首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The present loss of species‐rich grasslands makes it vital to restore these valuable habitat types, including novel habitat variants such as road verges. Due to the lack of knowledge on long‐term outcomes of restoration initiatives, well‐designed studies comparing different restoration methods are needed. In this study, we examined fine‐scale vegetation recovery patterns over 9 years in a field experiment with several near‐natural restoration methods (adding local seed mixtures, transferring hay from local grasslands using hard or light raking, and natural regeneration) in a road verge. We compared this to standard revegetation (hydroseeding species‐poor commercial seed mixtures). We found major temporal changes in vegetation restored by local seed or hay transfer, before it gradually became more similar to the donor grasslands and seed mixtures, which served as references for the experiment. Natural (spontaneous) regeneration with seed dispersal from surroundings gave similar results, whereas areas revegetated using standard methods became more dissimilar to the reference sites during the study period. The main variation in species composition reflected the contrast between local donor grasslands and seed mixtures and the species‐poor early successional grasslands. We conclude that near‐natural methods (hay transfer and seeding) successfully restored species‐rich grassland, including road verges. This study underlines the importance of comparing several treatments over a sufficiently long period to assess their success in restoring species‐rich grassland.  相似文献   

2.
Recent loss of plant species richness in Swedish semi-natural grasslands has led to an increase in grassland recreation and restoration. To increase the establishment of declining species favoured by grazing and to re-establish original species richness, seed sowing has been discussed as a conservation tool. In this study, I examined to what extent seed sowing in former arable fields increases species richness and generates a species composition typical of semi-natural grasslands. Six grassland species favoured by grazing (target species) and six generalist species favoured by ceased grazing, were studied in a seed-addition experiment. Four different seed densities were used on four different grassland categories, two grazed former arable fields, one continuously grazed grassland and one abandoned grassland. Target and generalist species emerged in all grassland categories, but seedling emergence was higher in the grazed than in the abandoned grassland. Target species had higher emergence in the two grasslands with the longest grazing continuity. Seedling emergence and frequency of established plants of each target species were positively associated. The largest fraction of seeds germinated at an intermediate sowing density, 20–50 seeds/dm2, suggesting that aggregation of seeds positively affects emergence up to a certain threshold. In conclusion, artificial seed sowing may induce the recreation of typical grassland communities on former arable fields, which may be an important contribution to increase the total grassland area and species richness in the landscape.  相似文献   

3.
Agricultural set-aside and compensation land provide restoration ecologists with opportunities to re-create semi-natural habitats. Restoration sites often have high soil fertility and inadequate seed banks of desirable species. Sowing additional seed is a proven method for establishing chalk grassland vegetation. If seed of local provenance is required, it may be collected by hand or by using specialized machines. Ultimately, the mix collected must provide seed suitable for recreating vegetation similar to that of the donor site. We examine the ability of a vacuum machine to meet this requirement by comparison with hand collection, and we discuss possible effects on invertebrates. Microscope analysis and glasshouse and field trials were used to compare the abundance of seed of different species in harvested mixes with the vegetation composition of the donor site. Seed heads of individual species were examined to determine the number of viable seeds per head and attack rates by phytophagous insects. The mix contained seed of over half the species recorded on the donor site. The seed of taller, more common species was overrepresented in the mix, at the expense of some smaller, mat-forming plants. After one season, however, the vegetation of the field trial plots was of the same type as that of the donor site, although the proportions of the constituent species differed slightly and certain species were absent. Mechanical collection is more efficient than hand collection. Endophagous invertebrates are unlikely to be affected by the machine. Seed collection requires a combination of methods, precise timing, and careful planning to provide a full range of species and to minimize impacts on plant and invertebrate populations.  相似文献   

