipes (elephant panicgrass) developed as accompanying species attaining 14 and 4% cover. The wetland removed 86% of Cr and 67% of Ni. Zn concentrations were below 50 μg l−1 in most samplings. The FeS precipitation probably caused the high retention of Fe (95%). The outcoming water was anoxic in most samplings. Phosphate and ammonium were not retained within the wetland while 70% and 60% of the incoming nitrate and nitrite were removed. Large denitrification losses are suggested. Cr, Ni and Zn were retained by the macrophytes in the larger wetland and in sediment in the small-scale one. Differences in the retention mechanism of the two wetlands are discussed.  相似文献   

8.
The treatment capacity of an integrated constructed wetland system (CWS) that was designed to reduce nitrogen (N) from secondary effluent was explored. The integrated CWS consisted of vertical-flow constructed wetland, floating bed and sand filter. The vertical-flow wetland was filled with gravel, steel slag and peat from the bottom to the top. Vetiver zizanioides was selected to grow in the vertical-flow constructed wetland and Coix lacrymajobi L. was grown in the floating bed. The results showed that the integrated CWS displayed superior removal efficiency for nitrate nitrogen (NO3-N), ammonia nitrogen (NH4+-N), nitrite nitrogen (NO2-N), and total nitrogen (TN). The average NO3-N, NO2-N, NH4+-N and TN removal efficiencies of the integrated CWS were 98.83%, 95.60%, 98.05% and 92.41%, respectively, during the whole experimental operation. The integrated CWS may have a good potential for removing N from secondary effluent.  相似文献   

9.
The aim of this study was to develop an input/output mass balance to predict phosphorus retention in a five pond constructed wetland system (CWS) at Greenmount Farm, County Antrim, Northern Ireland. The mass balance was created using 14-months of flow data collected at inflow and outflow points on a weekly basis. Balance outputs were correlated with meteorological parameters, such as daily air temperature and hydrological flow, recorded daily onsite. The mass balance showed that phosphorus retention within the system exceeded phosphorus release, illustrating the success of this CWS to remove nutrients from agricultural effluent from a dairy farm. The last pond, pond 5, showed the greatest relative retention of 86%. Comparison of retention and mean air temperature highlighted a striking difference in trends between up-gradient and down-gradient ponds, with up-gradient ponds 1 and 2 displaying a positive quadratic relationship and down-gradient ponds 3 through 5 displaying a negative quadratic relationship.  相似文献   

10.
人工湿地处理农业径流的研究进展   总被引:27,自引:0,他引:27  
卢少勇  张彭义  余刚  金相灿 《生态学报》2007,27(6):2627-2635
人工湿地(CW)是独特的土壤-植物-微生物-动物系统。按水流方式分为表面流湿地(FWS)和潜流湿地(SFW)。FWS投资低,但占地大,低温地区冬季运行需要独特的考虑。SFW的保温保水效果好,卫生条件较好,但投资高,易堵塞。SFW分为水平潜流湿地(HF)和垂直潜流湿地(VF)。HF床供氧较差,适于去除SS和BOD,但NH3-N的去除较差。VF床供氧好,占地小,适于硝化和去除BOD,但对SS的去除不如HF床,而且构建费高,易堵塞。FWS按系统中的主体植物的不同分为大型自由漂浮植物湿地、大型沉水植物湿地和大型挺水植物湿地。农业径流(AR)由农田排水、灌溉余水、村落污水、畜禽养殖污水和部分雨水径流组成。其污水源具有面广、量大、分散、间歇的峰值和高无机沉淀物负荷的特点。中国大多数农村经济基础薄弱,管理水平不高。农村中的低洼地、低产田和公共用地均可作为生态环境保护用地。农村的污水收集系统欠完善。传统污水处理技术处理AR时难度大、维护管理复杂、投资和运行费高。而CW的耐冲击负荷能力强、投资低、运行费低、维护管理简便,但占地较大。因此CW适合于有地可用的农村的AR的处理。小结了1982年起CW技术在AR处理中的研究和应用。已有研究结合AR的水质、水量规律及农村的特点,进行了CW的设计与工艺改进。对氮、磷、有机物、农药和杀虫剂等污染物的去除效果有较多的研究。关于CW的运行、维护和管理的研究有沉积物积累、水量平衡、去除效果的衡量、植物收割和费用分析。CW的运行效果的衡量应当基于进出水负荷量而非基于进出水浓度。总之CW在AR污染控制中具有良好的应用前景。CW经合理设计和管理后有望实现“零费用运行”或者“盈利性运行”。  相似文献   

