首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Guidance of primordial germ cell migration by the chemokine SDF-1   总被引:19,自引:0,他引:19  
The signals directing primordial germ cell (PGC) migration in vertebrates are largely unknown. We demonstrate that sdf-1 mRNA is expressed in locations where PGCs are found and toward which they migrate in wild-type as well as in mutant embryos in which PGC migration is abnormal. Knocking down SDF-1 or its receptor CXCR4 results in severe defects in PGC migration. Specifically, PGCs that do not receive the SDF-1 signal exhibit lack of directional movement toward their target and arrive at ectopic positions within the embryo. Finally, we show that the PGCs can be attracted toward an ectopic source of the chemokine, strongly suggesting that this molecule provides a key directional cue for the PGCs.  相似文献   

2.
Insulin-like growth factor (IGF) signaling is a critical regulator of somatic growth during fetal and adult development, primarily through its stimulatory effects on cell proliferation and survival. IGF signaling is also required for development of the reproductive system, although its precise role in this regard remains unclear. We have hypothesized that IGF signaling is required for embryonic germline development, which requires the specification and proliferation of primordial germ cells (PGCs) in an extragonadal location, followed by directed migration to the genital ridges. We tested this hypothesis using loss-of-function studies in the zebrafish embryo, which possesses two functional copies of the Type-1 IGF receptor gene (igf1ra, igf1rb). Knockdown of IGF1Rb by morpholino oligonucleotides (MO) results in mismigration and elimination of primordial germ cells (PGCs), resulting in fewer PGCs colonizing the genital ridges. In contrast, knockdown of IGF1Ra has no effect on PGC migration or number despite inducing widespread somatic cell apoptosis. Ablation of both receptors, using combined MO injections or overexpression of a dominant-negative IGF1R, yields embryos with a PGC-deficient phenotype similar to IGF1Rb knockdown. TUNEL analyses revealed that mismigrated PGCs in IGF1Rb-deficient embryos are eliminated by apoptosis; overexpression of an antiapoptotic gene (Bcl2l) rescues ectopic PGCs from apoptosis but fails to rescue migration defects. Lastly, we show that suppression of IGF signaling leads to quantitative changes in the expression of genes encoding CXCL-family chemokine ligands and receptors involved in PGC migration. Collectively, these data suggest a novel role for IGF signaling in early germline development, potentially via cross-talk with chemokine signaling pathways.  相似文献   

