共查询到20条相似文献,搜索用时 15 毫秒
1.
Steiner JL Murphy EA McClellan JL Carmichael MD Davis JM 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,111(4):1066-1071
Increased muscle mitochondria are largely responsible for the increased resistance to fatigue and health benefits ascribed to exercise training. However, very little attention has been given to the likely benefits of increased brain mitochondria in this regard. We examined the effects of exercise training on markers of both brain and muscle mitochondrial biogenesis in relation to endurance capacity assessed by a treadmill run to fatigue (RTF) in mice. Male ICR mice were assigned to exercise (EX) or sedentary (SED) conditions (n = 16-19/group). EX mice performed 8 wk of treadmill running for 1 h/day, 6 days/wk at 25 m/min and a 5% incline. Twenty-four hours after the last training bout a subgroup of mice (n = 9-11/group) were euthanized, and brain (brain stem, cerebellum, cortex, frontal lobe, hippocampus, hypothalamus, and midbrain) and muscle (soleus) tissues were isolated for analysis of mRNA expression of peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α), Silent Information Regulator T1 (SIRT1), citrate synthase (CS), and mitochondrial DNA (mtDNA) using RT-PCR. A different subgroup of EX and SED mice (n = 7-8/group) performed a treadmill RTF test. Exercise training increased PGC-1α, SIRT1, and CS mRNA and mtDNA in most brain regions in addition to the soleus (P < 0.05). Mean treadmill RTF increased from 74.0 ± 9.6 min to 126.5 ± 16.1 min following training (P < 0.05). These findings suggest that exercise training increases brain mitochondrial biogenesis, which may have important implications, not only with regard to fatigue, but also with respect to various central nervous system diseases and age-related dementia that are often characterized by mitochondrial dysfunction. 相似文献
2.
3.
4.
5.
Short KR 《American journal of physiology. Endocrinology and metabolism》2012,302(9):E1153-4; author reply E1155
6.
Regulation of mitochondrial biogenesis: yeast mutants deficient in synthesis of delta-aminolevulinic acid 总被引:8,自引:0,他引:8
H K Sanders P A Mied M Briquet J Hernandez-Rodriguez R F Gottal J R Mattoon 《Journal of molecular biology》1973,80(1):17-39
A new class of Saccharomyces cerevisiae mutants deficient in biosynthesis of all cytochromes was isolated from cultures grown in medium containing ethidium bromide. Cytochrome c synthesis may be restored to normal by growing mutant cells in medium supplemented with δ-aminolevulinic acid. Cytochrome deficiency results from mutation in two genetic determinants, one nuclear, the other mitochondrial. When cells possess normal (ρ+) mitochondrial DNA, expression of the abnormal nuclear determinant (cyd-1) is largely masked, so that cells can grow on glycerol as primary carbon source and all cytochromes are present. Nevertheless, the presence of the cyd-1 mutation may be detected in ρ+ strains, since synthesis of all cytochromes is enhanced to some extent by δ-aminolevulinic acid. Destruction of mitochondrial DNA unmasks the underlying defect so that cyd-1 ρ? strains are almost completely lacking in detectable cytochromes. Although spectra of cyd-1 ρ+ strains resemble those of cytochrome c (cyc) mutants, cyd-1 mutants represent a new complementation group different from six known cyc groups. Cytochrome c biosynthesis in only one of these six types of cytochrome c mutants, cyc4-1, was restored to normal by δ-aminolevulinic acid. Therefore, since cyc4-1 and cyd-1 are complementary, and segregate independently, δ-aminolevulinic acid synthesis appears to be controlled by at least two nuclear genes, and by one or more genes located in mitochondrial DNA. Glycine does not replace δ-aminolevulinic acid in stimulating cytochrome biosynthesis in cyd-1 or cyc-4 mutants. A regulatory system involving exchange of information between mitochondria and the nuclear-cytosolic compartment is indicated by the results. Studies with isolated mitochondria indicate that a limitation of intra-cellular δ-aminolevulinic acid supply is reflected in mitochondrial composition, not just in numbers of organelles. 相似文献
7.
