首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carnitine/acylcarnitine translocase and carnitine palmitoyltransferase 2 are members of the carnitine system, which are responsible of the regulation of the mitochondrial CoA/acyl-CoA ratio and of supplying substrates for the ß-oxidation to mitochondria. This study, using cross-Linking reagent, Blue native electrophoresis and immunoprecipitation followed by detection with immunoblotting, shows conclusive evidence about the interaction between carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase supporting the channeling of acylcarnitines and carnitine at level of the inner mitochondrial membrane.  相似文献   

2.
3.
Rufer AC  Lomize A  Benz J  Chomienne O  Thoma R  Hennig M 《FEBS letters》2007,581(17):3247-3252
The mitochondrial membrane-associated carnitine palmitoyltransferase system is a validated target for the treatment of type 2 diabetes mellitus. To further facilitate structure-based drug discovery, we determined the crystal structure of rat CPT-2 (rCPT-2) in complex with the substrate analogue palmitoyl-aminocarnitine at 1.8A resolution. Biochemical analyses revealed a strong effect of this compound on rCPT-2 activity and stability. Using a computational approach we examined the membrane association of rCPT-2. The protein interacts with the membrane as a functional monomer and the calculations confirm the presence of a membrane association domain that consists of layers of hydrophobic and positively charged residues.  相似文献   

4.
5.
Inositol polyphosphates perform essential functions as second messengers in eukaryotic cells, and their cellular levels are regulated by inositol phosphate kinases. Most of these enzymes belong to the inositol phosphate kinase superfamily, which consists of three subgroups, inositol 3-kinases, inositol phosphate multikinases, and inositol hexakisphosphate kinases. Family members share several strictly conserved signature motifs and are expected to have the same backbone fold, despite very limited overall amino acid sequence identity. Sequence differences are expected to play important roles in defining the different substrate selectivity of these enzymes. To investigate the structural basis for substrate specificity, we have determined the crystal structure of the yeast inositol phosphate multikinase Ipk2 in the apoform and in a complex with ADP and Mn(2+) at up to 2.0A resolution. The overall structure of Ipk2 is related to inositol trisphosphate 3-kinase. The ATP binding site is similar in both enzymes; however, the inositol binding domain is significantly smaller in Ipk2. Replacement of critical side chains in the inositolbinding site suggests how modification of substrate recognition motifs determines enzymatic substrate preference and catalysis.  相似文献   

6.
Dissection of the mitochondrial carnitine palmitoyltransferase (CPT) enzyme system in terms of its structure/function relationships has proved to be a formidable task. Although no one formulation has gained universal agreement we believe that the weight of evidence supports a model with the following features: a) in any given tissue CPT I and CPT II are distinct proteins; b) CPT I, unlike CPT II, is detergent labile; c) within a species CPT II is expressed body wide, whereas CPT I exists as tissue specific isoforms; d) malonyl-CoA and other CPT I inhibitors probably interact at the catalytic center of the enzyme, not with a regulatory subunit. The amino acid sequences of rat and human CPT II (deduced from cDNA clones) show them to be similar proteins (greater than 80% identity) but encoded by mRNAs of significantly different sizes. Efforts to clone and sequence the cDNA for rat liver CPT I are presently underway.  相似文献   

7.
A glucodextranase (iGDase) from Arthrobacter globiformis I42 hydrolyzes alpha-1,6-glucosidic linkages of dextran from the non-reducing end to produce beta-D-glucose via an inverting reaction mechanism and classified into the glycoside hydrolase family 15 (GH15). Here we cloned the iGDase gene and determined the crystal structures of iGDase of the unliganded form and the complex with acarbose at 2.42-A resolution. The structure of iGDase is composed of four domains N, A, B, and C. Domain A forms an (alpha/alpha)(6)-barrel structure and domain N consists of 17 antiparallel beta-strands, and both domains are conserved in bacterial glucoamylases (GAs) and appear to be mainly concerned with catalytic activity. The structure of iGDase complexed with acarbose revealed that the positions and orientations of the residues at subsites -1 and +1 are nearly identical between iGDase and GA; however, the residues corresponding to subsite 3, which form the entrance of the substrate binding pocket, and the position of the open space and constriction of iGDase are different from those of GAs. On the other hand, domains B and C are not found in the bacterial GAs. The primary structure of domain C is homologous with a surface layer homology domain of pullulanases, and the three-dimensional structure of domain C resembles the carbohydrate-binding domain of some glycohydrolases.  相似文献   

