首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Altered energy metabolism is characteristic of many neurodegenerative disorders. Reductions in the key mitochondrial enzyme complex, the alpha-ketoglutarate dehydrogenase complex (KGDHC), occur in a number of neurodegenerative disorders including Alzheimer's Disease (AD). The reductions in KGDHC activity may be responsible for the decreases in brain metabolism, which occur in these disorders. KGDHC can be inactivated by several mechanisms, including the actions of free radicals (Reactive Oxygen Species, ROS). Other studies have associated specific forms of one of the genes encoding KGDHC (namely the DLST gene) with AD, Parkinson's disease, as well as other neurodegenerative diseases. Reductions in KGDHC activity can be plausibly linked to several aspects of brain dysfunction and neuropathology in a number of neurodegenerative diseases. Further studies are needed to assess mechanisms underlying the sensitivity of KGDHC to oxidative stress and the relation of KGDHC deficiency to selective vulnerability in neurodegenerative diseases.  相似文献   

2.
Altered energy metabolism, including reductions in activities of the key mitochondrial enzymes alpha-ketoglutarate dehydrogenase complex (KGDHC) and pyruvate dehydrogenase complex (PDHC), are characteristic of many neurodegenerative disorders including Alzheimer's Disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Dihydrolipoamide dehydrogenase is a critical subunit of KGDHC and PDHC. We tested whether mice that are deficient in dihydrolipoamide dehydrogenase (Dld+/-) show increased vulnerability to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), malonate and 3-nitropropionic acid (3-NP), which have been proposed for use in models of PD and HD. Administration of MPTP resulted in significantly greater depletion of tyrosine hydroxylase-positive neurons in the substantia nigra of Dld+/- mice than that seen in wild-type littermate controls. Striatal lesion volumes produced by malonate and 3-NP were significantly increased in Dld+/- mice. Studies of isolated brain mitochondria treated with 3-NP showed that both succinate-supported respiration and membrane potential were suppressed to a greater extent in Dld+/- mice. KGDHC activity was also found to be reduced in putamen from patients with HD. These findings provide further evidence that mitochondrial defects may contribute to the pathogenesis of neurodegenerative diseases.  相似文献   

3.
Damage from oxidative stress and mitochondrial dysfunction occur together in many common neurodegenerative diseases. The enzymes that form the mitochondrial alpha-ketoglutarate- dehydrogenase complex (KGDHC), a key and arguably rate-limiting enzyme system of the tricarboxylic acid cycle, might mediate the interaction of these processes. KGDHC activity is reduced in numerous age-related neurodegenerative diseases and is diminished by oxidative stress. In Alzheimer's disease (AD), the reduction correlates highly to diminished mental performance. Thus, research has focused on the mechanisms by which select oxidants reduce KGDHC and the consequences of such a reduction. Diminished KGDHC in cells is associated with apoptosis without changes in the mitochondrial membrane potential. Studies of isolated mitochondria and of animal models suggest that a reduction in KGDHC can predispose to damage by other toxins that promote neurodegeneration. Diminished oxidative metabolism can be plausibly linked to pathological features of neurodegenerative diseases (e.g., reduced mental function, the plaques and tangles in AD). Thus, reductions in KGDHC might be central to the pathophysiology of these diseases. Studies of proteins, cells, animal models, and humans suggest that treatments to diminish, or bypass, the reduction in KGDHC might be beneficial in age-related neurodegenerative disorders.  相似文献   

