共查询到20条相似文献,搜索用时 0 毫秒
1.
Phospholipases A2 (PLA2) catalyse the cleavage of fatty acids esterified at the sn-2 position of glycerophospholipids. In acute lung injury-acute respiratory distress syndrome (ALI-ARDS) several distinct isoenzymes appear in lung cells and fluid. Some are capable to trigger molecular events leading to enhanced inflammation and lung damage and others have a role in lung surfactant recycling preserving lung function: Secreted forms (groups sPLA2-IIA, -V, -X) can directly hydrolyze surfactant phospholipids. Cytosolic PLA2 (cPLA2-IVA) requiring Ca2+ has a preference for arachidonate, the precursor of eicosanoids which participate in the inflammatory response in the lung. Ca2+-independent intracellular PLA2s (iPLA2) take part in surfactant phospholipids turnover within alveolar cells. Acidic Ca2+-independent PLA2 (aiPLA2), of lysosomal origin, has additionally antioxidant properties, (peroxiredoxin VI activity), and participates in the formation of dipalmitoyl-phosphatidylcholine in lung surfactant. PAF-AH degrades PAF, a potent mediator of inflammation, and oxidatively fragmented phospholipids but also leads to toxic metabolites. Therefore, the regulation of PLA2 isoforms could be a valuable approach for ARDS treatment. 相似文献
2.
3.
Puneet P Moochhala S Bhatia M 《American journal of physiology. Lung cellular and molecular physiology》2005,288(1):L3-15
A characteristic feature of all inflammatory disorders is the excessive recruitment of leukocytes to the site of inflammation. The loss of control in trafficking these cells contributes to inflammatory diseases. Leukocyte recruitment is a well-orchestrated process that includes several protein families including the large cytokine subfamily of chemotactic cytokines, the chemokines. Chemokines and their receptors are involved in the pathogenesis of several diseases. Acute lung injury that clinically manifests as acute respiratory distress syndrome (ARDS) is caused by an uncontrolled systemic inflammatory response resulting from clinical events including major surgery, trauma, multiple transfusions, severe burns, pancreatitis, and sepsis. Systemic inflammatory response syndrome involves activation of alveolar macrophages and sequestered neutrophils in the lung. The clinical hallmarks of ARDS are severe hypoxemia, diffuse bilateral pulmonary infiltrates, and normal intracardiac filling pressures. The magnitude and duration of the inflammatory process may ultimately determine the outcome in patients with ARDS. Recent evidence shows that activated leukocytes and chemokines play a key role in the pathogenesis of ARDS. The expanding number of antagonists of chemokine receptors for inflammatory disorders may hold promise for new medicines to combat ARDS. 相似文献
4.
5.
Triggiani M Granata F Oriente A De Marino V Gentile M Calabrese C Palumbo C Marone G 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(9):4908-4915
Secretory phospholipases A2 (sPLA2s) are a group of extracellular enzymes that release fatty acids at the sn-2 position of phospholipids. Group IIA sPLA2 has been detected in inflammatory fluids, and its plasma level is increased in inflammatory diseases. To investigate a potential mechanism of sPLA2-induced inflammation we studied the effect of group IA (from cobra venom) and group IIA (human synovial) sPLA2s on human macrophages. Both sPLA2s induced a concentration- and Ca2+-dependent, noncytotoxic release of beta-glucuronidase (16.2 +/- 2.4% and 13.1 +/- 1.5% of the total content with groups IA and IIA, respectively). Both sPLA2s also increased the rate of secretion of IL-6 and enhanced the expression of IL-6 mRNA. Preincubation of macrophages with inhibitors of the hydrolytic activity of sPLA2 or cytosolic PLA2 did not influence the release of beta-glucuronidase. Incubation of macrophages with p-aminophenyl-mannopyranoside-BSA (mp-BSA), a ligand of the mannose receptor, also resulted in beta-glucuronidase release. However, while preincubation of macrophages with mp-BSA had no effect on beta-glucuronidase release induced by group IIA sPLA2, it enhanced that induced by group IA sPLA2. A blocking Ab anti-mannose receptor inhibited both mp-BSA- and group IIA-induced beta-glucuronidase release. Taken together, these data indicate that group IA and IIA sPLA2s activate macrophages with a mechanism independent from their enzymatic activities and probably related to the activation of the mannose receptor or sPLA2-specific receptors. The secretion of enzymes and cytokines induced by sPLA2s from human macrophages may play an important role in inflammation and tissue damage associated with the release of sPLA2s. 相似文献
6.
