首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ALS: a disease of motor neurons and their nonneuronal neighbors   总被引:16,自引:0,他引:16  
Amyotrophic lateral sclerosis is a late-onset progressive neurodegenerative disease affecting motor neurons. The etiology of most ALS cases remains unknown, but 2% of instances are due to mutations in Cu/Zn superoxide dismutase (SOD1). Since sporadic and familial ALS affects the same neurons with similar pathology, it is hoped that therapies effective in mutant SOD1 models will translate to sporadic ALS. Mutant SOD1 induces non-cell-autonomous motor neuron killing by an unknown gain of toxicity. Selective vulnerability of motor neurons likely arises from a combination of several mechanisms, including protein misfolding, mitochondrial dysfunction, oxidative damage, defective axonal transport, excitotoxicity, insufficient growth factor signaling, and inflammation. Damage within motor neurons is enhanced by damage incurred by nonneuronal neighboring cells, via an inflammatory response that accelerates disease progression. These findings validate therapeutic approaches aimed at nonneuronal cells.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease with no cure. Breakthroughs in understanding ALS pathogenesis came with the discovery of dominant mutations in the superoxide dismutase 1 gene (SOD1) and other genes, including the gene encoding transactivating response element DNA binding protein-43 (TDP-43). This has led to the creation of animal models to further our understanding of the disease and identify a number of ALS-causing mechanisms, including mitochondrial dysfunction, protein misfolding and aggregation, oxidative damage, neuronal excitotoxicity, non-cell autonomous effects and neuroinflammation, axonal transport defects, neurotrophin depletion, effects from extracellular mutant SOD1, and aberrant RNA processing. Here we summarise the SOD1 and TDP-43 animal models created to date, report on recent findings supporting the potential mechanisms of ALS pathogenesis, and correlate this understanding with current developments in the clinic.  相似文献   

3.
Retrograde axonal transport and motor neuron disease   总被引:2,自引:0,他引:2  
Transport of material between extensive neuronal processes and the cell body is crucial for neuronal function and survival. Growing evidence shows that deficits in axonal transport contribute to the pathogenesis of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we review recent data indicating that defects in dynein-mediated retrograde axonal transport are involved in ALS etiology. We discuss how mutant copper-zinc superoxide dismutase (SOD1) and an aberrant interaction between mutant SOD1 and dynein could perturb retrograde transport of neurotrophic factors and mitochondria. A possible contribution of axonal transport to the aggregation and degradation processes of mutant SOD1 is also reviewed. We further consider how the interference with axonal transport and protein turnover by mutant SOD1 could influence the function and viability of motor neurons in ALS.  相似文献   

4.
Recent studies on patient with sporadic ALS and on in vitro and in vivo models of mendelian diseases have been addressed toward the unravelling of the mitochondrial behaviour in ALS, whether as a primarily pathogenic factor, or as a fundamental contributor to the cell death. Morphological evidence suggests mitochondria pathology in ALS and many physiological mechanisms involving these organelles appear deranged in ALS, such as energy production, apoptotic triggering, calcium homeostasis and axonal transport of mitochondria. The article briefly addresses recent advances on this field.  相似文献   

5.
Mitochondrial dysfunction and its role in motor neuron degeneration in ALS   总被引:6,自引:0,他引:6  
Manfredi G  Xu Z 《Mitochondrion》2005,5(2):77-87
Mitochondria play a pivotal role in many metabolic and apoptotic pathways that regulate the life and death of cells. Accumulating evidence suggests that mitochondrial dysfunction is involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). Mitochondrial dysfunction may cause motor neuron death by predisposing them to calcium-mediated excitotoxicity, by increasing generation of reactive oxygen species, and by initiating the intrinsic apoptotic pathway. Morphological and biochemical mitochondrial abnormalities have been described in sporadic human ALS cases, but the implications of these findings in terminally ill individuals or in post-mortem tissues are difficult to decipher. However, remarkable mitochondrial abnormalities have also been identified in transgenic mouse models of familial ALS expressing mutant Cu, Zn superoxide dismutase (SOD1). Detailed studies in these mouse models indicate that mitochondrial abnormalities begin prior to the clinical and pathological onset of the disease, suggesting that mitochondrial dysfunction may be causally involved in the pathogenesis of ALS. Although the mechanisms whereby mutant SOD1 damages mitochondria remain to be fully understood, the finding that a portion of mutant SOD1 is localized in mitochondria, where it forms aberrant aggregates and protein interactions, has opened a number of avenues of investigation. The future challenges are to devise models to better understand the effects of mutant SOD1 in mitochondria and the relative contribution of mitochondrial dysfunction to the pathogenesis of ALS, as well as to identify therapeutic approaches that target mitochondrial dysfunction and its consequences.  相似文献   

