首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work examines the inhibitory effect of TCEP on the in vitro fibrillation of hen lysozyme at pH 2. We demonstrate that the inhibition of hen lysozyme fibrillation by TCEP follows a dose-dependent manner. Our data show that the addition of TCEP prevents α-to-β transition and promoted unfolding of lysozyme. Moreover, our findings suggested that the TCEP-induced attenuated fibrillation is associated with disulfide disruption and structural unfolding of HEWL.  相似文献   

2.
In the current study both structural alteration and fibrillation of insulin were studied in the presence of homocysteine thiolactone (HCTL). The spectroscopic studies revealed that HCTL increases rate of insulin unfolding, giving rise to the appearance of solvent-exposed hydrophobic regions and induces a transition from α-helix into predominantly β-sheet structures. Thioflavin-T fluorescence studies revealed that HCTL markedly enhanced the quantity of insulin fibril formation in both agitating and non-agitating systems. Also gel electrophoresis results suggest that HCTL accelerates the process of formation of high molecular weight insulin aggregates. Moreover, insulin fibrils obtained in the presence of HCTL and those collected earlier in the pathway of insulin fibrillation displayed improved cytotoxicity against cancer cells. The enhancement of insulin fibril formation with elevated cytotoxic properties as occurred in the presence of HCTL, may suggest this homocysteine derivative as a possible contributing factor in the pathology of insulin fibrils.  相似文献   

3.
The peptide surfactants are amphiphilic peptides which have a hydrophobic tail and a hydrophilic head, and have been reported to stabilize and protect some membrane proteins more effectively than conventional surfactants. The effects of a class of peptide surfactants on the structure and thermal stability of the photosynthetic membrane protein lightharvesting complex II (LHCII) in aqueous media have been investigated. After treatment with the cationic peptide surfactants A6K, V6K2, I5K2 and I5R2, the absorption at 436 nm and 470 nm decreased and the absorption at 500–510 nm and 684–690 nm increased. Moreover, the circular dichroism (CD) signal intensity in the Soret region also decreased significantly, indicating the conformation of some chlorophyll (Chl) a, Chl b, and the xanthophyll molecules distorted upon cationic peptide surfactants treatment. The anionic peptide surfactants A6D and V6D2 had no obvious effect on the absorption and CD spectra. Except for A6D, these peptides all decreased the thermal stability of LHCII, indicating that these peptides may reconstitute protein into a less stable conformation. In addition, the cationic peptide surfactants resulted in LHCII aggregation, as shown by sucrose gradient ultracentrifugation and fluorescence spectra.  相似文献   

4.
Fibrillar deposits of insulin cause serious problems in implantable insulin pumps, commercial production of insulin, and for some diabetics. We performed a systematic investigation of the effect of urea-induced structural perturbations on the mechanism of fibrillation of insulin. The addition of as little as 0.5 m urea to zinc-bound hexameric insulin led to dissociation into dimers. Moderate concentrations of urea led to accumulation of a partially unfolded dimer state, which dissociates into an expanded, partially folded monomeric state. Very high concentrations of urea resulted in an unfolded monomer with some residual structure. The addition of even very low concentrations of urea resulted in increased fibrillation. Accelerated fibrillation correlated with population of the partially folded intermediates, which existed at up to 8 m urea, accounting for the formation of substantial amounts of fibrils under such conditions. Under monomeric conditions the addition of low concentrations of urea slowed down the rate of fibrillation, e.g. 5-fold at 0.75 m urea. The decreased fibrillation of the monomer was due to an induced non-native conformation with significantly increased alpha-helical content compared with the native conformation. The data indicate a close-knit relationship between insulin conformation and propensity to fibrillate. The correlation between fibrillation and the partially unfolded monomer indicates that the latter is a critical amyloidogenic intermediate in insulin fibrillation.  相似文献   

5.
The activity in vitro of four types of colicins (A, E1, E3, U) against one human standard fibroblast line and against 11 human tumor-cell lines carrying defined mutations of the p53 gene was quantified by MTT (tetrazolium bromide) assay. Flow cytometry showed that the pore-forming colicins A, E1 and U affected the cell cycle of 5 of these cell lines. Colicins E3 and U did not show any distinct inhibitory effects on the cell lines, while colicins E1 and especially A inhibited the growth of all of them (with one exception concerning colicin E1). Colicin E1 inhibited the growth of the tumor lines by 17-40% and standard fibroblasts MRC5 by 11%. Colicin A exhibited a differentiated 16-56% inhibition, the growth of standard fibroblasts being inhibited by 36%. In three of the lines, colicins A and E1 increased the number of cells in the G1 phase (by 12-58%) and in apoptosis (by 7-58%). These results correlated with the data from sensitivity assays. Hence, the inhibitory effect of colicins on eukaryotic cells in cell-selective, colicin-specific and can be considered to be cytotoxic.  相似文献   