8.
Flavocytochrome b(2) from Saccharomyces cerevisiae is a l-lactate/cytochrome c oxidoreductase belonging to a large family of 2-hydroxyacid-dependent flavoenzymes. The crystal structure of the enzyme, with pyruvate bound at the active site, has been determined [Xia, Z.-X., and Mathews, F. S. (1990) J. Mol. Biol. 212, 837-863]. The authors indicate that the methyl group of pyruvate is in close contact with Ala198 and Leu230. These two residues are not well-conserved throughout the family of (S)-2-hydroxy acid oxidases/dehydrogenases. Thus, to probe substrate specificity in flavocytochrome b(2), these residues have been substituted by glycine and alanine, respectively. Kinetic studies on the L230A mutant enzyme and the A198G/L230A double mutant enzyme indicate a change in substrate selectivity for the enzyme toward larger (S)-2-hydroxy acids. In particular, the L230A enzyme is more efficient at utilizing (S)-2-hydroxyoctanoate by a factor of 40 as compared to the wild-type enzyme [Daff, S., Manson, F. D. C., Reid, G. A., and Chapman, S. K. (1994) Biochem. J. 301, 829-834], and the A198G/L230A double mutant enzyme is 6-fold more efficient with the aromatic substrate l-mandelate than it is with l-lactate [Sinclair, R., Reid, G. A., and Chapman, S. K. (1998) Biochem. J. 333, 117-120]. To complement these solution studies, we have solved the structure of the A198G/L230A enzyme in complex with pyruvate and as the FMN-sulfite adduct (both to 2.7 A resolution). We have also obtained the structure of the L230A mutant enzyme in complex with phenylglyoxylate (the product of mandelate oxidation) to 3.0 A resolution. These structures reveal the increased active-site volume available for binding larger substrates, while also confirming that the integrity of the interactions important for catalysis is maintained. In addition to this, the mode of binding of the bulky phenylglyoxylate at the active site is in accordance with the operation of a hydride transfer mechanism for substrate oxidation/flavin reduction in flavocytochrome b(2), whereas a mechanism involving the formation of a carbanion intermediate would appear to be sterically prohibited.  相似文献   

9.
K Shostak  M E Jones 《Biochemistry》1992,31(48):12155-12161
Pyrimidine nucleotides were tested as substrates for pure yeast orotidylate decarboxylase in an attempt to gain insight into the nature of the catalytic mechanism of the enzyme. Substitutions of the 5-position in the pyrimidine ring of the orotidylate substrate resulted in compounds that are either excellent inhibitors or substrates of the enzyme. The 5-bromo- and 5-chloroorotidylates are potent inhibitors while the 5-fluoro derivative is a good substrate with a turnover number 30 times that observed with orotidylate. When carbon 5 of the pyrimidine ring is replaced by nitrogen in 5-azaorotidylate, the resulting compound is unstable in solution with a half-life of 25 min at pH 6. However, studies with freshly generated 5-azaorotidylate show that an enzyme-dependent reaction occurs, presumably decarboxylation. This enzyme reaction follows simple Michaelis-Menten kinetics. Because the 5-aza group is not electrophilic, an enzyme mechanism utilizing a nucleophilic addition of the enzyme at the 5-position is ruled out. We also present studies that are not compatible with a mechanism requiring the formation of a Schiff's base prior to decarboxylation. The enzyme is tolerant of modest substitution at the 4-position, for the 4-keto group can be replaced with a thioketone. However, no catalysis is observed when the same substitution is made at the 2-position. Similarities in the substrate specificity of orotate phosphoribosyltransferase and orotidylate decarboxylase led us to compare the amino acid sequences of the two enzymes; significant (20%) sequence homology was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Metallo-beta-lactamases have raised concerns due to their ability to hydrolyze a broad spectrum of beta-lactam antibiotics. The G262S point mutation distinguishing the metallo-beta-lactamase IMP-1 from IMP-6 has no effect on the hydrolysis of the drugs cephalothin and cefotaxime, but significantly improves catalytic efficiency toward cephaloridine, ceftazidime, benzylpenicillin, ampicillin, and imipenem. This change in specificity occurs even though residue 262 is remote from the active site. We investigated the substrate specificities of five other point mutants resulting from single-nucleotide substitutions at positions near residue 262: G262A, G262V, S121G, F218Y, and F218I. The results suggest two types of substrates: type I (nitrocefin, cephalothin, and cefotaxime), which are converted equally well by IMP-6, IMP-1, and G262A, but even more efficiently by the other mutants, and type II (ceftazidime, benzylpenicillin, ampicillin, and imipenem), which are hydrolyzed much less efficiently by all the mutants. G262V, S121G, F218Y, and F218I improve conversion of type I substrates, whereas G262A and IMP-1 improve conversion of type II substrates, indicating two distinct evolutionary adaptations from IMP-6. Substrate structure may explain the catalytic efficiencies observed. Type I substrates have R2 electron donors, which may stabilize the substrate intermediate in the binding pocket. In contrast, the absence of these stabilizing interactions with type II substrates may result in poor conversion. This observation may assist future drug design. As the G262A and F218Y mutants confer effective resistance to Escherichia coli BL21(DE3) cells (high minimal inhibitory concentrations), they are likely to evolve naturally.  相似文献   