6.
Reduced axonal mitochondrial transport has been observed in major neurodegenerative diseases, including fALS patients and SOD1(G93A) mice. However, it is unclear whether this defect plays a critical role in axonal degeneration or simply reflects sequelae of general transport alteration. Using genetic mouse models combined with time-lapse imaging of live neurons, we previously discovered that axon-targeted syntaphilin (SNPH) acts as a docking receptor specific for axonal mitochondria. Deletion of the snph gene in mice results in a substantially higher proportion of axonal mitochondria in the mobile state without any effect on the transport of other axonal organelles. Here we address whether increased (rescued) axonal mitochondrial mobility changes the disease course by crossing fALS-linked transgenic SOD1(G93A) and snph(-/-) knock-out mice. We found that a 2-fold increase in axonal mitochondrial mobility in SOD1(G93A)/snph(-/-) mice did not affect the onset of ALS-like symptoms. Both SOD1(G93A) and SOD1(G93A)/snph(-/-) mice exhibit similar weight loss, deterioration in motor function and motor neuron loss, significant gliosis, and a lifespan of 152-154 days. Thus, for the first time, our study provides genetic and pathological evidence that the impairment of mitochondrial transport seen in SOD1(G93A) mice plays a minimal role in the rapid-onset of fALS-linked pathology.  相似文献   

7.
Mutations in superoxide dismutase (SOD1) are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.  相似文献   

8.
A growing body of evidence suggests that impaired mitochondrial energy production and increased oxidative radical damage to the mitochondria could be causally involved in motor neuron death in amyotrophic lateral sclerosis (ALS) and in familial ALS associated with mutations of Cu,Zn superoxide dismutase (SOD1). For example, morphologically abnormal mitochondria and impaired mitochondrial histoenzymatic respiratory chain activities have been described in motor neurons of patients with sporadic ALS. To investigate further the role of mitochondrial alterations in the pathogenesis of ALS, we studied mitochondria from transgenic mice expressing wild type and G93A mutated hSOD1. We found that a significant proportion of enzymatically active SOD1 was localized in the intermembrane space of mitochondria. Mitochondrial respiration, electron transfer chain, and ATP synthesis were severely defective in G93A mice at the time of onset of the disease. We also found evidence of oxidative damage to mitochondrial proteins and lipids. On the other hand, presymptomatic G93A transgenic mice and mice expressing the wild type form of hSOD1 did not show significant mitochondrial abnormalities. Our findings suggest that G93A-mutated hSOD1 in mitochondria may cause mitochondrial defects, which contribute to precipitating the neurodegenerative process in motor neurons.  相似文献   

9.
Mitochondrial involvement in amyotrophic lateral sclerosis   总被引:8,自引:0,他引:8  
The causes of motor neuron death in amyotrophic lateral sclerosis (ALS) are so far unknown. The involvement of mitochondria in the disease was initially suggested by ultrastructural studies. More recently these observations have been supported by studies of mitochondrial function in ALS. Alterations in the activity of complexes which make up the mitochondrial electron transport chain have been recorded as well as mutations in the mitochondrial genome. The calcium buffering function of the mitochondria may also be affected in the disease. This review will discuss how mitochondrial dysfunction could be of relevance in ALS and the evidence that an alteration of mitochondrial function is a feature of the disease. The way in which the involvement of mitochondria fits with other aetiological hypotheses for ALS will also be discussed.  相似文献   