11.
Constructed treatment wetlands (CTWs) have been used effectively to treat a range of wastewaters and non-point sources contaminated with nitrogen (N). But documented long-term case studies of CTWs treating dilute nitrate-dominated agricultural runoff are limited. This study presents an analysis of four years of water quality data for a 1.6-ha surface-flow CTW treating irrigation return flows in Yakima Basin in central Washington. The CTW consisted of a sedimentation basin followed by two surface-flow wetlands in parallel, each with three cells. Inflow typically contained 1–3 mg-N/L nitrate and <0.4 mg-N/L total Kjeldahl N (TKN). Hydraulic loading was fairly constant, ranging from around 125 cm/d in the sedimentation basin to 12 cm/d in the treatment wetlands. Concentration removal efficiencies for nitrate averaged 34% in the sedimentation basin and 90–93% in the treatment wetlands. Total N removal efficiencies averaged 21% and 57–63% in the sedimentation basin and treatment wetlands, respectively. Area-based first-order removal rate constants for nitrate in the wetlands averaged 142–149 m/yr. Areal removal rates for nitrate in treatment wetlands averaged 139–146 mg-N/m2/d. Outflow from the CTW typically contained <0.1 mg-N/L nitrate and <0.6 mg-N/L TKN. Rates of nitrate loss in wetlands were highly seasonal, generally peaking in the summer months (June–August). Nitrate loss rates also correlated significantly with water temperature (positively) and dissolved oxygen (negatively). Based on the modified Arrhenius relationship, θ for nitrate loss in the wetlands was 1.05–1.09. The CTW also significantly affected temperature and dissolved oxygen concentration in waters flowing through the system. On average, the sedimentation basin caused an increase in temperature (+1.7 °C) and dissolved oxygen (+1.5 mg/L); in contrast the wetlands caused a decrease in temperature (?1.6 °C) and dissolved oxygen (?5.0 mg/L). Results show that CTWs with surface-flow wetlands can be extremely effective at polishing dilute non-point sources, particularly in semi-arid environments where warm temperatures and low oxygen levels in treatment wetland water promote biological denitrification.  相似文献   

12.
The presence of estrone (E1), 17 beta-estradiol (E2) and 17 alpha-ethynylestradiol (EE2) in sewage treatment work (STW) effluent pose a potential risk to aquatic ecosystem. The objectives of this study were to evaluate the effectiveness of vertical-flow wetland as polishing step of conventional wastewater treatment in the removal of estrogens and to examine the effect of sand depth. The highest removal efficiency of 67.8 ± 28.0%, 84.0 ± 15.4% and 75.3 ± 17.6% for E1, E2 and EE2, respectively, was achieved by the shallowest wetland among three constructed wetlands with different filter layer depth (i.e. 7.5, 30 and 60 cm). Together with the result that the performance of wetlands when operating in unsaturated condition was superior to that when operating in water-saturated condition, it is suggested that maintaining sufficient aerobic circumstance in constructed wetlands was important for estrogens removal. Core sampling indicated that the highest efficiency achieved in extremely shallow wetland might be due partly to the highest root density, besides the superior condition for penetration of oxygen. The adsorbed estrogens in sand accounted for less than 12% of the removed estrogens irrespective of the depth, indicating biotic processes play a major role in the estrogens removal.  相似文献   

13.
This study set up two flow-through pilot-scale constructed wetlands with the same size but various flow patterns (free water surface flow (FWS) and subsurface flow (SSF)) to receive a nitrate-contaminated groundwater. The effects of hydraulic loading rate (HLR) on nitrate removal as well as the difference in performance between the various types of wetlands were investigated. Nitrate removal rates of both wetlands increased with increasing HLR until a maximum value was reached. The maximum removal rates, occurred at HLR of 0.12 and 0.07 m d(-1), were 0.910 and 1.161 g N m(-2)d(-1) for the FWS and SSF wetland, respectively. After the maximum values were reached, further increasing HLR led to a considerable decrease in nitrate removal rate. Nitrate removal efficiencies remained high (>85%) and effluent nitrate concentrations always satisfied drinking water standard (<10mg NO3-NL(-1)) when HLR did not exceed 0.04 m d(-1) for both FWS and SSF wetlands. The first-order nitrate removal rate constant tends to decrease with increasing HLRs. The FWS wetland provided significantly higher (p<0.05) organic carbon in effluent than the SSF wetland, while the SSF wetland exhibited significantly (p<0.05) lower effluent DO than the FWS wetland. However, there was no significant difference (p>0.05) in nitrate removal performance between the two types of constructed wetlands in this study except in one trial operating at HLR of 0.06-0.07 m d(-1).  相似文献   