4.
Reduced brain metabolism is an invariant feature of Alzheimer Disease (AD) that is highly correlated to the decline in brain functions. Decreased activities of key tricarboxylic acid cycle (TCA) cycle enzymes may underlie this abnormality and are highly correlated to the clinical state of the patient. The activity of the α-ketoglutarate dehydrogenase complex (KGDHC), an arguably rate-limiting enzyme of the TCA cycle, declines with AD, but the mechanism of inactivation and whether it can be reversed remains unknown. KGDHC consists of multiple copies of three subunits. KGDHC is sensitive to oxidative stress, which is pervasive in AD brain. The present studies tested the mechanism for the peroxynitrite-induced inactivation and subsequent reactivation of purified and cellular KGDHC. Peroxynitrite inhibited purified KGDHC activity in a dose-dependent manner and reduced subunit immunoreactivity and increased nitrotyrosine immunoreactivity. Nano-LC-MS/MS showed that the inactivation was related to nitration of specific tyrosine residues in the three subunits. GSH diminished the nitrotyrosine immunoreactivity of peroxynitrite-treated KGDHC, restored the activity and the immunoreactivity for KGDHC. Nano-LC-MS/MS showed this was related to de-nitration of specific tyrosine residues, suggesting KGDHC may have a denitrase activity. Treatment of N2a cells with peroxynitrite for 5 min followed by recovery of cells for 24 h reduced KGDHC activity and increased nitrotyrosine immunoreactivity. Increasing cellular GSH in peroxynitrite-treated cells rescued KGDHC activity to the control level. The results suggest that restoring KGDHC activity is possible and may be a useful therapeutic approach in neurodegenerative diseases.  相似文献   

5.
AimsAlthough iron overload induces oxidative stress and brain mitochondrial dysfunction, and is associated with neurodegenerative diseases, brain mitochondrial iron uptake has not been investigated. We determined the role of mitochondrial calcium uniporter (MCU) in brain mitochondria as a major route for iron entry. We hypothesized that iron overload causes brain mitochondrial dysfunction, and that the MCU blocker prevents iron entry into mitochondria, thus attenuating mitochondrial dysfunction.Main methodsIsolated brain mitochondria from male Wistar rats were used. Iron (Fe2 + and Fe3 +) at 0–286 μM were applied onto mitochondria at various incubation times (5–30 min), and the mitochondrial function was determined. Effects of MCU blocker (Ru-360) and iron chelator were studied.Key findingsBoth Fe2 + and Fe3 + entered brain mitochondria and caused mitochondrial swelling in a dose- and time-dependent manner, and caused mitochondrial depolarization and increased ROS production. However, Fe2 + caused more severe mitochondrial dysfunction than Fe3 +. Although all drugs attenuated mitochondrial dysfunction caused by iron overload, only an MCU blocker could completely prevent ROS production and mitochondrial depolarization.SignificanceOur findings indicated that iron overload caused brain mitochondrial dysfunction, and that an MCU blocker effectively prevented this impairment, suggesting that MCU could be the major portal for brain mitochondrial iron uptake.  相似文献   

6.
Alzheimer's disease (AD) is an amyloid-related neurodegenerative disorder and is also considered to be a metabolic disease. Thus, investigation of metabolic mechanisms of amyloid pathology progression is of substantial importance for the diagnosis, prevention and treatment of AD. In the present study, cognitive function and brain metabolism were explored in the transgenic APP/PS1 mouse model of amyloid pathology at different ages. Using an NMR-based metabolomic approach, we examined metabolic changes in six different brain regions of wild-type and APP/PS1 mice at 1, 5 and 10 months of age. Learning and memory performance in mice was evaluated using the Morris water maze test. Furthermore, a generalized linear mixed model was employed to analyze the interaction effect between the mouse-type and brain region (or age) on metabolic alterations. Brain region-specific changes in energy metabolism occurred prior to a very early-stage of amyloid pathology (1 month of age) in APP/PS1 mice. A hypermetabolic state was identified in the brains of APP/PS1 mice at 5 months of age, and the hypothalamus was identified as the main brain region that underwent significant metabolic alterations. The cognitive function of APP/PS1 mice was impaired at 10 months of age; moreover, the hypermetabolic state identified in various brain regions at 5 months of age was also significantly decreased. In conclusion, our results suggest that a hypothalamic metabolism abnormality may comprise a potential indicator for the early-diagnosis and monitoring of amyloid pathology progression.  相似文献   