11.
Fructansucrases (FSs) catalyze a transfructosylation reaction with sucrose as substrate to produce fructo-oligosaccharides and fructan polymers that contain either β-2,1 glycosidic linkages (inulin) or β-2,6 linkages (levan). Levan-synthesizing FSs (levansucrases) have been most extensively investigated, while detailed information on inulosucrases is limited. Importantly, the molecular basis of the different product specificities of levansucrases and inulosucrases is poorly understood.We have elucidated the three-dimensional structure of a truncated active bacterial GH68 inulosucrase, InuJ of Lactobacillus johnsonii NCC533 (residues 145-708), in its apo form, with a bound substrate (sucrose), and with a transfructosylation product. The sucrose binding pocket and the sucrose binding mode are virtually identical with those of GH68 levansucrases, confirming that both enzyme types use the same fully conserved structural framework for the binding and cleavage of the donor substrate sucrose in the active site. The binding mode of the first transfructosylation product 1-kestose (Fru-β(2-1)-Fru-α(2-1)-Glc, where Fru = fructose and Glc = glucose) in subsites − 1 to + 2 shows for the first time how inulin-type fructo-oligosaccharide bind in GH68 FS and how an inulin-type linkage can be formed. Surprisingly, observed interactions with the sugar in subsites + 1 and + 2 are provided by residues that are also present in levansucrases. The binding mode of 1-kestose and the presence of a more distant sucrose binding site suggest that residues beyond the + 2 subsite, in particular residues from the nonconserved 1B-1C loop, determine product linkage type specificity in GH68 FSs.  相似文献   

12.
Kim SJ  Jeong DG  Yoon TS  Son JH  Cho SK  Ryu SE  Kim JH 《Proteins》2007,66(1):239-245
The testis- and skeletal-muscle-specific dual-specificity phosphatase (TMDP) is a member of the dual-specificity phosphatase (DSP) subgroup of protein tyrosine phosphatases. TMDP has similar activities toward both tyrosine and threonine phosphorylated substrates, and is supposed to be involved in spermatogenesis. Here, we report the crystal structure of human TMDP at a resolution of 2.4 A. In spite of high sequence similarity with other DSPs, the crystal structure of TMDP shows distinct structural motifs and surface properties. In TMDP, the alpha1-beta1 loop, a substrate recognition motif is located further away from the active site loop in comparison to prototype DSP Vaccinia H1 related phophatase (VHR), which preferentially dephosphorylates tyrosine phosphorylated substrates and down-regulates MAP kinase signaling. Residues in the active site residues of TMDP are smaller in size and more hydrophobic than those of VHR. In addition, TMDP cannot be aligned with VHR in loop beta3-alpha4. These differences in the active site of TMDP result in a flat and wide pocket structure, allowing equal binding of phosphotyrosine and phosphothreonine substrates.  相似文献   

13.
14.
Carnitine palmitoyltransferases 1 and 2 (CPTs) facilitate the import of long-chain fatty acids into mitochondria. Modulation of the catalytic activity of the CPT system is currently under investigation for the development of novel drugs against diabetes mellitus. We report here the 1.6 A resolution structure of the full-length mitochondrial membrane protein CPT-2. The structure of CPT-2 in complex with the generic CPT inhibitor ST1326 ([R]-N-[tetradecylcarbamoyl]-aminocarnitine), a substrate analog mimicking palmitoylcarnitine and currently in clinical trials for diabetes mellitus treatment, was solved at 2.5 A resolution. These structures of CPT-2 provide insight into the function of residues involved in substrate binding and determination of substrate specificity, thereby facilitating the rational design of antidiabetic drugs. We identify a sequence insertion found in CPT-2 that mediates membrane localization. Mapping of mutations described for CPT-2 deficiency, a hereditary disorder of lipid metabolism, implies effects on substrate recognition and structural integrity of CPT-2.  相似文献   

15.
Carnitine palmitoyltransferase activity and malonyl-CoA binding capacity have been studied in Triton X-100 extracts and membrane residues of rat liver mitochondria. Rat liver mitochondria extracted twice with 0.5% Triton X-100 in a salt-free medium showed increased specific binding of [2-14C]malonyl-CoA when compared with intact mitochondria. High malonyl-CoA binding required the presence of salts and was inhibited by albumin. Further solubilization of the membrane residues in the Triton/KCl medium and subsequent hydroxylapatite chromatography gave a complete separation of carnitine palmitoyltransferase and malonyl-CoA binding. The results show that malonyl-CoA binds to mitochondrial component(s) which is different from and more difficult to extract from the mitochondrial membrane than most of the carnitine palmitoyltransferase.  相似文献   

