首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
roundabout (robo) family genes play key roles in axon guidance in a wide variety of animals. We have investigated the roles of the robo family members, robo, robo2, and robo3, in the guidance of sensory axons in the Drosophila embryo. In robo(-/-), slit(-/-), and robo(-/+) slit(-/+) mutants, lateral cluster sensory neurons misproject to cells and axons in the nearby ventral' (v') cluster. These phenotypes, together with the normal expression pattern of Slit and Robo, suggest that Slit ligand secreted from the epidermis interacts with Robo receptors on lateral cluster sensory growth cones to limit their exploration of nearby attractive substrates. The most common sensory axon phenotype seen in robo2(-/-) mutants was misprojection of dorsal cluster sensory axons away from their normal growth substrate, the transverse connective of the trachea. slit appears to play no role in this aspect of sensory axon growth. Robo2 is expressed, not on the dorsal sensory axons, but on the transverse connective. These results suggest a novel, non-cell-autonomous mechanism for axon guidance by robo family genes: Robo2 expressed on the trachea acts as an attractant for the dorsal sensory growth cones.  相似文献   

2.
The developing optic pathway has proven one of the most informative model systems for studying mechanisms of axon guidance. The first step in this process is the directed extension of retinal ganglion cell (RGC) axons within the optic fibre layer (OFL) of the retina towards their exit point from the eye, the optic disc. Previously, we have shown that the inhibitory guidance molecules, Slit1 and Slit2, regulate two distinct aspects of intraretinal axon guidance in a region-specific manner. Using knockout mice, we have found that both of these guidance activities are mediated via Robo2. Of the four vertebrate Robos, only Robo1 and Robo2 are expressed by RGCs. In mice lacking robo1 intraretinal axon guidance occurs normally. However, in mice lacking robo2 RGC axons make qualitatively and quantitatively identical intraretinal pathfinding errors to those reported previously in Slit mutants. This demonstrates clearly that, as in other regions of the optic pathway, Robo2 is the major receptor required for intraretinal axon guidance. Furthermore, the results suggest strongly that redundancy with other guidance signals rather than different receptor utilisation is the most likely explanation for the regional specificity of Slit function during intraretinal axon pathfinding.  相似文献   

3.
Diffusible chemorepellents play a major role in guiding developing axons towards their correct targets by preventing them from entering or steering them away from certain regions. Genetic studies in Drosophila revealed a novel repulsive guidance system that prevents inappropriate axons from crossing the CNS midline; this repulsive system is mediated by the Roundabout (Robo) receptors and their secreted ligand Slits. Three distinct slit genes (slit1, slit2 and slit3) and three distinct robo genes (robo1, robo2 and rig-1) have been cloned in mammals. In collagen gel co-cultures, Slit1 and Slit2 can repel and collapse olfactory axons. However, there is also some positive effect associated with Slits, as Slit2 stimulates the formation of axon collateral branches by NGF-responsive neurons of the dorsal root ganglia (DRG). Slit2 is a large ECM glycoproteins of about 200 kD, which is proteolytically processed into 140 kD N-terminal and 55-60 kD C-terminal fragments. Slit2 cleavage fragments appear to have different cell association characteristics, with the smaller C-terminal fragment being more diffusible and the larger N-terminal and uncleaved fragments being more tightly cell associated. This suggested that the different fragments might have different functional activities in vivo. We have begun to explore these questions by engineering mutant and truncated versions of hSlit2 representing the two cleavage fragments, N- and C-, and the uncleavable molecule and examining the activities of these mutants in binding and functional assays. We found that an axon's response to Slit2 is not absolute, but rather is reflective of the context in which the protein is encountered.  相似文献   