14.
《Ecological Engineering》1999,12(1-2):67-92
Nitrogen removal processes were investigated at three frequencies of water level fluctuation, static, low and high (0, 2 and 6 d−1), in duplicate gravel-bed constructed wetland mesocosms (0.145 m3) with and without plants (Schoenoplectus tabernaemontani). Fluctuation was achieved by temporarily pumping wastewater into a separate tank (total drain time ∼35 min). Intensive sampling of the mesocosms, batch-fed weekly with ammonium-rich (∼100 g m−3 NH4-N) farm dairy wastewaters, showed rates of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) removal increased markedly with fluctuation frequency and in the presence of plants. Nearly complete removal of NH4-N was recorded over the 7 day batch period at the highest level of fluctuation, with minimal enhancement by plants. Redox potentials (Eh) at 100 mm depth rose from initial levels of around −100 to >350 mV and oxidised forms of N (NO2 and NO3) increased to ∼40 g m−3, suggesting conditions were conducive to microbial nitrification at this level of fluctuation. In the unplanted mesocosms with low or zero fluctuation, mean NH4-N removals were only 28 and 10%, respectively, and redox potentials in the media remained low for a substantial part of the batch periods (mid-batch Eh ∼+100 and −100 mV, respectively). In the presence of wetland plants, mean NH4-N removal in the mesocosms with low or zero fluctuation rose to 71 and 54%, respectively, and COD removal (>70%) and redox potential (mid-batch Eh>200 mV) were markedly higher than in the unplanted mesocosms. Negligible increases in oxidised N were recorded at these fluctuation frequencies, but total nitrogen levels declined at mean rates of 2.4 and 1.8 g m−2 d−1, respectively. NH4-N removal from the bulk water in the mesocosms was well described (R2=0.97–0.99) by a sorption-plant uptake-microbial model. First-order volumetric removal rate constants (kv) rose with increasing fluctuation frequency from 0.026 to 0.46 d−1 without plants and from 0.042 to 0.62 d−1 with plants. As fluctuation frequency increased, reversible sorption of NH4-N to the media, and associated biofilms and organic matter, became an increasingly important moderator of bulk water concentrations during the batch periods. TN mass balances for the full batch periods suggested that measured plant uptake estimates of between 0.52 and 1.07 g N m−2 d−1 (inversely related to fluctuation frequency) could fully account for the increased overall removal of TN recorded in the planted systems. By difference, microbial nitrification-denitrification losses were therefore estimated to be approximately doubled by low-level fluctuation from 0.7 to 1.4 g N m−2 d−1 (both with and without plants), rising to a maximum rate of 2.1 g N m−2 d−1 at high fluctuation, in the absence of competitive uptake by plants.  相似文献   

15.
研究了风车草人工湿地污水处理系统TN去除率及氮转化细菌的数量。结果表明:风车草人工湿地对TN的去除率为73.8%,与无植物人工湿地系统相比较,去除率提高了17.4%。风车草人工湿地氨化细菌为7.98×105cfu·g-1(细砂),硝化细菌为1.95×105MPN·g-1(细砂),反硝化细菌为5.89×1041.95×104MPN·g-1(细砂)。与无植物系统氮转化细菌相比,氨化细菌无明显差异,硝化细菌及反硝化细菌均高出1个数量级。  相似文献   

16.
人工湿地除磷研究进展   总被引:42,自引:0,他引:42  
李晓东  孙铁珩  李海波  王洪 《生态学报》2007,27(3):1226-1232
从人工湿地除磷机理着手,综述了国内外有关湿地基质、湿地植物及微生物强化除磷的研究机理以及进展。深入研究多种基质组合对磷素的吸附与解析机理,可以从理论上推进诸多高效除磷基质的实际应用进程;植物间接净化作用及其与湿地水力停留时间的关系,是影响湿地植物选种和种植的重要依据;植物根际微环境以及植物与微生物的耦合作用可能是人工湿地除磷的主要途径之一;强调湿地的污水净化功能而忽视其生态服务功能,是湿地运行中普遍存在的认识错误。最后指出:湿地运行应采取高水力负荷、低污染负荷的方式,强调强化一级处理的重要性。  相似文献   