3.
Primordial Germ Cell (PGC) migration in zebrafish is guided by SDF-1a. Binding of this chemokine to its receptor CXCR4b activates downstream signalling cascades leading to cell polarization and directed migration towards the attractant source. Despite the detailed information available concerning the role of SDF-1 in guiding the PGCs to their targets, little was known regarding the molecular mechanisms controlling the distribution of SDF-1a within the tissue. We have recently shown that the activity of a second SDF-1/CXCL12 receptor, CXCR7 is crucial for proper migration of PGCs. Although CXCR4 and CXCR7 are structurally related and serve as receptors for the same ligand, they appear to serve very different functions during PGC migration. Here we discuss a model according to which CXCR4b translates the polarized distribution of SDF-1 into directed PGC migration, while CXCR7 acts as a high-affinity decoy receptor and facilitates the migration of PGCs by shaping the distribution of the chemokine in the environment.Key words: cell migration, CXCR4, CXCR7, SDF-1, chemokine, chemotaxisChemokine-guided cell migration is central for many processes in normal development and homeostasis (e.g., embryogenesis) as well as in pathological conditions (e.g., inflammation). Zebrafish primordial germ cells (PGCs) serve as a useful model for studying chemokine-controlled cell migration in vivo as the migrating PGCs sense and respond to the dynamic distribution of the chemokine SDF-1a through its receptor CXCR4b.1,2Recent reports identified CXCR7 as a receptor for SDF-13,4 that controls processes such as cell adhesion, survival and tumor progression. A role for this receptor in regulating cell migration during development was demonstrated in the zebrafish lateral line.5,6 The zebrafish lateral line primordium migrates directionally on a stripe of uniform sdf-1a expression to deposit a set of sensory organs along the fish tail. While the authors raised the hypothesis that antagonistic interactions between CXCR4b and CXCR7 polarize the developing organ to allow its migration, the precise function of CXCR7 in this process remained unclear.To address this question in an in vivo context, we examined the role CXCR7 plays in zebrafish PGC migration.7 Our experiments revealed that knockdown of cxcr7 translation using morpholino antisense oligo nucleotides results in impaired polarity and aberrant migration of PGCs. Unlike cxcr4b, cxcr7 is not specifically expressed in the PGCs but is initially uniformly distributed throughout the embryo. Furthermore, in contrast to activity of CXCR4, CXCR7 function was found to be required in tissues surrounding the migrating cells rather than in the PGCs themselves.To examine the function of CXCR7 in somatic cells we determined the subcellular localization of the protein as compared with that of CXCR4b and SDF-1a. Interestingly, while CXCR4b is predominantly localized to the plasma membrane, CXCR7 is found primarily in intracellular structures. The fact that SDF-1α and CXCR7 colocalized in the cell and that SDF-1α was found in vesicles that contained the lysosomal marker LAMP-1 suggested that the prime role of CXCR7 is to bind and internalize SDF-1a thereby controlling the level of the diffusible chemokine in the extracellular space. Indeed, observing PGCs expressing CXCR4b on their membrane we detected strong receptor internalization when CXCR7 function was knocked down. The enhanced internalization, a typical response to high levels of SDF-1a8 could be reversed by concomitant removal of SDF-1.These findings provided an explanation for the CXCR7 knock-down phenotype as abnormally high levels of SDF-1a in the environment have been shown before to interfere with cell motility.1,2 Indeed, PGCs in CXCR7 knocked-down embryos displayed strong inhibition of motility manifested in short migration tracks—a phenotype that could be reversed by simultaneous removal of CXCR7 and SDF-1.The implication of the results presented above is that the sole function of CXCR7 in the context of PGC migration is ligand sequestration. Consistent with this idea, two typical signalling responses acting downstream of chemokine receptors namely, elevation of intracellular calcium levels and PI3K activation913 were not altered in cells knocked down for CXCR7. Thus, consistent with other reports,4,14 our results imply that CXCR7 signalling is not required for PGC migration.An important outstanding question concerns the molecular basis for the dramatic difference between the activity of CXCR4 and that of CXCR7. Defining domains and amino acids responsible for this difference would provide extensive information regarding chemokine receptor signalling and trafficking within the cell. Whereas random mutagenesis and generation of various CXCR4-CXCR7 chimeric molecules might provide an answer to this question, it is tempting to speculate that known protein motifs are responsible for the differences between the two receptors. For example, an obvious candidate region is that around its DRY motif,14 a motif within the second intracellular loop that is important for Gprotein coupling and signalling.15 Whereas uncoupling downstream signalling in the case of CXCR7 is an interesting research avenue, other non-mutually exclusive options should be examined (Fig. 1). For example, CXCR7 could possess domains that facilitate interaction with components that enhance internalization. Such an interaction could remove the receptor from the location where it normally interacts with the signalling machinery, while effectively internalizing SDF-1a.Open in a separate windowFigure 1Proposed model for differential functions of CXCR4b and CXCR7. (A) CXCR4b signalling in PGCs controls cell polarization and directional migration in response to SDF-1a binding (squares), through interaction with G-proteins and elevation of calcium levels. (B) Binding of SDF-1a by CXCR7 does not elicit signalling. Endocytosis of the lignad-bound CXCR7 leads to sequestration and degradation of SDF-1a in the somatic environment.Taken together, we show that proper PGC migration requires a mechanism to remove the guidance cue thereby allowing the formation of an informative chemotactic gradient. It would be very interesting to examine whether the paradigm demonstrated for the PGC migration model applies for other chemokine-guided events in development and disease.  相似文献   

4.
5.
6.
Chemokine signaling regulates sensory cell migration in zebrafish   总被引:3,自引:0,他引:3  
Chemokines play an important role in the migration of a variety of cells during development. Recent investigations have begun to elucidate the importance of chemokine signaling within the developing nervous system. To better appreciate the neural function of chemokines in vivo, the role of signaling by SDF-1 through its CXCR4 receptor was analyzed in zebrafish. The SDF-1-CXCR4 expression pattern suggested that SDF-1-CXCR4 signaling was important for guiding migration by sensory cells known as the migrating primordium of the posterior lateral line. Ubiquitous induction of the ligand in transgenic embryos, antisense knockdown of the ligand or receptor, and a genetic receptor mutation all disrupted migration by the primordium. Furthermore, in embryos in which endogenous SDF-1 was knocked down, the primordium migrated towards exogenous sources of SDF-1. These data demonstrate that SDF-1 signaling mediated via CXCR4 functions as a chemoattractant for the migrating primordium and that chemokine signaling is both necessary and sufficient for directing primordium migration.  相似文献   