4.
The effects of different restoration measures and management variants on the vegetation development of newly created calcareous grasslands were studied in southern Germany from 1993 to 2002. In 1993, fresh seed-containing hay from a nature reserve with ancient calcareous grasslands was transferred onto ex-arable fields with and without topsoil removal. Nine years after start of the restoration, the standing crop was lower and the cover of bare soil was higher on topsoil-removal sites than on sites without soil removal. Topsoil removal had a positive effect on the proportion of target species (class Festuco-Brometea), because the number and cover of productive meadow species (class Molinio-Arrhenatheretea) were reduced. Persistence of hay-transfer species and the number of newly colonizing target species were highest on topsoil-removal sites. On plots with and without soil removal, species richness and the number of target species increased quickly after hay transfer and were always higher on hay-transfer plots than on plots that had not received hay in 1993. In 2002, differences induced by hay transfer were still much more pronounced than differences between management regimes. Management by mowing, however, led to higher species richness, a greater number of target species and a lower number of ruderals in comparison to no management on restoration fields without soil removal. A detrended correspondence analysis (DCA) indicated that vegetation composition of the hay-transfer plots of the restoration fields still differed from the vegetation of ancient grasslands in the nature reserve. Vegetation of an ex-arable field in the nature reserve (last ploughed in 1959) showed an intermediate successional stage. In general our results indicate that the transfer of autochthonous hay is an efficient method for the restoration of species-rich vegetation, which allows not only quick establishment but also long-term persistence of target species.  相似文献   

5.
In 1993, experiments on the restoration of calcareous grasslands on ex‐arable fields were started in order to provide new habitats for species of a small nature reserve with ancient grasslands north of Munich (Germany). The effects of diaspore transfer by the application of seed‐containing hay on vegetation establishment were studied on restoration fields with and without topsoil removal for 5 years. The aim of the study was to assess plant diversity for the evaluation of restoration success by different methods including determination of species with viable seeds in the hay by germination tests, phenological investigations on hay‐transfer source sites at the time of harvest, and vegetation analyses on the restoration sites. Total seed content of the hay and the number and composition of plant species with viable seeds were affected by the time of harvesting and differed between a site which had been used as arable field until 1959 and ancient grassland sites. Nevertheless, the number of established hay‐transfer species showed only few differences between restoration fields. The proportion of species transferred to restoration fields in relation to the number of species with viable seeds in the hay was between 69 and 89%. Five years after the hay transfer, the proportion of the established species was still between 58 and 76%. Up to now, topsoil removal had no significant effect on the number of established hay‐transfer species. After triple hay application the absolute number of transferred grassland species was higher than on sites with single hay application, but restoration efficiency was lower because many of the species with viable seeds in the hay did not establish. In general, our results showed that the transfer of autochthonous hay is a successful method to overcome dispersal limitation in restoration projects.  相似文献   

6.
Question: How do moderate grazing, topsoil removal and hay transfer affect species diversity and abundance on a eutrophic fen grassland site? Location: Northern Germany. Method: A three-factorial field experiment with the factors grazing, topsoil removal and hay transfer of diaspore-rich material was established in 2001. Soil nutrients and seed bank were analysed at the beginning of the experiment, species composition and vegetation development was monitored for four years (2002–2005). Results: Topsoil removal had a significant effect on the abundance of different plant species groups: resident vegetation of agricultural grasslands was suppressed, while clonal reed species were facilitated in recolonising the area. The establishment of regionally rare and endangered species of nutrient-poor fens and wet meadows introduced with hay was achieved mainly on plots with topsoil removal, with the exception of Rhinan-thus angustifolius, which also established on plots with intact topsoil. Effects of grazing after four years of experiments were of minor influence on species composition. Conclusion: The establishment of target plant species of nutrient-poor fens is most successful when both an adequate number of viable diaspores and suitable sites for germination and establishment are available. In our experiment this was achieved by the combination of topsoil removal and hay transfer. We recommend this combination, together with continuous management (grazing/cutting), for further restoration in fen grasslands.  相似文献   