4.
Upon arriving at their targets, developing axons cease pathfinding and begin instead to arborize and form synapses. To test whether CNS arborization and synaptogenesis are controlled by Slit-Robo signaling, we followed single retinal ganglion cell (RGC) arbors over time. ast (robo2) mutant and slit1a morphant arbors had more branch tips and greater arbor area and complexity compared to wild-type and concomitantly more presumptive presynaptic sites labeled with YFP-Rab3. Increased arborization in ast was phenocopied by dominant-negative Robo2 expressed in single RGCs and rescued by full-length Robo2, indicating that Robo2 acts cell-autonomously. Time-lapse imaging revealed that ast and slit1a morphant arbors stabilized earlier than wild-type, suggesting a role for Slit-Robo signaling in preventing arbor maturation. Genetic analysis showed that Slit1a acts both through Robo2 and Robo2-independent mechanisms. Unlike previous PNS studies showing that Slits promote branching, our results show that Slits inhibit arborization and synaptogenesis in the CNS.  相似文献   

5.
Simpson JH  Kidd T  Bland KS  Goodman CS 《Neuron》2000,28(3):753-766
Previous studies showed that Roundabout (Robo) in Drosophila is a repulsive axon guidance receptor that binds to Slit, a repellent secreted by midline glia. In robo mutants, growth cones cross and recross the midline, while, in slit mutants, growth cones enter the midline but fail to leave it. This difference suggests that Slit must have more than one receptor controlling midline guidance. In the absence of Robo, some other Slit receptor ensures that growth cones do not stay at the midline, even though they cross and recross it. Here we show that the Drosophila genome encodes three Robo receptors and that Robo and Robo2 have distinct functions, which together control repulsive axon guidance at the midline. The robo,robo2 double mutant is largely identical to slit.  相似文献   

6.
Crossing the midline: roles and regulation of Robo receptors   总被引:12,自引:0,他引:12  
In the Drosophila CNS, the midline repellent Slit acts at short range through its receptor Robo to control midline crossing. Longitudinal axons express high levels of Robo and avoid the midline; commissural axons that cross the midline express only low levels of Robo. Robo levels are in turn regulated by Comm. Here, we show that the Slit receptors Robo2 and Robo3 ensure the fidelity of this crossing decision: rare crossing errors occur in both robo2 and robo3 single mutants. In addition, low levels of either Robo or Robo2 are required to drive commissural axons through the midline: only in robo,robo2 double mutants do axons linger at the midline as they do in slit mutants. Robo2 and Robo3 levels are also tightly regulated, most likely by a mechanism similar to but distinct from the regulation of Robo by Comm.  相似文献   

7.
The slit (sli) gene, encoding a secreted glycoprotein, has been demonstrated to play a vital role in axonal guidance in Drosophila melanogaster by acting as a signalling ligand for the robo receptor (Rothberg, J.M., Jacobs, J.R., Goodman, C.S., Artavanis-Tsakonas, S., 1990. slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev. 4, 2169-2187; Kidd, T., Bland, K.S., Goodman, C. S., 1999. Slit is the midline repellent for the robo receptor in Drosophila. Cell 96, 785-794). Multiple homologs of both sli and robo have been identified in vertebrates and are thought to play similar roles to their fly counterparts in neural development (Brose, K., Bland, K.S., Wang, K.H., Arnott, D., Henzel, W., Goodman, C.S., Tessier-Lavigne, M., Kidd, T., 1999. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795-806). Slit2 has been shown to bind Robo1, mediating both neuronal and axonal guidance in the developing central nervous system (CNS), (Brose et al., 1999; Hu, H., 1999. Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron 23, 703-711). Importantly, both gene families display distinct expression patterns outside the CNS (Holmes, G.P., Negus, K., Burridge, L., Raman, S., Algar, E., Yamada, T., Little, M.H., 1998. Distinct but overlapping expression patterns of two vertebrate slit homologs implies functional roles in CNS development and organogenesis. Mech. Dev. 79, 57-72; Yuan, W., Zhou, L., Chen, J.H., Wu, J.Y., Rao, Y., Ornitz, D.M., 1999. The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. Dev. Biol. 212, 290-306). Using in situ hybridization on metanephric explant cultures and urogenital tract sections, the expression patterns of Slit1, 2, 3 and Robo1 and 2 were investigated during murine metanephric development. Slit1 was expressed in the metanephric mesenchyme (MM) surrounding the invading ureteric tree (UT). Slit2 was expressed at the tips of the UT and both Slit2 and Slit3 were expressed at the far proximal end of the comma shaped and S-shaped bodies. Expression of Robo1 was initially diffuse throughout the MM, then upregulated in the pretubular aggregates, and maintained at the distal end of the comma and S-shaped bodies. Robo2 was detected in the induced MM surrounding the arborizing UT tips and later in the proximal end of the S-shaped bodies. Coincident expression of Robo1 with Slit1 in the metanephric mesenchyme and Robo2, Slit2 and Slit3 in the far proximal end of the S-shaped bodies was observed during metanephric development.  相似文献   