16.
A statistically exhaustive, 8800 compound tripeptidal amidomethylcoumarin library was synthesized as discreet compounds using solid-phase combinatorial chemistry. A subset of the compounds was purified by HPLC and tested in a high-throughput fluorometric assay against several known serine and cysteine proteases to demonstrate the utility of this library for profiling protease substrate specificity.  相似文献   

17.
AAA+ proteases are frequently regulated by adaptors that modulate spatial and temporal control of protein turnover. Caulobacter crescentus is an alpha-proteobacterium which requires protein degradation by the AAA+ ClpXP protease for cell-cycle progression, and contains an adaptor (SspBalpha) that binds ssrA-tagged proteins and targets them to ClpXP. Here we determine the tag-binding specificity and crystal structure of SspBalpha. Despite poor sequence homology, the overall SspBalpha fold resembles orthologs from other bacteria. However, several structural features are specific to the SspBalpha subfamily, including the dimerization interface, binding surfaces optimized for ssrA-tag delivery, and residues in the tag-binding groove that act as selectivity gatekeepers for substrate recognition. Mutagenesis of these residues broadens specificity, creating a promiscuous adaptor that recognizes an expanded substrate repertoire. These results highlight general features of adaptor-mediated substrate recognition and shed light on design principles that underlie adaptor function.  相似文献   

18.
A three-dimensional structure for human cytochrome P450IA1 was predicted based on the crystal coordinates of cytochrome P450cam from Pseudomonas putida. As there was only 15% residue identity between the two enzymes, additional information was used to establish an accurate sequence alignment that is a prerequisite for model building. Twelve representative eukaryotic sequences were aligned and a net prediction of secondary structure was matched against the known alpha-helices and beta-sheets of P450cam. The cam secondary structure provided a fixed main-chain framework onto which loops of appropriate length from the human P450IA1 structure were added. The model-built structure of the human cytochrome conformed to the requirements for the segregation of polar and nonpolar residues between the core and the surface. The first 44 residues of human cytochrome P450 could not be built into the model and sequence analysis suggested that residues 1-26 formed a single membrane-spanning segment. Examination of the sequences of cytochrome P450s from distinct gene families suggested specific residues that could account for the differences in substrate specificity. A major substrate for P450IA1, 3-methyl-cholanthrene, was fitted into the proposed active site and this planar aromatic molecule could be accommodated into the available cavity. Residues that are likely to interact with the haem were identified. The sequence similarity between 59 eukaryotic enzymes was represented as a dendrogram that in general clustered according to gene family. Until a crystallographic structure is available, this model-building study identifies potential residues in cytochrome P450s important in the function of these enzymes and these residues are candidates for site-directed mutagenesis.  相似文献   

19.
20.
The mitochondrial sterol 27-hydroxylase (CYP27A1) is required for degradation of the C27-sterol side chain in bile acid biosynthesis. CYP27A1 seems, however, to have roles beyond this, as illustrated by patients with a deficient sterol 27-hydroxylase due to mutations of the CYP27A1 gene [cerebrotendinous xanthomatosis (CTX)]. These subjects have symptoms ranging from accumulation of bile alcohols and cholestanol to accelerated atherosclerosis and progressive neurologic impairment. The present work describes a detailed investigation on the substrate specificity of recombinant human CYP27A1. In accordance with some previous work with rat liver mitochondria, the activity in general increased with the polarity of the substrate. An obvious example was the finding that cholesterol was 27-hydroxylated more efficiently than cholesterol oleate but less efficiently than cholesterol sulfate. The oxysterols 24S-hydroxycholesterol and 25-hydroxycholesterol were 27-hydroxylated less efficiently than cholesterol, possibly due to steric hindrance. Surprisingly, sterols with a 3-oxo-Delta4 structure were found to be hydroxylated at a much higher rate than the corresponding sterols with a 3beta-hydroxy-Delta5 structure. The rates of hydroxylation of the sterols were: 7alpha-hydroxy-4-cholesten-3-one>4-cholesten-3-one>7alpha-hydroxycholesterol>24-hydroxy-4-cholesten-3-one> cholesterol>25-hydroxy-4-cholesten-3-one>24-hydroxycholesterol>or=25-hydroxycholesterol. The possibility is discussed that the findings may have implications for oxysterol-mediated regulation of gene expression. The very high activity of CYP27A1 towards the cholestanol precursor 4-cholesten-3-one may be of importance in connection with the accumulation of cholestanol in patients with CTX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号