7.
The preconditioning response conferred by a mild uncoupling of the mitochondrial membrane potential (Δψm) has been attributed to altered reactive oxygen species (ROS) production and mitochondrial Ca2 + uptake within the cells. Here we have explored if altered cellular energetics in response to a mild mitochondrial uncoupling stimulus may also contribute to the protection. The addition of 100 nM FCCP for 30 min to cerebellar granule neurons (CGNs) induced a transient depolarization of the Δψm, that was sufficient to significantly reduce CGN vulnerability to the excitotoxic stimulus, glutamate. On investigation, the mild mitochondrial ‘uncoupling’ stimulus resulted in a significant increase in the plasma membrane levels of the glucose transporter isoform 3, with a hyperpolarisation of Δψm and increased cellular ATP levels also evident following the washout of FCCP. Furthermore, the phosphorylation state of AMP-activated protein kinase (AMPK) (Thr 172) was increased within 5 min of the uncoupling stimulus and elevated up to 1 h after washout. Significantly, the physiological changes and protection evident after the mild uncoupling stimulus were lost in CGNs when AMPK activity was inhibited. This study identifies an additional mechanism through which protection is mediated upon mild mitochondrial uncoupling: it implicates increased AMPK signalling and an adaptive shift in energy metabolism as mediators of the preconditioning response associated with FCCP-induced mild mitochondrial uncoupling.  相似文献   

8.
Considerable evidence indicates that oxidative stress accompanies age-related neurodegenerative diseases. Specific mechanisms by which oxidative stress leads to neurodegeneration are unknown. Two targets of oxidative stress that are known to change in neurodegenerative diseases are the mitochondrial enzyme alpha-ketoglutarate dehydrogenase complex (KGDHC) and endoplasmic reticulum calcium stores. KGDHC activities are diminished in all common neurodegenerative diseases and the changes are particularly well documented in Alzheimer's disease (AD). A second change that occurs in cells from AD patients is an exaggerated endoplasmic reticulum calcium store [i.e., bombesin-releasable calcium stores (BRCS)]. H(2)O(2), a general oxidant, changes both variables in the same direction as occurs in disease. Other oxidants selectively alter these variables. Various antioxidants were used to help define the critical oxidant species that modifies these responses. All of the antioxidants diminish the oxidant-induced carboxy-dichlorofluorescein (cDCF) detectable reactive oxygen species (ROS), but have diverse actions on these cellular processes. For example, alpha-keto-beta-methyl-n-valeric acid (KMV) diminishes the H(2)O(2) effects on BRCS, while trolox and DMSO exaggerate the response. Acute trolox treatment does not alter H(2)O(2)-induced changes in KGDHC, whereas chronic treatment with trolox increases KGDHC almost threefold. The results suggest that KGDHC and BRCS provide targets by which oxidative stress may induce neurodegeneration and a useful tool for selecting antioxidants for reversing age-related neurodegeneration.  相似文献   

9.
Aloe-emodin (AE) is one of the most important active components of Rheum officinale Baill. The present study aimed to investigate that AE could attenuate scopolamine-induced cognitive deficits via inhibiting acetylcholinesterase (AChE) activity and modulating oxidative stress. Kunming (KM) mice were received intraperitoneal injection of scopolamine (2 mg/kg) to induce cognitive impairment. Learning and memory performance were assessed in the Morris water maze (MWM). After behavioral testing, the mice were sacrificed and their hippocampi were removed for biochemical assays (superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), AChE and acetylcholine (ACh)). In vitro, we also performed the AChE activity assay and H2O2-induced PC12 cells toxicity assay. After 2 h exposure to 200 μM H2O2 in PC12 cells, the cytotoxicity were evaluated by cell viability (MTT), nitric oxide (NO)/lactate dehydrogenase (LDH) release and intracellular reactive oxygen species (ROS) production. Our results confirmed that AE showed significant improvement in cognitive deficit in scopolamine-induced amnesia animal model. Besides, it increased SOD, GPx activities and ACh content, while decreased the level of MDA and AChE activity in AE treated mice. In addition, AE was found to inhibit AChE activity (IC50 = 18.37 μg/ml) in a dose-dependent manner. Furthermore, preincubation of PC12 cells with AE could prevent cytotoxicity induced by H2O2 and reduce significantly extracellular release of NO, LDH and intracellular accumulation of ROS. The study indicated that AE could have neuroprotective effects against Alzheimer’s disease (AD) via inhibiting the activity of AChE and modulating oxidative stress.  相似文献   