17.
Shi Y  Zhang G  Liu J  Zhu Y  Xu J 《Bioresource technology》2011,102(20):9416-9424
A recirculating aquaculture system was developed for treating Pacific white shrimp (Litopenaeus vannamei) production wastewater using an integrated vertical-flow (IVF) and five connected integrated horizontal flow (IHF) constructed wetlands as water treatment filters for mesohaline conditions (8.25‰-8.26‰ salinity). The constructed wetlands demonstrated the ability to reduce total nitrogen, total ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, total phosphorous, chemical oxygen demand, and total suspended solids to levels significantly lower than those in effluents from culture tanks. Various water quality parameters in the culture tanks were deemed suitable for shrimp culture. The actual ratio of wetland area (A(w)) to culture tank area (A(t)) was 1.1439, and the estimated optimal ratio A(w)/A(t) was approximately 1. The IVF-IHF wetlands showed flexibility and reliability in consistently removing the main pollutants from commercial recirculating and super-intensive shrimp growout systems throughout the culture period.  相似文献   

18.
人工湿地植物对观赏水中氮磷去除的贡献   总被引:110,自引:3,他引:110  
蒋跃平  葛滢  岳春雷  常杰 《生态学报》2004,24(8):1718-1723
研究了处理观赏用轻度富营养化水的人工湿地中植物的生长特性和氮磷去除作用。研究发现 ,所选用的 2 1种植物中 ,有17种植物在人工湿地中生长良好 ,稳定生长 10 5 d以后 ,其平均总生物量在 15 5~ 1317g/ m2之间 ,除了鸭跖草的地上地下生物量比 (A/ U)为 2 0 .5外 ,其余都在 1.18~ 4 .2 9之间。植株地上部 N和 P的浓度分别在 10 .99~ 34.74 mg/ g和 0 .5 9~ 3.81mg/ g之间 ;地下部 N和 P浓度分别在 6 .2 0~ 2 9.5 0 mg/ g及 0 .72~ 3.83mg/ g之间。大部分植物地上部 N和 P的浓度大于地下部 (p<0 .0 5 )。植物的 N、P积累量分别在 2 .10~ 2 4 .4 8g/ m2 和 0 .2 3~ 1.95 g/ m2 之间。在处理轻度富营养化水的人工湿地中 ,植物吸收对氮磷的去除起着主要作用——贡献率分别为 4 6 .8%和 5 1.0 %。植物的氮磷积累量与浓度及生物量之间均存在显著相关 ,所以可以直接以生物量为指标选择人工湿地植物。同时考虑净化和景观效果 ,可为处理城镇轻度富营养化水的人工湿地的植物选择提供参考  相似文献   

19.
不同植物构成的人工湿地对生活污水中氮的去除效应   总被引:7,自引:0,他引:7  
测定由不同植物构成的人工湿地的氨态氮、硝态氮和亚硝态氮含量,对比不同植物对生活污水中氮的去除效率.结果表明,与不种植物的人工湿地相比,由风车草[Cyperus alternifolius L. ssp. flabelliformis (Rottb.) Kiikenth.]、香根草[Vertiveria zizanioides (Linn.) Nash]、芦苇(Phragmitas communis Trin.)和美人蕉(Canna indica Linn.)构成的人工湿地对氨态氮去除率分别提高6%、8%、11%和14%;对硝态氮去除率分别提高5%、6%、13%和9%;对亚硝态氮去除率分别提高5%、7%、10%和7%,说明种植芦苇和美人蕉的人工湿地对生活污水中的氮具有较好的去除效果.  相似文献   

20.
《Ecological Engineering》2005,24(3):219-232
Water pollution by agriculture can include inappropriately managed dairy farmyard dirty water. In Ireland, dairy farmyard dirty water includes farmyard runoff, parlour washings, and silage/farmyard manure effluents. The objectives of this study were to determine (i) the quality and quantity of dirty water generated at a farm-scale and (ii) the seasonal effectiveness of a constructed wetland to treat farmyard dirty water. The wetland system was 4800 m2 in area and treated dirty water from a 42-cow organic dairy unit with an open yard area of 2031 m2. Monthly dirty water inflow rate to the wetland ranged between 3.6 and 18.5 m3 d−1. Farmyard dirty water accounted for 27% of hydrological inputs to the wetland, whereas rainfall on wetland, along with wetland bank inflows accounted for 45 and 28%, respectively. Farmyard dirty water quality and quantity did not vary with season. Yearly mass loads discharged to the wetland were 47 ± 10 kg yr−1 of soluble reactive phosphorus (SRP), 128 ± 35 kg yr−1 of NH4+, 5484 ± 1433 kg yr−1 of organic material as measured by five-day biological oxygen demand (BOD5), and 1570 ± 465 kg yr−1 of total suspended solids (TSS). Phosphorus retention by the wetland varied with season (5–84%) with least amounts being retained during winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号