Mannella CA 《Biochimica et biophysica acta》2006,1762(2):140-147
This review summarizes recent findings from electron tomography about the three-dimensional shape of mitochondrial membranes and its possible influence on a range of mitochondrial functions. The inner membrane invaginations called cristae are pleomorphic, typically connected by narrow tubular junctions of variable length to the inner boundary membrane. This design may restrict intra-mitochondrial diffusion of metabolites such as ADP, and of soluble proteins such as cytochrome c. Tomographic images of a variety of mitochondria suggest that inner membrane topology reflects a balance between membrane fusion and fission. Proteins that can affect cristae morphology include tBid, which triggers cytochrome c release in apoptosis, and the dynamin-like protein Mgm1, involved in inter-mitochondrial membrane fusion. In frozen-hydrated rat-liver mitochondria, the space between the inner and outer membranes contains 10-15 nm particles that may represent macromolecular complexes involved in activities that span the two membranes. 相似文献
8.
9.
Yan Z Okutsu M Akhtar YN Lira VA 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,110(1):264-274
Skeletal muscle exhibits superb plasticity in response to changes in functional demands. Chronic increases of skeletal muscle contractile activity, such as endurance exercise, lead to a variety of physiological and biochemical adaptations in skeletal muscle, including mitochondrial biogenesis, angiogenesis, and fiber type transformation. These adaptive changes are the basis for the improvement of physical performance and other health benefits. This review focuses on recent findings in genetically engineered animal models designed to elucidate the mechanisms and functions of various signal transduction pathways and gene expression programs in exercise-induced skeletal muscle adaptations. 相似文献
10.
Stephan Kutik David A. Stroud Nils Wiedemann Nikolaus Pfanner 《Biochimica et Biophysica Acta (BBA)/General Subjects》2009
Mitochondria and the nucleus are key features that distinguish eukaryotic cells from prokaryotic cells. Mitochondria originated from a bacterium that was endosymbiotically taken up by another cell more than a billion years ago. Subsequently, most mitochondrial genes were transferred and integrated into the host cell's genome, making the evolution of pathways for specific import of mitochondrial proteins necessary. The mitochondrial protein translocation machineries are composed of numerous subunits. Interestingly, many of these subunits are at least in part derived from bacterial proteins, although only few of them functioned in bacterial protein translocation. We propose that the primitive α-proteobacterium, which was once taken up by the eukaryote ancestor cell, contained a number of components that were utilized for the generation of mitochondrial import machineries. Many bacterial components of seemingly unrelated pathways were integrated to form the modern cooperative mitochondria-specific protein translocation system. 相似文献
11.
Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis 总被引:12,自引:0,他引:12 下载免费PDF全文
Li F Wang Y Zeller KI Potter JJ Wonsey DR O'Donnell KA Kim JW Yustein JT Lee LA Dang CV 《Molecular and cellular biology》2005,25(14):6225-6234
12.
Kazuo Fujisawa Daisuke Kukidome Koujirou Imoto Takeshi Yamashiro Hiroyuki Motoshima Takeshi Matsumura Eiichi Araki 《Biochemical and biophysical research communications》2009,379(1):43-48
Although it has been reported that thiazolidinediones (TZDs) may reduce cardiovascular events in type 2 diabetic patients, its precise mechanism is unclear. We previously demonstrated that hyperglycemia-induced production of reactive oxygen species from mitochondria (mtROS) contributed to the development of diabetic complications, and metformin normalized mt ROS production by induction of MnSOD and promotion of mitochondrial biogenesis by activating the PGC-1α pathway. In this study, we examined whether TZDs could inhibit hyperglycemia-induced mtROS production by activating the PGC-1α pathway. We revealed that pioglitazone and ciglitazone attenuated hyperglycemia-induced ROS production in human umbilical vein endothelial cells (HUVECs). Both TZDs increased the expression of NRF-1, TFAM and MnSOD mRNA. Moreover, pioglitazone increased mtDNA and mitochondrial density. These results suggest that TZDs normalize hyperglycemia-induced mtROS production by induction of MnSOD and promotion of mitochondrial biogenesis by activating PGC-1α. This phenomenon could contribute to the prevention of diabetic vascular complications. 相似文献
13.
14.
15.