10.
神经退化性疾病生物能量代谢和氧化应激研究进展   总被引:7,自引:0,他引:7  
衰老是导致几种常见的神经系统退化性疾病的主要危险因素,包括帕金森氏病(Parkinson’s disease PD),肌萎缩性侧索硬化(Amyotrophic lateral sclerosis,ALS),早老性痴呆(Alzheimer’s disease AD)和亨廷顿氏病(Huntington’s disease HD)。最近研究表明,神经退化性疾病涉及到线粒体缺陷,氧化应激等因素。在脑和其它组织中,老化可导致线粒体功能的损伤和氧化损伤的增强。PD病人中,已发现线粒体复合酶体Ⅰ活性降低,氧化损伤增加和抗氧化系统活性的改变。在几例家族性ALS病人中,也发现Cu、Zn超氧化物歧化酶(Cu,Zn SOD)基因的突变,导致Cu、Zn超氧化物歧化酶活性减低;散发的ALS病人氧化损伤增高。在HD病人中已发现能量代谢异常  相似文献   

11.
Abstract alpha-Ketoglutarate dehydrogenase (KGDHC) complex activity is diminished in a number of neurodegenerative disorders and its diminution in Alzheimer Disease (AD) is thought to contribute to the major loss of cerebral energy metabolism that accompanies this disease. The loss of KGDHC activity appears to be predominantly due to post-translation modifications. Thiamine deficiency also results in decreased KGDHC activity and a selective neuronal loss. Recently, myeloperoxidase has been identified in the activated microglia of brains from AD patients and thiamine-deficient animals. Myeloperoxidase produces a powerful oxidant, hypochlorous acid that reacts with amines to form chloramines. The aim of this study was to investigate the ability of hypochlorous acid and chloramines to inhibit the activity of KGDHC activity as a first step towards investigating the role of myeloperoxidase in AD. Hypochlorous acid and mono-N-chloramine both inhibited purified and cellular KGDHC and the order of inhibition of the purified complex was hypochlorous acid (1x) > mono-N-chloramine (approximately 50x) > hydrogen peroxide (approximately 1,500). The inhibition of cellular KGDHC occurred with no significant loss of cellular viability at all exposure times that were examined. Thus, hypochlorous acid and chloramines have the potential to inactivate a major target in neurodegeneration.  相似文献   

12.
Fibroblasts from patients with genetic and non-genetic forms of Alzheimer's disease (AD) show many abnormalities including increased bombesin-releasable calcium stores (BRCS), diminished activities of the mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC), and an altered ability to handle oxidative stress. The link between genetic mutations (and the unknown primary event in non-genetic forms) and these other cellular abnormalities is unknown. To determine whether oxidative stress could be a convergence point that produces the other AD-related changes, these experiments tested in fibroblasts the effects of H(2)O(2), in the presence or absence of select antioxidants, on BRCS and KGDHC. H(2)O(2) concentrations that elevated carboxy-dichlorofluorescein (c-H(2)DCF)-detectable ROS increased BRCS and decreased KGDHC activity. These changes are in the same direction as those in fibroblasts from AD patients. Acute treatments with the antioxidants Trolox, or DMSO decreased c-H(2)DCF-detectable ROS by about 90%, but exaggerated the H(2)O(2)-induced increases in BRCS by about 4-fold and did not alter the reduction in KGDHC. Chronic pretreatments with Trolox more than doubled the BRCS, tripled KGDHC activities, and reduced the effects of H(2)O(2). Pretreatment with DMSO or N-acetyl cysteine diminished the BRCS and either had no effect, or exaggerated the H(2)O(2)-induced changes in these variables. The results demonstrate that BRCS and KGDHC are more sensitive to H(2)O(2) derived species than c-H(2)DCF, and that oxidized derivatives of the antioxidants exaggerate the actions of H(2)O(2). The findings support the hypothesis that select abnormalities in oxidative processes are a critical part of a cascade that leads to the cellular abnormalities in cells from AD patients.  相似文献   

13.
Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Epidemiological data show that the incidence of AD increases with age and doubles every 5 years after 65 years of age. From a neuropathological point of view, amyloid-β-peptide (Aβ) leads to senile plaques, which, together with hyperphosphorylated tau-based neurofibrillary tangles and synapse loss, are the principal pathological hallmarks of AD. Aβ is associated with the formation of reactive oxygen (ROS) and nitrogen (RNS) species, and induces calcium-dependent excitotoxicity, impairment of cellular respiration, and alteration of synaptic functions associated with learning and memory. Oxidative stress was found to be associated with type 2 diabetes mellitus (T2DM), which (i) represents another prevalent disease associated with obesity and often aging, and (ii) is considered to be a risk factor for AD development. T2DM is characterized by high blood glucose levels resulting from increased hepatic glucose production, impaired insulin production and peripheral insulin resistance, which close resemble to the brain insulin resistance observed in AD patients. Furthermore, growing evidence suggests that oxidative stress plays a pivotal role in the development of insulin resistance and vice versa. This review article provides molecular aspects and the pharmacological approaches from both preclinical and clinical data interpreted from the point of view of oxidative stress with the aim of highlighting progresses in this field.  相似文献   