7.
During recent decades, many studies have shown that the successful restoration of species-rich grasslands is often seed-limited because of depleted seed banks and limited seed dispersal in modern fragmented landscapes. In Europe, commercial seed mixtures, which are widely used for restoration measures, mostly consist of species and varieties of non-local provenance. The regional biodiversity of a given landscape, however, can be preserved only when seeds or plants of local provenance are used in restoration projects. Furthermore, the transfer of suitable target species of local provenance can strongly enhance restoration success.We review and evaluate the success of currently used near-natural methods for the introduction of target plant species (e.g. seeding of site-specific seed mixtures, transfer of fresh seed-containing hay, vacuum harvesting, transfer of turves or seed-containing soil) on restoration sites, ranging from dry and mesic meadows to floodplain grasslands and fens. Own data combined with literature findings show species establishment rates during the initial phase as well as the persistence of target species during long-term vegetation development on restoration sites.In conclusion, our review indicates that seed limitation can be overcome successfully by most of the reviewed measures for species introduction. The establishment of species-rich grasslands is most successful when seeds, seed-containing plant material or soil are spread on bare soil of ex-arable fields after tilling or topsoil removal, or on raw soils, e.g. in mined areas. In species-poor grasslands without soil disturbance and on older ex-arable fields with dense weed vegetation, final transfer rates were the lowest. For future restoration projects, suitable measures have to be chosen carefully from case to case as they differ considerably in costs and logistic effort. Long-term prospects for restored grassland are especially good when management can be incorporated in agricultural systems.  相似文献   

8.
Grasslands used to be vital landscape elements throughout Europe. Nowadays, the area of grasslands is dramatically reduced, especially in industrial countries. Grassland restoration is widely applied to increase the naturalness of the landscape and preserve biodiversity. We reviewed the most frequently used restoration techniques (spontaneous succession, sowing seed mixtures, transfer of plant material, topsoil removal and transfer) and techniques used to improve species richness (planting, grazing and mowing) to recover natural-like grasslands from ex-arable lands. We focus on the usefulness of methods in restoring biodiversity, their practical feasibility and costs. We conclude that the success of each technique depends on the site conditions, history, availability of propagules and/or donor sites, and on the budget and time available for restoration. Spontaneous succession can be an option for restoration when no rapid result is expected, and is likely to lead to the target in areas with high availability of propagules. Sowing low-diversity seed mixtures is recommended when we aim at to create basic grassland vegetation in large areas and/or in a short time. The compilation of high-diversity seed mixtures for large sites is rather difficult and expensive; thus, it may be applied rather on smaller areas. We recommend combining the two kinds of seed sowing methods by sowing low-diversity mixtures in a large area and high-diversity mixtures in small blocks to create species-rich source patches for the spontaneous colonization of nearby areas. When proper local hay sources are available, the restoration with plant material transfer can be a fast and effective method for restoration.  相似文献   

9.
Grasslands recovered by sowing low diversity seed mixtures of local provenance are usually managed by mowing. Besides restoration success only a few studies have focused on the direct effects of post-restoration mowing on recovered grassland vegetation. In this study we followed vegetation changes in 13 successfully recovered grasslands in 5 × 5-m-sized sites with continuous and ceased mowing at Hortobágy National Park, East-Hungary. We asked the following questions: (i) What are the effects of cessation of mowing on the vegetation structure and diversity of recovered grasslands? (ii) What are the effects of cessation of mowing on the abundance of sown grasses, target and undesirable species? (iii) Is yearly mowing an appropriate management tool for the maintenance of recovered grasslands? Our results showed that the cessation of mowing caused litter accumulation, while diversity, total vegetation cover and the cover of sown grasses decreased compared to the mown sites. The cover of undesirable perennial species was significantly higher in unmown sites than in mown ones. The species composition of mown sites remained more similar to near-natural grasslands than the unmown ones. Our results suggest that without regular post-restoration mowing the favourable status of recovered grasslands can rapidly decline due to litter accumulation and by the expansion of undesirable species, even in the short-run. We also stress that while yearly mowing is enough to maintain grasslands recovered by low-diversity seed sowing, it cannot be considered to be enough to recover target vegetation composition.  相似文献   

10.
The transfer of seed‐containing hay is a restoration measure for the introduction of plant species of local provenance. We investigated the effect of hay transfer on species richness and on long‐term establishment of target plant and grasshopper species on former arable fields with and without topsoil removal in comparison to reference sites in a nature reserve. Plant species richness, the number of target plant species, and Red List plant species were significantly positively affected by hay transfer, both on the scale of whole restoration fields and on permanent plots of 4 m2. Eight years after the start of the restoration, only few of the transferred plant species had disappeared and some target species were newly found. Grasshoppers were affected not by hay transfer but by topsoil removal. The proportion of target grasshopper and plant species and Red List grasshopper species was higher on topsoil removal sites with low standing crop and high cover of bare soil than on sites without soil removal. On topsoil removal sites without hay, however, plant species richness was very low because of the slow natural dispersal of the target species. Vegetation and grasshopper communities still differed between restoration fields and the nature reserve. Nevertheless, our results indicate that the transfer of autochthonous seed‐containing hay is a successful method to establish species‐rich grasslands with a high proportion of target species.  相似文献   