8.
As the complexity of animal nervous systems has increased during evolution, developmental control of neuronal connectivity has become increasingly refined. How has functional diversification within related axon guidance molecules contributed to the evolution of nervous systems? To address this question, we explore the evolution of functional diversity within the Roundabout (Robo) family of axon guidance receptors. In Drosophila, Robo and Robo2 promote midline repulsion, while Robo2 and Robo3 specify the position of longitudinal axon pathways. The Robo family has expanded by gene duplication in insects; robo2 and robo3 exist as distinct genes only within dipterans, while other insects, like the flour beetle Tribolium castaneum, retain an ancestral robo2/3 gene. Both Robos from Tribolium can mediate midline repulsion in Drosophila, but unlike the fly Robos cannot be down-regulated by Commissureless. The overall architecture and arrangement of longitudinal pathways are remarkably conserved in Tribolium, despite it having only two Robos. Loss of TcSlit causes midline collapse of axons in the beetle, a phenotype recapitulated by simultaneous knockdown of both Robos. Single gene knockdowns reveal that beetle Robos have specialized axon guidance functions: TcRobo is dedicated to midline repulsion, while TcRobo2/3 also regulates longitudinal pathway formation. TcRobo2/3 knockdown reproduces aspects of both Drosophila robo2 and robo3 mutants, suggesting that TcRobo2/3 has two functions that in Drosophila are divided between Robo2 and Robo3. The ability of Tribolium to organize longitudinal axons into three discrete medial–lateral zones with only two Robo receptors demonstrates that beetle and fly achieve equivalent developmental outcomes using divergent genetic programs.  相似文献   

9.

Background

Roundabouts are axon guidance molecules that have recently been identified to play a role in vascular guidance as well. In this study, we have investigated gene knockdown analysis of endothelial Robos, in particular roundabout 4 (robo4), the predominant Robo in endothelial cells using small interfering RNA technology in vitro.

Results

Robo1 and Robo4 knockdown cells display distinct activity in endothelial cell migration assay. The knockdown of robo4 abrogated the chemotactic response of endothelial cells to serum but enhanced a chemokinetic response to Slit2, while robo1 knockdown cells do not display chemotactic response to serum or VEGF. Robo4 knockdown endothelial cells unexpectedly show up regulation of Rho GTPases. Zebrafish Robo4 rescues both Rho GTPase homeostasis and serum reduced chemotaxis in robo4 knockdown cells. Robo1 and Robo4 interact and share molecules such as Slit2, Mena and Vilse, a Cdc42-GAP. In addition, this study mechanistically implicates IRSp53 in the signaling nexus between activated Cdc42 and Mena, both of which have previously been shown to be involved with Robo4 signaling in endothelial cells.

Conclusion

This study identifies specific components of the Robo signaling apparatus that work together to guide directional migration of endothelial cells.  相似文献   

10.
Members of the Slit family are large extracellular glycoproteins that may function as chemorepellents in axon guidance and neuronal cell migration. Their actions are mediated through members of the Robo family that act as their receptors. In vertebrates, Slit causes chemorepulsion of embryonic olfactory tract, spinal motor, hippocampal and retinal ganglion cell axons. Since Slits are expressed in the septum and floor plate during the period when these tissues cause chemorepulsion of olfactory tract and spinal motor axons respectively, it has been proposed that Slits function as guidance cues. We have tested this hypothesis in collagen gel co-cultures using soluble Robo/Fc chimeras, as competitive inhibitors, to disrupt Slit interactions. We find that the addition of soluble Robo/Fc has no effect on chemorepulsion of olfactory tract and spinal motor axons when co-cultured with septum or floor plate respectively. Thus, we conclude that although Slits are expressed in the septum and floor plate, their proteins do not contribute to the major chemorepulsive activities emanating from these tissues which cause repulsion of olfactory tract and spinal motor axons.  相似文献   