7.
vasa is essential for germline development. However, the precise processes in which vasa involves vary considerably in diverse animal phyla. Here we show that vasa is required for primordial germ cell (PGC) migration in the medakafish. vasa knockdown by two morpholinos led to the PGC migration defect that was rescued by coinjection of vasa RNA. Interestingly, vasa knockdown did not alter the PGC number, identity, proliferation and motility even at ectopic locations. We established a cell culture system for tracing PGCs at the single cell level in vitro. In this culture system, control and morpholino-injected gastrulae produced the same PGC number and the same time course of PGC survival. Importantly, vasa-depleted PGCs in culture had similar motility and locomotion to normal PGCs. Expression patterns of wt1a, sdf1b and cxcr4b in migratory tissues remained unchanged by vasa knockdown. By chimera formation we show that PGCs from vasa-depleted blastulae failed to migrate properly in the normal environment, whereas control PGCs migrated normally in vasa-disrupted embryos. Furthermore, ectopic PGCs in vasa-depleted embryos also retained all the PGC properties examined. Taken together, medaka vasa is cell-autonomously required for PGC migration, but dispensable to PGC proliferation, motility, identity and survival.  相似文献   

8.
9.
Primordial germ cells (PGCs) in Xenopus embryo are specified in the endodermal cell mass and migrate dorsally toward the future gonads. The role of the signal mediated by Notch and Suppressor of Hairless [Su(H)] was analyzed on the migrating PGCs at the tailbud stage. X‐Notch‐1 and X‐Delta‐1 are expressed in the migrating PGCs and surrounding endodermal cells, whereas X‐Delta‐2 and X‐Serrate‐1 are expressed preferentially in the PGCs. Suppression and constitutive activation of the Notch/Su(H) signaling in the whole endoderm region or selectively in the PGCs resulted in an increase in ectopic PGCs located in lateral or ventral regions. Knocking down of the Notch ligands by morpholino oligonucleotides revealed that X‐Delta‐2 was indispensable for the correct PGC migration. The ectopic PGCs seemed to have lost their motility in the Notch/Su(H) signal‐manipulated embryos. Our results suggest that a cell‐to‐cell interaction via the Notch/Su(H) pathway has a significant role in the PGC migration by regulating cell motility.  相似文献   

10.
Lo KH  Hui MN  Yu RM  Wu RS  Cheng SH 《PloS one》2011,6(9):e24540

Background

As a global environmental concern, hypoxia is known to be associated with many biological and physiological impairments in aquatic ecosystems. Previous studies have mainly focused on the effect of hypoxia in adult animals. However, the effect of hypoxia and the underlying mechanism of how hypoxia affects embryonic development of aquatic animals remain unclear.

Methodology/Principal Findings

In the current study, the effect of hypoxia on primordial germ cell (PGC) migration in zebrafish embryos was investigated. Hypoxic embryos showed PGC migration defect as indicated by the presence of mis-migrated ectopic PGCs. Insulin-like growth factor (IGF) signaling is required for embryonic germ line development. Using real-time PCR, we found that the mRNA expression levels of insulin-like growth factor binding protein (IGFBP-1), an inhibitor of IGF bioactivity, were significantly increased in hypoxic embryos. Morpholino knockdown of IGFBP-1 rescued the PGC migration defect phenotype in hypoxic embryos, suggesting the role of IGFBP-1 in inducing PGC mis-migration.

Conclusions/Significance

This study provides novel evidence that hypoxia disrupts PGC migration during embryonic development in fish. IGF signaling is shown to be one of the possible mechanisms for the causal link between hypoxia and PGC migration. We propose that hypoxia causes PGC migration defect by inhibiting IGF signaling through the induction of IGFBP-1.  相似文献   