11.
Grassland restoration on arable land is the second most implemented compensation measure in Germany to counteract impacts of infrastructural projects on nature. Most grassland restoration has been carried out using standardized commercial seed mixtures with large amounts of perennial generalists, cultivars and seeds of non-local origin. To evaluate whether this current practice is appropriate for developing regional types of species-rich mesophile grasslands, we analyzed four widely used treatments in a real-world setting (48 plots): (1) sowing a non-site-specific herb-poor mixture; (2) sowing a non-site-specific herb-enriched mixture; (3) sowing a site-specific herb-enriched mixture; and (4) spontaneous regeneration. After up to nine years, restored sites differed from target grasslands in: (1) number of species; (2) abundance and dominance of target species; and (3) dominance structure. Sown fields were dominated by sown species from the beginning. Because most differences were due to increasing cover of a small number of sown species, we found little development toward regional types of species-rich mesophile grasslands. In contrast, species composition on spontaneously regenerated sites changed to a greater degree and showed gradual development toward target grasslands. The limiting factor for successful restoration on all sites was availability of propagules. On sown sites, dominance patterns - particularly of Festuca rubra cultivars - had a negative effect on immigration and development of target species. For future restoration practice, we strongly recommend avoiding standardized commercial non-local seed mixtures. In particular, highly competitive cultivars should never be used. Even spontaneous regeneration should be preferred over standardized mixtures. However, in species-poor environments enrichment with selected species is necessary to reach target state.  相似文献   

12.
Disturbance in the form of different management regimes affects established vegetation, but how the same management affects the corresponding seed banks is poorly understood. We used the seedling emergence method to investigate how present and previous management intensity impacts the dynamics of established vegetation and corresponding seed bank in six semi-natural grasslands (three pastures and three road verges) in W Norway. The increased management intensity reduced seed bank species richness but increased seedling density and the fraction of species with a persistent seed bank. Higher intensity also increased the components’ floristic similarity, probably through formation of gaps where seeds may germinate. Moreover, the seed bank responded in parallel with the established vegetation to underlying environmental variables as well as to management intensity. Management intensity hence impacted directly on many aspects of seed bank—established vegetation relationships, and controlled established vegetation partly through seed bank dynamics involving both temporal and spatial dispersal.  相似文献   

13.
Invasion by woody alien plants, construction, and mining operations are among the major disturbances degrading vegetation in the Cape Floristic Kingdom, South Africa. The aim of this study was to assess whether native fynbos shrubland vegetation could be restored following dense alien invasion and disturbance by mining. An area supporting dense alien trees was cleared and topsoil was stripped and stockpiled to simulate mining disturbance. A field trial investigated the effects of topsoil depth, seed mix application, and fertilizer on native species recruitment and vegetation development over a three‐year period. Soil‐stored seed banks contributed 60% of the species recruited, indicating that areas invaded for three decades have good restoration potential. The addition of a fynbos seed mix, which included serotinous overstory species, improved both the richness and structural composition of the vegetation. Most species sown in untopsoiled plots established, but survival and growth was low compared to topsoil plots. Poor growth in combination with a lack of soil seed bank species, indicate that restoring a diverse and functional cover of indigenous vegetation on subsoil is not possible in the short‐term. Soil amelioration is required to improve rooting conditions and initiate ecosystem processes. Shallow and deep topsoil treatments yielded high plant density, richness, and projected canopy cover, but canopy cover was higher in deep topsoil plots throughout the trial. Fertilizer addition increased canopy cover in untopsoiled and shallow topsoil plots via an increase in alien annual species. Fertilizer addition ultimately may lead to increased native vegetation cover in untopsoiled areas, but as it increased proteoid mortality on deep topsoil plots, it is not recommended for sites where topsoil is available. A species‐rich and structurally representative fynbos community may be restored on topsoiled areas provided that the native disturbance regime is simulated and seeds of major structural guilds not present in the soil seed bank are included in the seed mix.  相似文献   