14.
According to the free radical theory, aging can be considered as a progressive, inevitable process partially related to the accumulation of oxidative damage into biomolecules -- nucleic acids, lipids, proteins or carbohydrates -- due to an imbalance between prooxidants and antioxidants in favor of the former. More recently also the pathogenesis of several diseases has been linked to a condition of oxidative stress. In this review we focus our attention on the evidence of oxidative stress in aging brain, some of the most important neurodegenerative diseases -- Alzheimer's disease (AD), mild cognitive impairment (MCI), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) -- and in two common and highly disabling vascular pathologies--stroke and cardiac failure. Particular attention will be given to the current knowledge about the biomarkers of oxidative stress that can be possibly used to monitor their severity and outcome.  相似文献   

15.
AimsThe aim of the present study is to investigate the effect of curcumin on cerebral blood flow (CBF), memory impairment, oxidative stress and cholinergic dysfunction in intracerebral (IC) streptozotocin (STZ) induced memory impairment in mice.Main methodsMemory impairment was induced by STZ (0.5 mg/kg, IC) administered twice with an interval of 48 h in mice. Memory function was assessed by Morris water maze and passive avoidance test. CBF was measured by Laser Doppler Flowmetry (LDF). To study the preventive effect, curcumin (10, 20 and 50 mg/kg, PO) was administered for 21 days starting from the first dose of STZ. In another set of experiment, curcumin was administered for 7 days from 19th day after confirming STZ induced dementia to observe its therapeutic effect. Biochemical parameters of oxidative stress and cholinergic function were estimated in brain on day 21.Key findingsThe major finding of this study is that STZ (IC) caused a significant reduction in CBF along with memory impairment, cholinergic dysfunction and enhanced oxidative stress. Curcumin dose dependently improved CBF in STZ treated mice together with amelioration of memory impairment both in preventive and therapeutic manner.SignificanceThe present study clearly demonstrates the beneficial effects of curcumin, the dietary staple of India, on CBF, memory and oxidative stress which can be exploited for dementia associated with age related vascular and neurodegenerative disorders.  相似文献   

16.
17.
Labneh (a concentrated type of Mediterranean-Middle-East yogurt) was prepared by inoculating goat's milk with/without transglutaminase (TGase, at ranges of 0–4 units/g protein), followed by heat inactivation. Application of TGase did not change the chemical composition of the product. However, TGase treatment at rate of 2–4 U/g protein increased the firmness of the labneh samples by 14–15 folds, compared to the untreated sample. Scanning electron microscopy pictures revealed that the protein matrices in labneh from TGase treated samples appeared to be relatively more compact than the control. SDS-PAGE scans show crosslinking of proteins in labneh samples treated with TGase, and conversely, the bands corresponding to casein fractions became less intense as the concentration of TGase increased. Scores of firmness by sensory evaluation indicated that TGase treated samples at 2 U/g had a value of 27.4 compared to 12.5 in non-treated samples.  相似文献   