11.
Low intensity pulsed ultrasound (LIPUS) has been proven effective in promoting fracture healing but the underlying mechanisms are not fully depicted. We examined the effect of LIPUS on the recruitment of mesenchymal stem cells (MSCs) and the pivotal role of stromal cell-derived factor-1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4) pathway in response to LIPUS stimulation, which are essential factors in bone fracture healing. For in vitro study, isolated rat MSCs were divided into control or LIPUS group. LIPUS treatment was given 20 minutes/day at 37°C for 3 days. Control group received sham LIPUS treatment. After treatment, intracellular CXCR4 mRNA, SDF-1 mRNA and secreted SDF-1 protein levels were quantified, and MSCs migration was evaluated with or without blocking SDF-1/CXCR4 pathway by AMD3100. For in vivo study, fractured 8-week-old young rats received intracardiac administration of MSCs were assigned to LIPUS treatment, LIPUS+AMD3100 treatment or vehicle control group. The migration of transplanted MSC to the fracture site was investigated by ex vivo fluorescent imaging. SDF-1 protein levels at fracture site and in serum were examined. Fracture healing parameters, including callus morphology, micro-architecture of the callus and biomechanical properties of the healing bone were investigated. The in vitro results showed that LIPUS upregulated SDF-1 and CXCR4 expressions in MSCs, and elevated SDF-1 protein level in the conditioned medium. MSCs migration was promoted by LIPUS and partially inhibited by AMD3100. In vivo study demonstrated that LIPUS promoted MSCs migration to the fracture site, which was associated with an increase of local and serum SDF-1 level, the changes in callus formation, and the improvement of callus microarchitecture and mechanical properties; whereas the blockade of SDF-1/CXCR4 signaling attenuated the LIPUS effects on the fractured bones. These results suggested SDF-1 mediated MSCs migration might be one of the crucial mechanisms through which LIPUS exerted influence on fracture healing.  相似文献   

12.
Mouse skin melanocytes originate from the neural crest and subsequently invade the epidermis and migrate into the hair follicles (HF) where they proliferate and differentiate. Here we demonstrate a role for the chemokine SDF-1/CXCL12 and its receptor CXCR4 in regulating the migration and positioning of melanoblasts during HF formation and cycling. CXCR4 expression by melanoblasts was upregulated during the anagen phase of the HF cycle. CXCR4-expressing cells in the HF also expressed the stem cell markers nestin and LEX, the neural crest marker SOX10 and the cell proliferation marker PCNA. SDF-1 was widely expressed along the path taken by migrating CXCR4-expressing cells in the outer root sheath (ORS), suggesting that SDF-1-mediated signaling might be required for the migration of CXCR4 cells. Skin sections from CXCR4-deficient mice, and skin explants treated with the CXCR4 antagonist AMD3100, contained melanoblasts abnormally concentrated in the epidermis, consistent with a defect in their migration. SDF-1 acted as a chemoattractant for FACS-sorted cells isolated from the anagen skin of CXCR4–EGFP transgenic mice in vitro, and AMD3100 inhibited the SDF-1-induced migratory response. Together, these data demonstrate an important role for SDF-1/CXCR4 signaling in directing the migration and positioning of melanoblasts in the HF.  相似文献   

13.
The adhesive extracellular matrix glycoprotein fibronectin is thought to play a central role in cell migration during embryogenesis. In order to define this role, we have examined the response to fibronectin in cell culture of mouse primordial germ cells (PGCs) before, during and after their migration from the hindgut into their target tissue, the genital ridges. Using an explant culture system, we show that PGCs will emigrate from tissue fragments containing hindgut, and that fibronectin stimulates this migration. Adhesion assays show that the start of PGC migration is associated with a fall in adhesion to fibronectin. Double-labelling studies using in situ hybridization and histochemistry demonstrate that migrating PGCs do not contain detectable fibronectin mRNA, suggesting that they do not synthesize and secrete the fibronectin within their migratory substratum. Taken together, these findings are consistent with an important role for fibronectin in stimulating PGC migration. In addition, however, they suggest that the interaction between PGCs and fibronectin may be important in timing the start of migration, with the fall in adhesion allowing the PGCs to commence their migration towards the genital ridges.  相似文献   

14.
SDF-1 and CXCR4 are a chemokine and chemokine receptor pair playing critical roles in tumorigenesis. Overexpression of CXCR4 is a hallmark of many hematological malignancies including acute myeloid leukemia, chronic lymphocytic leukemia and non-Hodgkin’s lymphoma, and generally correlates with a poor prognosis. In this study, we developed a humanized anti-CXCR4 monoclonal antibody, LY2624587 as a potent CXCR4 antagonist that was advanced into clinical study for cancer. LY2624587 blocked SDF-1 binding to CXCR4 with an IC50 of 0.26 nM, and inhibited SDF-1-induced GTP binding with a Kb of 0.66 nM. In human lymphoma U937 and leukemia CCRF-CEM cells expressing endogenous CXCR4, LY2624587 inhibited SDF-1-induced cell migration with IC50 values of 3.7 and 0.26 nM, respectively. This antibody also inhibited CXCR4 and SDF-1 mediated cell signaling including activation of MAPK and AKT in tumor cells expressing CXCR4. Bifocal microscopic and flow cytometry analyses revealed that LY2624587 mediated receptor internalization and caused CXCR4 down-regulation on the cell surface. In human hematologic cancer cells, LY2624587 caused dose dependent apoptosis in vitro and in vivo. In mouse xenograft models developed with human leukemia and lymphoma cells expressing high levels of CXCR4, LY2624587 exhibited dose-dependent tumor growth inhibition and provided significant survival benefit in a disseminated lymphoma model. Collectively, we have demonstrated that CXCR4 inhibition by LY2624587 has the potential for the treatment of human hematological malignancies.  相似文献   