7.
8.
Makhlouf Michel A.; Fernando Lawrence P.; Gettys Thomas W.; Halushka Perry V.; Cook James A. 《American journal of physiology. Cell physiology》1998,274(5):C1238
Sublethaladministration of lipopolysaccharide (LPS) renders rats tolerant tomultiple lethal stimuli. Tolerant macrophages exhibit differentialalterations in LPS-stimulated cytokine and inflammatory mediatorrelease. Increased cAMP levels stimulated byPGE2 or prostacyclin(PGI2) result in differentialeffects on LPS-induced cytokine release and protect against thepathophysiological changes of endotoxemia. In the present studies, wesought to determine whether PGE2-and PGI2-stimulated cAMP levelsare altered in tolerant macrophages. Incubation of macrophages withcicaprost or 11-deoxy-PGE1 in thepresence of phosphodiesterase inhibitors resulted in significantly higher (2.5- to 6.5-fold) cAMP concentrations in tolerant macrophages compared with control. In contrast, isoproterenol-stimulated cAMP levels were not significantly different between control and tolerant cells. Also, incubation of tolerant macrophages with LPS did not resultin significantly elevated cAMP levels. Prostacyclin (IP) receptor mRNAlevels were significantly increased in tolerant cells compared withcontrols, whereas[3H]PGE2binding and PGE2 EP4 receptor mRNAlevels were not significantly changed. These studies suggest that LPStolerance induces selective alterations in eicosanoid regulation ofcAMP formation. 相似文献
9.
Mitsui K Takano K Nakatani S Nambu H Shibata F Nakagawa H 《Microbiology and immunology》2002,46(1):37-45
The contribution of streptolysin O (SLO) from Streptococcus pyogenes to neutrophil infiltration in inflammatory lesions was determined by production of cytokine-induced neutrophil chemoattractant (CINC)-1, -2 and -3, and macrophage inflammatory protein (MIP)-1alpha by rat macrophages stimulated with SLO in culture. Active SLO induced the production of CINCs and MIP-1alpha in dose- and time-dependent manners. These inductions were ascertained by chemokine mRNA expression in macrophages. Streptolysin S was without effect. The SLO-cholesterol complex induced the chemokine production in proportion to the residual hemolytic activity of the complex. In addition, the effects of SLO on the chemokine production were confirmed by the injection of active SLO into the preformed air pouch on the back of rats. The infiltration of neutrophils into the pouch fluid (exudate) increased steadily with a lag phase of about 2 hr. The major chemokine found in exudates was MIP-1alpha but not CINCs. In this study, it became clear that active SLO, but not the inactive one, contributed to the production of MIP-1alpha and CINCs in the conditioned medium and in exudates. 相似文献
10.