6.
Beta-amyloid peptide (A beta) is the major proteinacious constituent of senile plaques in Alzheimer's disease and is believed to be responsible for the neurodegeneration process associated with the disease. While the actual size of the aggregated species responsible for A beta neurotoxicity and fibrillogenesis mechanism(s) remain unknown, retardation of A beta aggregation still holds assurance as an effective strategy in reducing A beta-elicited toxicity. The research presented here is aimed at examining the inhibitory effect of two amphiphilic surfactants, di-C6-PC and di-C7-PC, on the in vitro fibrillogenesis process of A beta(1--40) peptides at physiological pH (pH 7.2). Using ThT-induced fluorescence, turbidity, Congo red binding, and circular dichroism spectroscopy studies, our research demonstrated that the inhibition of A beta(1--40) fibril formation was di-C6-PC and di-C7-PC concentration-dependent. The best inhibitory action on fibril formation was observed when A beta was incubated with di-C7-PC at 100 microM over time. We believe that the outcome from this work will aid in the development and/or design of potential inhibitory agents against amyloid formation associated with Alzheimer's and other amyloid diseases.  相似文献   

7.
Blot V  McGraw TE 《The EMBO journal》2006,25(24):5648-5658
Insulin slows GLUT4 internalization by an unknown mechanism. Here we show that in unstimulated adipocytes, GLUT4 is internalized by two mechanisms. Approximately 80% of GLUT4 is internalized by a mechanism that is sensitive to the cholesterol-aggregating drug nystatin, and is independent of AP-2 clathrin adaptor and two putative GLUT4 endocytic motifs. The remaining GLUT4 is internalized by an AP-2-dependent, nystatin-resistant pathway that requires the FQQI GLUT4 motif. Insulin inhibits GLUT4 uptake by the nystatin-sensitive pathway and, consequently, GLUT4 is internalized by the AP-2-dependent pathway in stimulated adipocytes. The phenylalanine-based FQQI GLUT4 motif promotes AP-2-dependent internalization less rapidly than a tyrosine-based motif, the classic form of aromatic-based motifs. Thus, both a change in the predominant endocytosis pathway and the specific use of a suboptimal internalization motif contribute to the slowing of GLUT4 internalization in insulin-stimulated adipocytes. Insulin also inhibits the uptake of cholera-toxin B, indicating that insulin broadly regulates cholesterol-dependent uptake mechanisms rather than specially targeting GLUT4. Our work thus identifies cholesterol-dependent uptake as a novel target of insulin action in adipocytes.  相似文献   

8.
9.
Leptin regulates food intake as well as metabolic, endocrine, and immune functions. It exerts proliferative and antiapoptotic activities in a variety of cell types, including T cells. Leptin also stimulates macrophages and neutrophils, and its production is increased during inflammation. In this study, we demonstrate that human neutrophils express leptin surface receptors under in vitro and in vivo conditions, and that leptin delays apoptosis of mature neutrophils in vitro. The antiapoptotic effects of leptin were concentration dependent and blocked by an anti-leptin receptor mAb. The efficacy of leptin to block neutrophil apoptosis was similar to G-CSF. Using pharmacological inhibitors, we obtained evidence that leptin initiates a signaling cascade involving PI3K- and MAPK-dependent pathways in neutrophils. Moreover, leptin delayed the cleavage of Bid and Bax, the mitochondrial release of cytochrome c and second mitochondria-derived activator of caspase, as well as the activation of both caspase-8 and caspase-3 in these cells. Taken together, leptin is a survival cytokine for human neutrophils, a finding with potential pathologic relevance in inflammatory diseases.  相似文献   

10.
Lipolysis induced by alloxan in rat adipocytes is not inhibited by insulin.   总被引:1,自引:0,他引:1  
Isolated rat adipocytes were incubated with adrenaline, adrenaline plus insulin, alloxan or alloxan plus insulin. Glycerol release was taken as a measure of lipolysis. It was observed that alloxan in the concentration of 3, 10 and 20 mmol/l intensifies lipolysis in adipocytes in the absence of adrenaline. Insulin (10(-6) mol/l) treatment of cells did not inhibit lipolysis caused by this compound, but significantly restricted lipolysis induced by adrenaline (10(-6) mol/l). It was also shown that alloxan in the concentration of 3 and 10 mmol/l intensified lipolysis stimulated by adrenaline (10(-6) mol/l). Addition of 20 mmol/l of alloxan strongly inhibited glycerol release in the presence of adrenaline. The results presented here clearly indicate that the action of alloxan concerns cells of the white adipose tissue.  相似文献   

11.
The capacity of mesenchymal stem cells (MSCs) to survive and engraft in the target tissue may lead to promising therapeutic effects. However, the fact that the majority of MSCs die during the first few days following transplantation complicates cell therapy. Hence, it is necessary to strengthen the stem cells to withstand the rigors of the microenvironment to improve the efficacy of cell therapy. In this study, we manipulated MSCs to express a cytoprotective factor, heme oxygenase-1 (HO-1), to address this issue. Full-length cDNA of human HO-1 was isolated and cloned into TOPO vector by TOPO cloning reaction. Then, the construct was ligated to gateway adapted adenovirus expression vector by LR recombination reaction. Afterwards, the recombinant virus expressing HO-1 was produced in appropriate mammalian cell line and used to infect MSCs. The HO-1 engineered MSCs were exposed to hypoxic and oxidative stress conditions followed by evaluation of the cells’ viability and apoptosis. Transient expression of HO-1 was detected within MSCs. It was observed that HO-1 expression could protect MSCs against cell death and the apoptosis triggered by hypoxic and oxidative stress conditions. The MSCs-HO-1 retained their ability to differentiate into adipogenic, chondrogenic, or osteogenic lineages. These findings could be applied as a strategy for prevention of graft cell death in MSCs-based cell therapy and is a good demonstration of how an understanding of cellular stress responses can be used for practical applications.  相似文献   