18.
Abstract: Mitochondrial dysfunction is a common feature of many neurodegenerative disorders. The metabolic encephalopathy caused by thiamine deficiency (TD) is a classic example in which an impairment of cerebral oxidative metabolism leads to selective cell death. In experimental TD in rodents, a reduction in the activity of the thiamine diphosphate-dependent, mitochondrial enzyme α-ketoglutarate dehydrogenase complex (KGDHC) occurs before the onset of pathologic lesions and is among the earliest biochemical deficits found. To understand the molecular basis and the significance of the deficiency of KGDHC in TD-induced brain damage, the enzyme activity and protein levels of KGDHC were analyzed. The effect of TD on the subregional/cellular distribution of KGDHC and the anatomic relation of KGDHC with selective cell death were also tested by immunocytochemistry. Consistent with several previous studies, TD dramatically reduced KGDHC activity in both anatomically damaged (thalamus and inferior colliculus) and spared (cerebral cortex) regions. Immunocytochemistry revealed no apparent correlation of regional KGDHC immunoreactivity or its response to TD with affected regions in TD. The basis of the enzymatic and immunocytochemical behavior of KGDHC was further assessed by quantitative immunoblots, using antibodies specific for each of the three KGDHC components. Despite the marked decrease of KGDHC activity in TD, no reduction of any of the three KGDHC protein levels was found. Thus, TD impairs the efficacy of the KGDHC catalytic machinery, whereas the concentration of protein molecules persists. The generalized decline of KGDHC activity with no apparent anatomic selectivity is consistent with the notion that the compromised mitochondrial oxidation sensitizes the brain cells to various other insults that precipitate the cell death. The current TD model provides a relevant experimental system to understand the molecular basis of many neurodegenerative conditions in which mitochondrial dysfunction and KGDHC deficiency are prominent features.  相似文献   

19.
The present study aimed to investigate in Hoplosternum littorale (Hancock, 1828) the effects of different water temperatures (10 °C, 25 °C-control group- and 33 °C) on physiologic and metabolic traits following acute (1 day) and chronic (21 days) exposures. We analyzed several biomarker responses in order to achieve a comprehensive survey of fish physiology and metabolism under the effect of this natural stressor. We measured morphological indices, biochemical and hematological parameters as well as oxidative stress markers. To evaluate energy consumption, muscle and hepatic total lipid, protein and glycogen concentrations were also quantified. Extreme temperatures exposures clearly resulted in metabolic adjustments, being liver energy reserves and plasma metabolites the most sensitive parameters detecting those changes. We observed reduced hepatosomatic index after acute and chronic exposure to 33 °C while glycogen levels decreased at both temperatures and time of exposure tested. Additionally, acute and chronic exposures to 10 °C increased liver lipid content and plasma triglycerides. Total protein concentration was higher in liver and lower in plasma after chronic exposures to 10 °C and 33 °C. Acute exposition at both temperatures caused significant changes in antioxidant enzymes tested in the different tissues without oxidative damage to lipids. Antioxidant defenses in fish failed to protect them when they were exposed for 21 days to 10 °C, promoting higher lipid peroxidation in liver, kidney and gills. According to multivariate analysis, oxidative stress and metabolic biomarkers clearly differentiated fish exposed chronically to 10 °C. Taken together, these results demonstrated that cold exposure was more stressful for H. littorale than heat stress. However, this species could cope with variations in temperature, allowing physiological processes and biochemical reactions to proceed efficiently at different temperatures and times of exposure. Our study showed the ability of H. littorale to resist a wide range of environmental temperatures and contributes for the understanding of how this species is adapted to environments with highly variable physicochemical conditions.  相似文献   

20.
Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction   总被引:1,自引:0,他引:1  
Oxidative stress is one of the earliest events in Alzheimer's disease (AD). A chemical genetic screen revealed that deregulated cyclin-dependent kinase 5 (Cdk5) may cause oxidative stress by compromising the cellular anti-oxidant defense system. Using novel Cdk5 modulators, we show the mechanism by which Cdk5 can induce oxidative stress in the disease's early stage and cell death in the late stage. Cdk5 dysregulation upon neurotoxic insults results in reactive oxygen species (ROS) accumulation in neuronal cells because of the inactivation of peroxiredoxin I and II. Sole temporal activation of Cdk5 also increases ROS, suggesting its major role in this process. Cdk5 inhibition rescues mitochondrial damage upon neurotoxic insults, thereby revealing Cdk5 as an upstream regulator of mitochondrial dysfunction. As mitochondrial damage results in elevated ROS and Ca(2+) levels, both of which activate Cdk5, we propose that a feedback loop occurs in late stage of AD and leads to cell death (active Cdk5 --> ROS --> excess ROS --> mitochondrial damage --> ROS --> hyperactive Cdk5 --> severe oxidative stress and cell injury --> cell death). Cdk5 inhibition upon neurotoxic insult prevents cell death significantly, supporting this hypothesis. As oxidative stress and mitochondrial dysfunction play pivotal roles in promoting neurodegeneration, Cdk5 could be a viable therapeutic target for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号