Ahilanandan Dushianthan Victoria Goss Rebecca Cusack Michael PW Grocott Anthony D Postle 《Respiratory research》2014,15(1)
Background
Acute respiratory distress syndrome (ARDS) is a life-threatening critical illness, characterised by qualitative and quantitative surfactant compositional changes associated with premature airway collapse, gas-exchange abnormalities and acute hypoxic respiratory failure. The underlying mechanisms for this dysregulation in surfactant metabolisms are not fully explored. Lack of therapeutic benefits from clinical trials, highlight the importance of detailed in-vivo analysis and characterisation of ARDS patients according to patterns of surfactant synthesis and metabolism.Methods
Ten patients with moderate to severe ARDS were recruited. Most (90%) suffered from pneumonia. They had an infusion of methyl-D9-choline chloride and small volume bronchoalveolar lavage fluid (BALF) was obtained at 0,6,12,24,48,72 and 96 hours. Controls were healthy volunteers, who had BALF at 24 and 48 hours after methyl-D9-choline infusion. Compositional analysis and enrichment patterns of stable isotope labelling of surfactant phosphatidylcholine (PC) was determined by electrospray ionisation mass spectrometry.Results
BALF of patients with ARDS consisted of diminished total PC and fractional PC16:0/16:0 concentrations compared to healthy controls. Compositional analysis revealed, reductions in fractional compositions of saturated PC species with elevated levels of longer acyl chain unsaturated PC species. Molecular specificity of newly synthesised PC fraction showed time course variation, with lower PC16:0/16:0 composition at earlier time points, but achieved near equilibrium with endogenous composition at 48 hours after methyl-D9-choline infusion. The enrichment of methyl-D9-choline into surfactant total PC is nearly doubled in patients, with considerable variation between individuals.Conclusions
This study demonstrate significant alterations in composition and kinetics of surfactant PC extracted from ARDS patients. This novel approach may facilitate biochemical phenotyping of ARDS patients according to surfactant synthesis and metabolism, enabling individualised treatment approaches for the management of ARDS patients in the future. 相似文献11.
Xia Chen Qiang Shan Li Jiang Bo Zhu Xiuming Xi 《Biochemical and biophysical research communications》2013
Acute respiratory distress syndrome (ARDS) is a major cause of morbidity and mortality in critical patients. Proteomic analysis of plasma from individuals with ARDS could elucidate new biomarkers for diagnosis and pathophysiology and identify potential ARDS treatment targets. In this study, we recruited 26 patients (15 controls, 11 ARDS). The ARDS group was subdivided into two groups depending on the type of injury: (1) direct lung injury (AD) and (2) indirect lung injury (AI). Using iTRAQ (isobaric tags for relative and absolute quantitation) analysis, we identified 2429 peptides representing 132 plasma proteins. Among these, 16 were differentially expressed in ARDS patients, including 11 overlapping proteins between the AI and AD group and 5 AI-specific proteins. Protein annotation revealed that lipid transport and complement activation were significantly enriched in the biological process category, and lipid transporter, transporter, and serine-type peptidase activities were significantly enriched in the molecular function category. IPA (Ingenuity Pathway Analysis) signaling pathways revealed that the overlapping proteins were involved in a variety of signaling pathways, including those underlying acute phase response; liver X receptor/retinoid X receptor (LXR/RXR) and farnesoid X (FXR)/RXR activation; clathrin-mediated endocytosis; atherosclerosis; interleukin (IL)-12; complement system; and cytokine, nitric oxide, and reactive oxygen species production in macrophages. We present the first proteomic analysis of ARDS plasma using the iTRAQ approach. Our data provide new biomarker candidates and shed light on potential pathological mechanisms underlying ARDS. 相似文献
12.
13.
Gole MD Souza JM Choi I Hertkorn C Malcolm S Foust RF Finkel B Lanken PN Ischiropoulos H 《American journal of physiology. Lung cellular and molecular physiology》2000,278(5):L961-L967
The present study identifies proteins modified by nitration in the plasma of patients with ongoing acute respiratory distress syndrome (ARDS). The proteins modified by nitration in ARDS were revealed by microsequencing and specific antibody detection to be ceruloplasmin, transferrin, alpha(1)-protease inhibitor, alpha(1)-antichymotrypsin, and beta-chain fibrinogen. Exposure to nitrating agents did not deter the chymotrypsin-inhibiting activity of alpha(1)-antichymotrypsin. However, the ferroxidase activity of ceruloplasmin and the elastase-inhibiting activity of alpha(1)-protease inhibitor were reduced to 50.3 +/- 1.6 and 60.3 +/- 5.3% of control after exposure to the nitrating agent. In contrast, the rate of interaction of fibrinogen with thrombin was increased to 193.4 +/- 8.5% of the control value after exposure of fibrinogen to nitration. Ferroxidase activity of ceruloplasmin and elastase-inhibiting activity of the alpha(1)-protease inhibitor in the ARDS patients were significantly reduced (by 81 and 44%, respectively), whereas alpha(1)-antichymotrypsin activity was not significantly altered. Posttranslational modifications of plasma proteins mediated by nitrating agents may offer a biochemical explanation for the reported diminished ferroxidase activity, elevated levels of elastase, and fibrin deposits detected in patients with ongoing ARDS. 相似文献
14.