14.
Several studies have found that increased nitrogen (N) deposition leads to a decline in species richness in semi-natural grasslands, mainly due to the loss of species typical of nutrient-poor soils. However, after reaching a peak around 1990, N deposition has decreased in Europe over the last 30 years. In this study, we investigated the changes in species number and composition of semi-natural grasslands during this period of declining N deposition. To this end, we compared the data from the first survey (2001-2005) of 147 grassland sites in Switzerland with those from the third survey (2011-2015). We further analysed the vegetation development of a specific hay meadow from 1992 to 2013. In this grassland, total vegetation cover and the cover of graminoid species decreased, while the cover of oligotrophic species increased. At the 147 grassland sites, total species number decreased at sites with still high levels of N deposition and it tended to increase at sites with low N deposition, i. e. below the critical load for N deposition. The number of oligotrophic grassland species increased at sites with a large decrease in N deposition and strong inclination. Thus, the results of this study indicate that the reduction of N emissions had a measurable positive effect on species diversity in these semi-natural grasslands. Most of the grasslands surveyed appear to be quite resilient against N deposition, i. e. they do not shift to an alternative low diversity state dominated by a few competitive species, and recovery of the species composition as a result of the decrease in N deposition seems possible, especially on steep slopes. Furthermore, the study underlines the importance of regular management of semi-natural, unfertilised, low-productivity grassland to maintain the diversity of oligotrophic grassland species.  相似文献   

15.
Restoration ecologists are increasingly aware of the potential to re-create chalk grassland on abandoned farmland. Success is often hampered by lack of desirable species in the seed bank and by poor dispersal from nearby sites. In certain schemes, the input of seed may be essential. Locally collected seed is desirable but availability is limited. We examined whether lower sowing rates than currently recommended may be successfully utilized, facilitating more-efficient use of available seed. Experimental plots on former agricultural land were sown at different rates in a randomized complete block, and the vegetation was surveyed for two years. We compared species richness and cover for chalk grassland plants and weeds - species not associated with chalk grassland communities. Values for cover and abundance were matched with data for communities of the British National Vegetation Classification (NVC). Species richness for chalk grassland plants increased with sowing rate and with time, although after two years there was no significant difference between the treatments sown at 0.4, 1.0, and 4.0 grams of seed per square meter. Weed species decreased with increasing rate and time. After two seasons, the vegetation on all treatment plots was similar to that of recognized NVC chalk grassland communities, while the controls were dominated by weeds and showed signs of developing into species-poor grassland. Higher rates rapidly eliminated weeds, but even a small inoculum of seed seemed to significantly enhance establishment of desirable plants and to reduce weed cover. We conclude that lower sowing rates would enable the desired vegetation to become established successfully, under appropriate conditions and management regimes. Lower rates allow for the re-creation of sizable areas using local seed, and they minimize damage to donor sites.  相似文献   

16.
Large scale restoration using local high-diversity seed mixture combined with turf transfer was applied on ex-arable land in the Morava River floodplain in the western Slovakia in the years 1999–2012. The post-restoration vegetation development was recorded during 12 years after the restoration using floristic records per restored polygons with cover estimation in simple 3-degree scale. Temporal changes in species composition were evaluated by gradient analysis and number of characteristic grassland and ruderal species on restored sites was analysed by general linear models. Species composition changed gradually towards the species composition typical for species-rich floodplain grasslands, but the trajectory was not straightforward and several irregularities were observed. They were probably induced by extreme weather events (drought, floods). The decrease in ruderal species and increase in the number of typical floodplain grassland species were observed, when floodplain grassland species permanently outcompeted ruderal species since 8th year after the restoration. However the development in large scale was slower, than expected from previous small-scale experiments, it is evident, that combination of local seed mixture sowing with a turf transfer is a feasible method for the restoration of species-rich floodplain grasslands from arable land.  相似文献   