11.
Slit is the midline repellent for the robo receptor in Drosophila   总被引:22,自引:0,他引:22  
Kidd T  Bland KS  Goodman CS 《Cell》1999,96(6):785-794
Previous studies suggested that Roundabout (Robo) is a repulsive guidance receptor on growth cones that binds to an unknown midline ligand. Here we present genetic evidence that Slit is the midline Robo ligand; a companion paper presents biochemical evidence that Slit binds Robo. Slit is a large extracellular matrix protein expressed by midline glia. In slit mutants, growth cones enter the midline but never leave it; they abnormally continue to express high levels of Robo while at the midline. slit and robo display dosage-sensitive genetic interactions, indicating that they function in the same pathway. slit is also required for migration of muscle precursors away from the midline. Slit appears to function as a short-range repellent controlling axon crossing of the midline and as a long-range chemorepellent controlling mesoderm migration away from the midline.  相似文献   

12.
Glia are required for axon pathfinding along longitudinal trajectories, but it is unknown how this relates to the molecular paradigm of axon guidance across the midline. Most interneuron axons in bilateral organisms cross the midline only once. Preventing them from recrossing the midline requires the expression of Robo receptors on the axons. These sense the repulsive signal Slit, which is produced by the midline. The lateral positioning of longitudinal axons depends on the response to Slit by the combination of Robo receptors expressed by the axons, on selective fasciculation, and on longitudinal (lateral) glia. Here, we analyse how longitudinal glia influence reading of the 'Robo code' by axons. We show that whereas loss of robo1 alone only affects the most medial axons, loss of both glial cells missing (gcm) and robo1 causes a severe midline collapse of longitudinal axons, similar to that caused by the loss of multiple Robo receptors. Furthermore, whereas ectopic expression of robo2 is sufficient to displace the medial MP2 axons along a more lateral trajectory, this does not occur in gcm-robo1 double-mutant embryos, where axons either do not extend at all or they misroute exiting the CNS. Hence, lateral neuron-glia interactions steer the response of axons to the Robo code.  相似文献   

13.
Simpson JH  Bland KS  Fetter RD  Goodman CS 《Cell》2000,103(7):1019-1032
Slit is secreted by midline glia in Drosophila and functions as a short-range repellent to control midline crossing. Although most Slit stays near the midline, some diffuses laterally, functioning as a long-range chemorepellent. Here we show that a combinatorial code of Robo receptors controls lateral position in the CNS by responding to this presumptive Slit gradient. Medial axons express only Robo, intermediate axons express Robo3 and Robo, while lateral axons express Robo2, Robo3, and Robo. Removal of robo2 or robo3 causes lateral axons to extend medially; ectopic expression of Robo2 or Robo3 on medial axons drives them laterally. Precise topography of longitudinal pathways appears to be controlled by a combination of long-range guidance (the Robo code determining region) and short-range guidance (discrete local cues determining specific location within a region).  相似文献   

14.
The Slit molecules are chemorepulsive ligands that regulate axon guidance at the midline of both vertebrates and invertebrates. In mammals, there are three Slit genes, but only Slit2 has been studied in any detail with regard to mammalian brain commissure formation. Here, we sought to understand the relative contributions that Slit proteins make to the formation of the largest brain commissure, the corpus callosum. Slit ligands bind Robo receptors, and previous studies have shown that Robo1(-/-) mice have defects in corpus callosum development. However, whether the Slit genes signal exclusively through Robo1 during callosal formation is unclear. To investigate this, we compared the development of the corpus callosum in both Slit2(-/-) and Robo1(-/-) mice using diffusion magnetic resonance imaging. This analysis demonstrated similarities in the phenotypes of these mice, but crucially also highlighted subtle differences, particularly with regard to the guidance of post-crossing axons. Analysis of single mutations in Slit family members revealed corpus callosum defects (but not complete agenesis) in 100% of Slit2(-/-) mice and 30% of Slit3(-/-) mice, whereas 100% of Slit1(-/-); Slit2(-/-) mice displayed complete agenesis of the corpus callosum. These results revealed a role for Slit1 in corpus callosum development, and demonstrated that Slit2 was necessary but not sufficient for midline crossing in vivo. However, co-culture experiments utilising Robo1(-/-) tissue versus Slit2 expressing cell blocks demonstrated that Slit2 was sufficient for the guidance activity mediated by Robo1 in pre-crossing neocortical axons. This suggested that Slit1 and Slit3 might also be involved in regulating other mechanisms that allow the corpus callosum to form, such as the establishment of midline glial populations. Investigation of this revealed defects in the development and dorso-ventral positioning of the indusium griseum glia in multiple Slit mutants. These findings indicate that Slits regulate callosal development via both classical chemorepulsive mechanisms, and via a novel role in mediating the correct positioning of midline glial populations. Finally, our data also indicate that some of the roles of Slit proteins at the midline may be independent of Robo signalling, suggestive of additional receptors regulating Slit signalling during development.  相似文献   