10.
Mitochondria are dynamic organelles that constantly undergo fusion and fission to maintain their normal functionality. Impairment of mitochondrial dynamics is implicated in various neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS) is an adult-onset neuromuscular degenerative disorder characterized by motor neuron death and muscle atrophy. ALS onset and progression clearly involve motor neuron degeneration but accumulating evidence suggests primary muscle pathology may also be involved. Here, we examined mitochondrial dynamics in live skeletal muscle of an ALS mouse model (G93A) harboring a superoxide dismutase mutation (SOD1G93A). Using confocal microscopy combined with overexpression of mitochondria-targeted photoactivatable fluorescent proteins, we discovered abnormal mitochondrial dynamics in skeletal muscle of young G93A mice before disease onset. We further demonstrated that similar abnormalities in mitochondrial dynamics were induced by overexpression of mutant SOD1G93A in skeletal muscle of normal mice, indicating the SOD1 mutation drives ALS-like muscle pathology in the absence of motor neuron degeneration. Mutant SOD1G93A forms aggregates inside muscle mitochondria and leads to fragmentation of the mitochondrial network as well as mitochondrial depolarization. Partial depolarization of mitochondrial membrane potential in normal muscle by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) caused abnormalities in mitochondrial dynamics similar to that in the SOD1G93A model muscle. A specific mitochondrial fission inhibitor (Mdivi-1) reversed the SOD1G93A action on mitochondrial dynamics, indicating SOD1G93A likely promotes mitochondrial fission process. Our results suggest that accumulation of mutant SOD1G93A inside mitochondria, depolarization of mitochondrial membrane potential and abnormal mitochondrial dynamics are causally linked and cause intrinsic muscle pathology, which occurs early in the course of ALS and may actively promote ALS progression.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting the motor neurons. The majority of familial forms of ALS are caused by mutations in the Cu,Zn-superoxide dismutase (SOD1). In mutant SOD1 spinal cord motor neurons, mitochondria develop abnormal morphology, bioenergetic defects, and degeneration. However, the mechanisms of mitochondrial toxicity are still unclear. One possibility is that mutant SOD1 establishes aberrant interactions with nuclear-encoded mitochondrial proteins, which can interfere with their normal trafficking from the cytosol to mitochondria. Lysyl-tRNA synthetase (KARS), an enzyme required for protein translation that was shown to interact with mutant SOD1 in yeast, is a good candidate as a target for interaction with mutant SOD1 at the mitochondrion in mammals because of its dual cytosolic and mitochondrial localization. Here, we show that in mammalian cells mutant SOD1 interacts preferentially with the mitochondrial form of KARS (mitoKARS). KARS-SOD1 interactions occur also in the mitochondria of the nervous system in transgenic mice. In the presence of mutant SOD1, mitoKARS displays a high propensity to misfold and aggregate prior to its import into mitochondria, becoming a target for proteasome degradation. Impaired mitoKARS import correlates with decreased mitochondrial protein synthesis. Ultimately, the abnormal interactions between mutant SOD1 and mitoKARS result in mitochondrial morphological abnormalities and cell toxicity. mitoKARS is the first described member of a group of mitochondrial proteins whose interaction with mutant SOD1 contributes to mitochondrial dysfunction in ALS.  相似文献   

12.
Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer's disease (AD) progression. Loss of synapses and synaptic damage are the best correlates of cognitive deficits found in AD patients. Recent research on amyloid beta (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder involving both upper motor neurons (UMN) and lower motor neurons (LMN). Enormous research has been done in the past few decades in unveiling the genetics of ALS, successfully identifying at least fifteen candidate genes associated with familial and sporadic ALS. Numerous studies attempting to define the pathogenesis of ALS have identified several plausible determinants and molecular pathways leading to motor neuron degeneration, which include oxidative stress, glutamate excitotoxicity, apoptosis, abnormal neurofilament function, protein misfolding and subsequent aggregation, impairment of RNA processing, defects in axonal transport, changes in endosomal trafficking, increased inflammation, and mitochondrial dysfunction. This review is to update the recent discoveries in genetics of ALS, which may provide insight information to help us better understanding of the disease neuropathogenesis.  相似文献   