17.
Abstract. This is the first quantitative study of seed bank characteristics in North American alvar habitats. We assessed seed bank density, species richness, and species composition in 75 plots distributed among five alvar sites in Bruce Peninsula National Park, Ontario, Canada, each of which displayed areas of high and low vegetation cover within the alvar and a fully forested perimeter area. Forested habitats immediately adjacent to alvar patches contained minimal seed banks for species restricted to the alvar patches. Open alvars contained less than 1% seeds from woody forest species. This suggests that forest is not invading adjacent alvar habitat via seeds and that adjacent forest does not contain a reservoir of alvar seeds. When compared to areas on the alvar with high vascular plant cover, areas with low cover contained a slightly smaller viable seed bank, but seed banks from high and low vegetation cover plots had similar species composition and species richness. High vegetation cover plots had slightly higher mean and maximum soil depths compared with low cover plots, but no differences in other physical and chemical parameters. Thus, spatial heterogeneity in plant cover is associated only weakly with heterogeneity in below‐ground factors. Despite the availability of seed and soil resources, vegetation dynamics are constrained in areas with low plant cover, and thus alvar community development seems to respond non‐linearly to resource availability.  相似文献   

18.
Summary

Long term set-aside offers an opportunity to create new grasslands which may be visually appealing and valuable for wildlife. These grasslands, whilst not equalling the nature conservation value of old semi-natural grasslands, may have higher value for wildlife than the arable crops and grass leys which they replace. In this paper we compare the nature conservation value of vegetation established by either natural regeneration or by sowing a seed-mixture based on MG5 Cynosurus cristatus — Centaurea nigra grassland on set-aside at two sites in Scotland. The initial results suggest that sown vegetation is generally more botanically diverse than natural regeneration. Sheep grazing resulted in reduced botanical diversity in the sown plots and early cutting, with cuttings removed and aftermath grazing by cattle, resulted in the highest diversity estimates. However, some effects of management treatment were site specific.  相似文献   

19.
The effect of different methods of reconstruction and different seed mixtures on the restoration of botanically valuable, semi-natural, species-rich grasslands on enlarged river dikes (embankments) was studied. If during the reconstruction a strip of the species-rich vegetation is kept unaffected it functions as a source of propagules. From this intact zone species disperse to other parts of the dike and the redevelopment of the vegetation is stimulated. When it is not possible to save part of the original vegetation, the upper soil layer can be put aside as complete sods or as topsoil and can be replaced as the new topsoil after the reconstruction. In this way the redevelopment of species-rich grasslands is promoted by the reestablishment of previously occurring species out of the propagules present in the replaced top soil. The application of the original subsoil or the use of imported clay as the new toplayer prevent a quick restoration of botanically valuable, semi-natural, species-rich grasslands. Seed mixtures applied influence the development of succession. Redevelopment of former river dike grasslands is quickest if D1 + LGM (i.e., standard seed mixture plus locally gathered seed mixture) is used as a seed mixture. Seed mixtures containing a considerable proportion of Lolium perenne seeds are unsuitable as the redevelopment is retarded, whereas application of locally gathered seed mixtures accelerate succession.  相似文献   

20.
Seedling establishment is influenced by litter cover and by seed predators, but little is known about interactions between these two factors. We tested their effects on emergence of five typical grassland species in a microcosm experiment. We manipulated the amounts of grass litter, seed sowing position and earthworm activity to determine whether: (i) the protective effect of litter against seed predation depends on cover amount and seed sowing position, i.e., on top or beneath litter; (ii) seed transport by earthworms changes the effect of seed sowing position on seedling emergence; and (iii) seeds transported into deeper soil layers by earthworms are still germinable. Litter cover and presence of earthworms lowered seedling emergence. The impact of seed position increased with seed size. Emergence of large-seeded species was reduced when sown on the surface. Additionally, we found an important seed position × earthworm interaction related to seed size. Emergence of large-seeded species sown on top of the litter was up to three times higher when earthworms were present than without earthworms. Earthworms also significantly altered the depth distribution of seeds in the soil and across treatments: on average 6% of seeds germinated after burial. In contrast to the seed position effect, we found no size effect on mobility and germinability of seeds after burial in the soil. Nevertheless, the fate of different-sized seeds may differ. While burial will remove large seeds from the regeneration pool, it may enhance seed bank build up in small-seeded species. Consequently, changes in the amount of litter cover and the invertebrate community play a significant role in plant community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号