15.
Olfactory sensory neurons (OSNs) expressing a given odorant receptor project their axons to specific glomeruli, creating a topographic odor map in the olfactory bulb (OB). The mechanisms underlying axonal pathfinding of OSNs to their precise targets are not fully understood. Here, we demonstrate that Robo2/Slit signaling functions to guide nascent olfactory axons to the OB primordium in zebrafish. robo2 is transiently expressed in the olfactory placode during the initial phase of olfactory axon pathfinding. In the robo2 mutant, astray (ast), early growing olfactory axons misroute ventromedially or posteriorly, and often penetrate into the diencephalon without reaching the OB primordium. Four zebrafish Slit homologs are expressed in regions adjacent to the olfactory axon trajectory, consistent with their role as repulsive ligands for Robo2. Masking of endogenous Slit gradients by ubiquitous misexpression of Slit2 in transgenic fish causes posterior pathfinding errors that resemble the ast phenotype. We also found that the spatial arrangement of glomeruli in OB is perturbed in ast adults, suggesting an essential role for the initial olfactory axon scaffold in determining a topographic glomerular map. These data provide functional evidence for Robo2/Slit signaling in the establishment of olfactory neural circuitry in zebrafish.  相似文献   

16.
The vomeronasal projection conveys information provided by pheromones and detected by neurones in the vomeronasal organ (VNO) to the accessory olfactory bulb (AOB) and thence to other regions of the brain such as the amygdala. The VNO-AOB projection is topographically organised such that axons from apical and basal parts of the VNO terminate in the anterior and posterior AOB respectively. We provide evidence that the Slit family of axon guidance molecules and their Robo receptors contribute to the topographic targeting of basal vomeronasal axons. Robo receptor expression is confined largely to basal VNO axons, while Slits are differentially expressed in the AOB with a higher concentration in the anterior part, which basal axons do not invade. Immunohistochemistry using a Robo-specific antibody reveals a zone-specific targeting of VNO axons in the AOB well before cell bodies of these neurones in the VNO acquire their final zonal position. In vitro assays show that Slit1-Slit3 chemorepel VNO axons, suggesting that basal axons are guided to the posterior AOB due to chemorepulsive activity of Slits in the anterior AOB. These data in combination with recently obtained other data suggest a model for the topographic targeting in the vomeronasal projection where ephrin-As and neuropilins guide apical VNO axons, while Robo/Slit interactions are important components in the targeting of basal VNO axons.  相似文献   

17.
Rajagopalan S  Vivancos V  Nicolas E  Dickson BJ 《Cell》2000,103(7):1033-1045
On each side of the midline of the Drosophila CNS, axons are organized into a series of parallel pathways. Here we show that the midline repellent Slit, previously identified as a short-range signal that regulates midline crossing, also functions at long range to pattern these longitudinal pathways. In this long-range function, Slit signals through the receptors Robo2 and Robo3. Axons expressing neither, one, or both of these receptors project in one of three discrete lateral zones, each successively further from the midline. Loss of robo2 or robo3 function repositions axons closer to the midline, while gain of robo2 or robo3 function shifts axons further from the midline. Local cues further refine the lateral position. Together, these long- and short-range guidance cues allow growth cones to select with precision a specific longitudinal pathway.  相似文献   