14.
Effective therapies are needed for the treatment of amyotrophic lateral sclerosis (ALS), a fatal type of motor neuron disease. Morphological, biochemical, molecular genetic, and cell/animal model studies suggest that mitochondria have potentially diverse roles in neurodegenerative disease mechanisms and neuronal cell death. In human ALS, abnormalities have been found in mitochondrial structure, mitochondrial respiratory chain enzymes, and mitochondrial cell death proteins indicative of some non-classical form of programmed cell death. Mouse models of ALS are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria. This minireview summarizes work on the how malfunctioning mitochondria might contribute to neuronal death in ALS through the biophysical entity called the mitochondrial permeability pore (mPTP). The major protein components of the mPTP are enriched in mouse motor neurons. Early in the course of disease in ALS mice expressing human mutant superoxide dismutase-1, mitochondria in motor neurons undergo trafficking abnormalities and dramatic remodeling resulting in the formation of mega-mitochondria and coinciding with increased protein carbonyl formation and nitration of mPTP components. The genetic deletion of a major mPTP component, cyclophilin D, has robust effects in ALS mice by delaying disease onset and extending survival. Thus, attention should be directed to the mPTP as a rational target for the development of drugs designed to treat ALS.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease, and accumulating evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. The aim of this work was to investigate the effect of treatment with hydrogen molecule on the development of disease in mutant SOD1 G93A transgenic mouse model of ALS. Treatment of mutant SOD1 G93A mice with hydrogen-rich saline (HRS, i.p.) significantly delayed disease onset and prolonged survival, and attenuated loss of motor neurons and suppressed microglial and glial activation. Treatment of mutant SOD1 G93A mice with HRS inhibited the release of mitochondrial apoptogenic factors and the subsequent activation of downstream caspase-3. Furthermore, treatment of mutant SOD1 G93A mice with HRS reduced levels of protein carbonyl and 3-nitrotyrosine, and suppressed formation of reactive oxygen species (ROS), peroxynitrite, and malondialdehyde. Treatment of mutant SOD1 G93A mice with HRS preserved mitochondrial function, marked by restored activities of Complex I and IV, reduced mitochondrial ROS formation and enhanced mitochondrial adenosine triphosphate synthesis. In conclusion, hydrogen molecule may be neuroprotective against ALS, possibly through abating oxidative and nitrosative stress and preserving mitochondrial function.  相似文献   

16.
Dominant mutations in the Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons. The molecular mechanism underlying the toxic gain-of-function of mutant hSOD1s remains uncertain. Several lines of evidence suggest that toxicity to motor neurons requires damage to non-neuronal cells. In line with this observation, primary astrocytes isolated from mutant hSOD1 over-expressing rodents induce motor neuron death in co-culture. Mitochondrial alterations have been documented in both neuronal and glial cells from ALS patients as well as in ALS-animal models. In addition, mitochondrial dysfunction and increased oxidative stress have been linked to the toxicity of mutant hSOD1 in astrocytes and neurons. In mutant SOD1-linked ALS, mitochondrial alterations may be partially due to the increased association of mutant SOD1 with the outer membrane and intermembrane space of the mitochondria, where it can affect several critical aspects of mitochondrial function. We have previously shown that decreasing glutathione levels, which is crucial for peroxide detoxification in the mitochondria, significantly accelerates motor neuron death in hSOD1G93A mice. Here we employed a catalase targeted to the mitochondria to investigate the effect of increased mitochondrial peroxide detoxification capacity in models of mutant hSOD1-mediated motor neuron death. The over-expression of mitochondria-targeted catalase improved mitochondrial antioxidant defenses and mitochondrial function in hSOD1G93A astrocyte cultures. It also reverted the toxicity of hSOD1G93A-expressing astrocytes towards co-cultured motor neurons, however ALS-animals did not develop the disease later or survive longer. Hence, while increased oxidative stress and mitochondrial dysfunction have been extensively documented in ALS, these results suggest that preventing peroxide-mediated mitochondrial damage alone is not sufficient to delay the disease.  相似文献   

17.
Mitochondria are particularly vulnerable to oxidative stress, and mitochondrial swelling and vacuolization are among the earliest pathologic features found in two strains of transgenic amyotrophic lateral sclerosis (ALS) mice with SOD1 mutations. Mice with the G93A human SOD1 mutation have altered electron transport enzymes, and expression of the mutant enzyme in vitro results in a loss of mitochondrial membrane potential and elevated cytosolic calcium concentration. Mitochondrial dysfunction may lead to ATP depletion, which may contribute to cell death. If this is true, then buffering intracellular energy levels could exert neuroprotective effects. Creatine kinase and its substrates creatine and phosphocreatine constitute an intricate cellular energy buffering and transport system connecting sites of energy production (mitochondria) with sites of energy consumption, and creatine administration stabilizes the mitochondrial creatine kinase and inhibits opening of the mitochondrial transition pore. We found that oral administration of creatine produced a dose-dependent improvement in motor performance and extended survival in G93A transgenic mice, and it protected mice from loss of both motor neurons and substantia nigra neurons at 120 days of age. Creatine administration protected G93A transgenic mice from increases in biochemical indices of oxidative damage. Therefore, creatine administration may be a new therapeutic strategy for ALS.  相似文献   