Horowitz JC Cui Z Moore TA Meier TR Reddy RC Toews GB Standiford TJ Thannickal VJ 《American journal of physiology. Lung cellular and molecular physiology》2006,290(3):L415-L425
Acute respiratory distress syndrome (ARDS) is a clinical syndrome characterized by stereotypic host inflammatory and repair cellular responses; however, mechanisms regulating the resolution of ARDS are poorly understood. Here, we report the isolation and characterization of a novel population of mesenchymal cells from the alveolar space of ARDS patients via fiber-optic bronchoscopy with bronchoalveolar lavage (BAL). BAL was performed on 17 patients during the course of ARDS. Immunofluorescence staining and multiparameter flow cytometric analysis defined a population of alveolar mesenchymal cells (AMCs) that are CD45-/prolyl-4-hydroxylase+/alpha-smooth muscle actin+/-. AMCs proliferated in ex vivo cell culture for multiple passages; early passage (3-5) cells were subsequently analyzed in 13 patients. AMCs isolated from patients with persistent or nonresolving ARDS (ARDS-NR, n = 4) demonstrate enhanced constitutive activation of prosurvival signaling pathways involving PKB/Akt, FKHR, and BCL-2 family proteins compared with AMCs from patients with resolving ARDS (ARDS-R, n = 9). Exogenous transforming growth factor-beta1 markedly induces PKB/Akt activation in AMCs from ARDS-R. ARDS-NR cells are more resistant to serum deprivation-induced apoptosis compared with ARDS-R. This study identifies a novel population of mesenchymal cells that can be isolated from the alveolar spaces of ARDS patients. AMCs in patients with ARDS-NR acquire an activational profile characterized by enhanced prosurvival signaling and an antiapoptotic phenotype. These findings support the concept that apoptosis of mesenchymal cells may be an essential component of normal repair and resolution of ARDS and suggest that dysregulation of this process may contribute to persistent ARDS. 相似文献
15.
Background
Elevated levels of biochemical markers of myocardial necrosis have been associated with worsened outcomes in Acute Respiratory Distress Syndrome (ARDS), but there are few prospective data on this relationship. We investigated elevated cardiac troponin T (cTnT) levels and their relationship with outcome in patients with ARDS.Methods
A prospective cohort study of patients with ARDS was conducted at a tertiary-care academic medical center. Patients had blood taken within 48 hours of ARDS onset and assayed for cTnT. Patients were followed for the outcomes of 60-day mortality, number of organ failures, and days free of mechanical ventilation. Echocardiographic and electrocardiographic (ECG) data were analyzed for signs of myocardial ischemia, infarction, or other myocardial dysfunction.Results
177 patients were enrolled, 70 of whom died (40%). 119 patients had detectable cTnT levels (67%). Median cTnT level was 0.03 ng/mL, IQR 0–0.10 ng/mL, and levels were higher among non-survivors (P = .008). Increasing cTnT level was significantly associated with increasing mortality (P = .008). The association between increasing cTnT level and mortality remained significant after adjustment in a multivariate model (HRadj = 1.45, 95% CI 1.17–1.81, P = .001). Elevated cTnT level was also associated with increased number of organ failures (P = .002), decreased number of days free of mechanical ventilation (P = .03), echocardiographic wall motion abnormalities (P = 0.001), and severity of tricuspid regurgitation (P = .04). There was no association between ECG findings of myocardial ischemia or infarction and elevated cTnT.Conclusions
Elevated cTnT levels are common in patients with ARDS, and are associated with worsened clinical outcomes and certain echocardiographic abnormalities. No association was seen between cTnT levels and ECG evidence of coronary ischemia. 相似文献16.