18.
One of the challenges to understanding nervous system development has been to establish how a fairly limited number of axon guidance cues can set up the patterning of very complex nervous systems. Studies on organisms with relatively simple nervous systems such as Drosophila melanogaster and C. elegans have provided many insights into axon guidance mechanisms. The axons of many neurons migrate along both the dorsal-ventral (DV) and the anterior-posterior (AP) axes at different phases of development, and in addition they may also cross the midline. Axon migration in the dorsal-ventral (DV) direction is mainly controlled by Netrins with their receptors; UNC-40/DCC and UNC-5, and the Slits with their receptors; Robo/SAX-3. Axon guidance in the anterior-posterior (AP) axis is mainly controlled by Wnts with their receptors; the Frizzleds/Fz. An individual axon may be subjected to opposing attractive and repulsive forces coming from opposite sides in the same axis but there may also be opposing cues in the other axis of migration. All the information from the cues has to be integrated within the growth cone at the leading edge of the migrating axon to elicit a response. Recent studies have provided insight into how this is achieved.Evidence suggests that the axis of axon migration is determined by the manner in which Netrin, Slit and Wnt receptors are polarized (localized) within the neuron prior to axon outgrowth. The same molecules are involved in both axon outgrowth and axon guidance, for at least some neurons in C. elegans, whether the cue is the attractive cue UNC-6/Netrin working though UNC-40/DCC or the repulsive cue SLT-1/Slit working though the receptor SAX-3/Robo (Adler et al., 2006, Chang et al., 2006, Quinn et al., 2006, 2008). The molecules involved in cell signaling in this case are polarized within the cell body of the neuron before process outgrowth and direct the axon outgrowth. Expression of the Netrin receptor UNC-40/DCC or the Slit receptor SAX-3/Robo in axons that normally migrate in the AP direction causes neuronal polarity reversal in a Netrin and Slit independent manner (Levy-Strumpf and Culotti 2007, Watari-Goshima et al., 2007). Localization of the receptors in this case is caused by the kinesin-related VAB-8L which appears to govern the site of axon outgrowth in these neurons by causing receptor localization. Therefore, asymmetric localization of axon guidance receptors is followed by axon outgrowth in vivo using the receptor's normal cue, either attractive, repulsive or unknown cues.  相似文献   

19.
Slit is a secreted guidance cue that conveys repellent or attractive signals from target and guidepost cells. In Drosophila, responsive cells express one or more of three Robo receptors. The cardial cells of the developing heart express both Slit and Robo2. This is the first report of coincident expression of a Robo and its ligand. In slit mutants, cardial cell alignment, polarization and uniform migration are disrupted. The heart phenotype of robo2 mutants is similar, with fewer migration defects. In the guidance of neuronal growth cones in Drosophila, there is a phenotypic interaction between slit and robo heterozygotes, and also with genes required for Robo signaling. In contrast, in the heart, slit has little or no phenotypic interaction with Robo-related genes, including Robo2, Nck2, and Disabled. However, there is a strong phenotypic interaction with Integrin genes and their ligands, including Laminin and Collagen, and intracellular messengers, including Talin and ILK. This indicates that Slit participates in adhesion or adhesion signaling during heart development.  相似文献   

20.
In Drosophila, Slit at the midline activates Robo receptors on commissural axons, thereby repelling them out of the midline into distinct longitudinal tracts on the contralateral side of the central nervous system. In the vertebrate spinal cord, Robo1 and Robo2 are expressed by commissural neurons, whereas all three Slit homologs are expressed at the ventral midline. Previous analysis of Slit1;Slit2 double mutant spinal cords failed to reveal a defect in commissural axon guidance. We report here that when all six Slit alleles are removed, many commissural axons fail to leave the midline, while others recross it. In addition, Robo1 and Robo2 single mutants show guidance defects that reveal a role for these two receptors in guiding commissural axons to different positions within the ventral and lateral funiculi. These results demonstrate a key role for Slit/Robo signaling in midline commissural axon guidance in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号