18.
A growing body of evidence suggests that mitochondrial dysfunctions play a crucial role in the pathogenesis of various neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting both upper and lower motor neurons. Although ALS is predominantly a sporadic disease, approximately 10% of cases are familial. The most frequent familial form is caused by mutations in the gene encoding Cu/Zn superoxide dismutase 1 (SOD1). A dominant toxic gain of function of mutant SOD1 has been considered as the cause of the disease and mitochondria are thought to be key players in the pathogenesis. However, the exact nature of the link between mutant SOD1 and mitochondrial dysfunctions remains to be established. Here, we briefly review the evidence for mitochondrial dysfunctions in familial ALS and discuss a possible link between mutant SOD1 and mitochondrial dysfunction.  相似文献   

19.
In Parkinson's disease mitochondrial dysfunction can lead to a deficient ATP supply to microtubule protein motors leading to mitochondrial axonal transport disruption. Compromised axonal transport will then lead to a disorganized distribution of mitochondria and other organelles in the cell, as well as, the accumulation of aggregated proteins like alpha-synuclein. Moreover, axonal transport disruption can trigger synaptic accumulation of autophagosomes packed with damaged mitochondria and protein aggregates promoting synaptic failure.We previously observed that neuronal-like cells with an inherent mitochondrial impairment derived from PD patients contain a disorganized microtubule network, as well as, alpha-synuclein oligomer accumulation. In this work we provide new evidence that an agent that promotes microtubule network assembly, NAP (davunetide), improves microtubule-dependent traffic, restores the autophagic flux and potentiates autophagosome–lysosome fusion leading to autophagic vacuole clearance in Parkinson's disease cells. Moreover, NAP is capable of efficiently reducing alpha-synuclein oligomer content and its sequestration by the mitochondria. Most interestingly, NAP decreases mitochondrial ubiquitination levels, as well as, increases mitochondrial membrane potential indicating a rescue in mitochondrial function.Overall, we demonstrate that by improving microtubule-mediated traffic, we can avoid mitochondrial-induced damage and thus recover cell homeostasis. These results prove that NAP may be a promising therapeutic lead candidate for neurodegenerative diseases that involve axonal transport failure and mitochondrial impairment as hallmarks, like Parkinson's disease and related disorders.  相似文献   

20.
Myelinating glia cells support axon survival and functions through mechanisms independent of myelination, and their dysfunction leads to axonal degeneration in several diseases. In amyotrophic lateral sclerosis (ALS), spinal motor neurons undergo retrograde degeneration, and slowing of axonal transport is an early event that in ALS mutant mice occurs well before motor neuron degeneration. Interestingly, in familial forms of ALS, Schwann cells have been proposed to slow disease progression. We demonstrated previously that Schwann cells transfer polyribosomes to diseased and regenerating axons, a possible rescue mechanism for disease-induced reductions in axonal proteins. Here, we investigated whether elevated levels of axonal ribosomes are also found in ALS, by analysis of a superoxide dismutase 1 (SOD1)G93A mouse model for human familial ALS and a patient suffering from sporadic ALS. In both cases, we found that the disorder was associated with an increase in the population of axonal ribosomes in myelinated axons. Importantly, in SOD1G93A mice, the appearance of axonal ribosomes preceded the manifestation of behavioral symptoms, indicating that upregulation of axonal ribosomes occurs early in the pathogenesis of ALS. In line with our previous studies, electron microscopy analysis showed that Schwann cells might serve as a source of axonal ribosomes in the disease-compromised axons. The early appearance of axonal ribosomes indicates an involvement of Schwann cells early in ALS neuropathology, and may serve as an early marker for disease-affected axons, not only in ALS, but also for other central and peripheral neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号