Andreas Günther Clemens Ruppert Reinhold Schmidt Philipp Markart Friedrich Grimminger Dieter Walmrath Werner Seeger 《Respiratory research》2001,2(6):353-14
The acute respiratory distress syndrome (ARDS) is a frequent, life-threatening disease in which a marked increase in alveolar surface tension has been repeatedly observed. It is caused by factors including a lack of surface-active compounds, changes in the phospholipid, fatty acid, neutral lipid, and surfactant apoprotein composition, imbalance of the extracellular surfactant subtype distribution, inhibition of surfactant function by plasma protein leakage, incorporation of surfactant phospholipids and apoproteins into polymerizing fibrin, and damage/inhibition of surfactant compounds by inflammatory mediators. There is now good evidence that these surfactant abnormalities promote alveolar instability and collapse and, consequently, loss of compliance and the profound gas exchange abnormalities seen in ARDS. An acute improvement of gas exchange properties together with a far-reaching restoration of surfactant properties was encountered in recently performed pilot studies. Here we summarize what is known about the kind and severity of surfactant changes occuring in ARDS, the contribution of these changes to lung failure, and the role of surfactant administration for therapy of ARDS. 相似文献
17.
18.
探讨早期肠内营养联合益生菌对急性呼吸窘迫综合征(ARDS)患者预后的影响,为该类患者的治疗提供参考。
回顾性分析2018年6月至2020年12月我院急诊ICU收治的86例中重度ARDS患者的临床资料,按随机数字法将患者分为观察组(
观察组患者机械通气时间短于对照组[(10.34±2.16)d
相比单一予以早期肠内营养,采用早期肠内营养联合益生菌治疗ARDS患者更有利于缩短患者机械通气时间,降低病死率,改善患者的预后。
19.
Background
The heterogeneity of conditions underlying respiratory distress, whether classified clinically as acute lung injury (ALI) or the more severe acute respiratory distress syndrome (ARDS), has hampered efforts to identify and more successfully treat these patients. Examination of postmortem lungs among cases clinically diagnosed as ARDS identified a cohort that showed a consistent morphology at the light and electron microscope levels, and featured pathognomonic structures which we termed elastin-staining laminar structures (ELS).Methods
Postmortem tissues were stained using the Verhoeff-Van Gieson procedure for elastic fibers, and with Congo red for examination under a polarizing microscope. Similar samples were examined by transmission EM.Results
The pathognomonic ELS presented as ordered molecular aggregates when stained using the Verhoeff-van Gieson technique for elastic fibers. In several postmortem lungs, the ELS also displayed apple-green birefringence after staining with Congo red, suggesting the presence of amyloid. Remarkably, most of the postmortem lungs with ELS exhibited no significant acute inflammatory cellular response such as neutrophilic reaction, and little evidence of widespread edema except for focal intra-alveolar hemorrhage.Conclusions
Postmortem lungs that exhibit the ELS constitute a morphologically-identifiable subgroup of ARDS cases. The ordered nature of the ELS, as indicated by both elastin and amyloid stains, together with little morphological evidence of inflammation or edema, suggests that this cohort of ARDS may represent another form of conformational disease. If this hypothesis is confirmed, it will require a new approach in the diagnosis and treatment of patients who exhibit this form of acute lung injury. 相似文献20.
Melissa A Kovach Kathleen A Stringer Rachel Bunting Xiaoying Wu Lani San Mateo Michael W Newstead Robert Paine III Theodore J Standiford 《Respiratory research》2015,16(1)