《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2017,1862(1):114-129
Autophagy is an evolutionarily conserved mechanism that maintains nutrient homeostasis by degrading protein aggregates and damaged organelles. Autophagy is reduced in aging, which is implicated in the pathogenesis of aging-related diseases, including cancers, obesity, type 2 diabetes, cardiovascular diseases, and neurodegenerative diseases. Mitochondria-derived phospholipids cardiolipin, phosphatidylethanolamine, and phosphatidylglycerol are critical throughout the autophagic process, from initiation and phagophore formation to elongation and fusion with endolysosomal vesicles. Cardiolipin is also required for mitochondrial fusion and fission, an important step in isolating dysfunctional mitochondria for mitophagy. Furthermore, genetic screen in yeast has identified a surprising role for cardiolipin in regulating lysosomal function. Phosphatidylethanolamine plays a pivotal role in supporting the autophagic process, including autophagosome elongation as part of lipidated Atg8/LC3. An emerging role for phosphatidylglycerol in AMPK and mTORC1 signaling as well as mitochondrial fission may provide the first glimpse into the function of phosphatidylglycerol apart from being a precursor for cardiolipin. This review examines the effects of manipulating phospholipids on autophagy and mitophagy in health and diseases, as well as current limitations in the field. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum. 相似文献
16.
17.
Regulation of mitochondrial biogenesis: enzymatic changes in cytochrome-deficient yeast mutants requiring delta-aminolevulinic acid. 总被引:5,自引:0,他引:5
R A Woods H K Sanders M Briquet F Foury B E Drysdale J R Mattoon 《The Journal of biological chemistry》1975,250(23):9090-9098
Yeast cells almost completely deficient in all cytochromes were obtained by introducing two defective nuclear genes, cyd1 and cyc4, into the same haploid strain. The action of the two mutant genes is synergistic, since either gene acting singly results in only partial cytochrome deficiency. Normal synthesis of all cytochromes can be restored in the double mutant by adding delta-aminolevulinic acid to the growth medium. The optimum concentration of delta-aminolevulinate for restoration of cytochrome synthesis is about 40 muM; when higher concentrations are used, synthesis of cytochromes is partially suppressed, particularly that of cytochrome a.a3. Growth yield of the double mutant is stimulated by ergosterol and Tween 80, a source of unsaturated fatty acid. Methionine stimulates further. None of these nutrients is required for growth when sufficient delta-aminolevulinic acid is present in the growth medium. With respect to nutritional responses, the single-gene, cytochrome-deficient mutant, ole3, behaves like the double mutant. The frequency of the p-mutation in the double mutant grown in the absence of ergosterol, Tween 80, and delta-aminolevulinic acid is at least 15%. The frequency can be reduced to less than 1% by either delta-aminolevulinic acid or Tween 80. Ergosterol alone does not decrease the p- frequency. The ole3 mutant does not exhibit increased p-frequency under similar conditions of unsaturated fatty acid deficiency. 相似文献
18.
Control of mitochondrial biogenesis during myogenesis 总被引:5,自引:0,他引:5
Kraft CS LeMoine CM Lyons CN Michaud D Mueller CR Moyes CD 《American journal of physiology. Cell physiology》2006,290(4):C1119-C1127
19.
20.
Acetate supplementation in rats increases plasma acetate and brain acetyl-CoA levels. Although acetate is used as a marker to study glial energy metabolism, the effect that acetate supplementation has on normal brain energy stores has not been quantified. To determine the effect(s) that an increase in acetyl-CoA levels has on brain energy metabolism, we measured brain nucleotide, phosphagen and glycogen levels, and quantified cardiolipin content and mitochondrial number in rats subjected to acetate supplementation. Acetate supplementation was induced with glyceryl triacetate (GTA) by oral gavage (6 g/kg body weight). Rats used for biochemical analysis were euthanized using head-focused microwave irradiation at 2, and 4 h following treatment to immediately stop metabolism. We found that acetate did not alter brain ATP, ADP, NAD, GTP levels, or the energy charge ratio [ECR, (ATP + ½ ADP)/(ATP + ADP + AMP)] when compared to controls. However, after 4 h of treatment brain phosphocreatine levels were significantly elevated with a concomitant reduction in AMP levels with no change in glycogen levels. In parallel studies where rats were treated with GTA for 28 days, we found that acetate did not alter brain glycogen and mitochondrial biogenesis as determined by measuring brain cardiolipin content, the fatty acid composition of cardiolipin and using quantitative ultra-structural analysis to determine mitochondrial density/unit area of cytoplasm in hippocampal CA3 neurons. Collectively, these data suggest that an increase in brain acetyl-CoA levels by acetate supplementation does increase brain energy stores however it has no effect on brain glycogen and neuronal mitochondrial biogenesis. 相似文献