15.
16.
During mouse gastrulation, primordial germ cells (PGCs) become clustered at the base of the allantois and move caudally into the hindgut endoderm before entering the genital ridges. The precise roles of endoderm tissues in PGC migration, however, remain unclear. By using Sox17 mutants with a specific endoderm deficiency, we provide direct evidence for the crucial role of hindgut expansion in directing proper PGC migration. In Sox17-null embryos, PGCs normally colonize in the allantois and then a small front-row population of PGCs moves properly into the most posterior gut endoderm. Defective hindgut expansion, however, causes the failure of further lateral PGC movement, resulting in the immobilization of PGCs in the hindgut entrance at the later stages. In contrast, the majority of the remaining PGCs moves into the visceral endoderm layer, but relocate outside of the embryonic gut domain. This leads to a scattering of PGCs in the extraembryonic yolk sac endoderm. This aberrant migration of Sox17-null PGCs can be rescued by the supply of wildtype hindgut cells in chimeric embryos. Therefore, these data indicate that hindgut morphogenic movement is crucial for directing PGC movement toward the embryonic gut side, but not for their relocation from the mesoderm into the endoderm.  相似文献   

17.
Primordial germ cell (PGC) development in Xenopus embryos relies on localised maternal determinants. We report on the identification and functional characterisation of such one novel activity, a germ plasm associated mRNA encoding for the Xenopus version of a kinesin termed KIF13B. Modulations of xKIF13B function result in germ cell mismigration and in reduced numbers of such cells. PGCs explanted from Xenopus embryos form bleb-like protrusions enriched in PIP3. Knockdown of xKIF13B results in inhibition of blebbing and PIP3 accumulation. Interference with PIP3 synthesis leads to PGC mismigration in vivo and in vitro. We propose that xKIF13B function is linked to polarized accumulation of PIP3 and directional migration of the PGCs in Xenopus embryos.  相似文献   

18.
In many animals, the germ line is specified by a distinct cytoplasmic structure called germ plasm (GP). GP is necessary for primordial germ cell (PGC) formation in anuran amphibians including Xenopus. However, it is unclear whether GP is a direct germ cell determinant in vertebrates. Here we demonstrate that GP acts autonomously for germ cell formation in Xenopus.EGFP-labeled GP from the vegetal pole was transplanted into animal hemisphere of recipient embryos. Cells carrying transplanted GP (T-GP) at the ectopic position showed characteristics similar to the endogenous normal PGCs in subcellular distribution of GP and presence of germ plasm specific molecules. However, T-GP-carrying-cells in the ectopic tissue did not migrate towards the genital ridge. T-GP-carrying cells from gastrula or tailbud embryos were transferred into the endoderm of wild-type hosts. From there, they migrated into the developing gonad. To clarify whether ectopic T-GP-carrying cells can produce functional germ cells, they were identified by changing the recipients, from the wild-type Xenopus to transgenic Xenopus expressing DsRed2. After transferring T-GP carrying cells labeled genetically with DsRed2 into wild-type hosts, we could find chimeric gonads in mature hosts. Furthermore, the spermatozoa and eggs derived from T-GP-carrying cells were fertile. Thus, we have demonstrated that Xenopus germ plasm is sufficient for germ cell determination.  相似文献   

19.
20.
Guidance of primordial germ cell migration   总被引:4,自引:0,他引:4  
Primordial germ cells (PGCs), the progenitors of the gametes, migrate from the position where they are specified towards the region where the gonad develops. To reach their target, the PGCs obtain directional cues from cells positioned along their migration path. One such cue, the chemokine SDF-1, has recently been found to be critical for proper PGC migration in zebrafish and in mice. In Drosophila, too, a molecule that is structurally related to chemokine receptors and is important for PGC migration has been identified. The ability to visualize chemokine-guided migration at a high resolution in vivo in these model organisms provides a unique opportunity to study this process, which is relevant for many events in normal development and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号