12.
2-Oxoglutarate oxygenases are inhibited by a range of transition metals, as exemplified by studies on human histone demethylases and prolyl hydroxylase domain 2 (PHD2 or EGLN1). The biological effects associated with 2-oxoglutarate oxygenase inhibition may result from inhibition of more than one enzyme and by mechanisms in addition to simple competition with the Fe(ii) cofactor.  相似文献   

13.
14.
Cathepsin S has been isolated for the first time from human tissue. It has a molecular mass of 24 kDa and an isoelectric point in the range of 8.2 to 8.6. The enzyme is inhibited by equistatin, which belongs to the thyropins, a new family of protein inhibitors, with an inhibition constant of Ki = 0.40 +/- 0.07 nM. Cruzipain, a cathepsin L-like enzyme sharing a 130 amino acid long C-terminal extension, is also strongly inhibited by equistatin (Ki = 0.028 +/- 0.006 nM). Together with previously reported data, these results further indicate that a functional heterogeneity exists among thyropin inhibitors, as demonstrated by their interaction with cathepsin S and cruzipain.  相似文献   

15.
Interfacial properties of octadienyl pentosides prepared by the palladium-catalyzed telomerization of butadiene with free pentoses have been evaluated and compared to those of mixtures issued from the autoclaving process.  相似文献   

16.
Studies show that uptake of long-chain fatty acids (LCFA) across the plasma membranes (PM) may occur partly via a carrier-mediated process and that the plasma membrane fatty acid-binding protein (FABPPM) may be a component of this system. To test the hypothesis that FABPPM is involved in transsarcolemmal transport of LCFA in muscle, we measured palmitate uptake in giant sarcolemmal vesicles and palmitate binding to PM proteins in rat muscles, (1) in the presence of increasing amounts of unbound palmitate and (2) in the absence or presence of antibody to FABPPM. Both palmitate uptake and binding were found to be saturable functions of the unbound palmitate concentration with calculated Vmax values of 10.5 ± 1.2 pmol/mg protein/15 sec and 45.6 ± 2.9 nmol/mg protein/15 min and Km values of 12.8 ± 3.8 and 18.4 ± 1.8 nmol/L, respectively. The Vmax values for both palmitate uptake and binding were significantly decreased by 75-79% in the presence of a polyclonal antibody to the rat hepatic FABPPM. Antibody inhibition was found to be dose-dependent and specific to LCFA. Glucose uptake was not affected by the presence of the antibody to FABPPM. Palmitate uptake and binding were also inhibited in the presence of trypsin and phloretin. These results support the hypothesis that transsarcolemmal LCFA transport occurs in part by a carrier-mediated process and that FABPPM is a component of this process in muscle.  相似文献   

17.
The amyloid precursor protein (APP) and its mammalian homologs, APLP1, APLP2, have been allocated to an organellar pool residing in the Golgi apparatus and in endosomal compartments, and in its mature form to a cell surface‐localized pool. In the brain, all APPs are restricted to neurons; however, their precise localization at the plasma membrane remained enigmatic. Employing a variety of subcellular fractionation steps, we isolated two synaptic vesicle (SV) pools from rat and mouse brain, a pool consisting of synaptic vesicles only and a pool comprising SV docked to the presynaptic plasma membrane. Immunopurification of these two pools using a monoclonal antibody directed against the 12 membrane span synaptic vesicle protein2 (SV2) demonstrated unambiguously that APP, APLP1 and APLP2 are constituents of the active zone of murine brain but essentially absent from free synaptic vesicles. The specificity of immunodetection was confirmed by analyzing the respective knock‐out animals. The fractionation experiments further revealed that APP is accumulated in the fraction containing docked synaptic vesicles. These data present novel insights into the subsynaptic localization of APPs and are a prerequisite for unraveling the physiological role of all mature APP proteins in synaptic physiology.

  相似文献   


18.
Insulin has a largely alpha-helical structure and exists as a mixture of hexameric, dimeric, and monomeric states in solution, depending on the conditions: the protein is monomeric in 20% acetic acid. Insulin forms amyloid-like fibrils under a variety of conditions, especially at low pH. In this study we investigated the fibrillation of monomeric human insulin by monitoring changes in CD, attenuated total reflectance-Fourier transform infrared spectroscopy, 8-anilinonaphthalenesulfonic acid fluorescence, thioflavin T fluorescence, dynamic light scattering, and H/D exchange during the initial stages of the fibrillation process to provide insight into early events involving the monomer. The results demonstrate the existence of structural changes occurring before the onset of fibril formation, which are detectable by multiple probes. The data indicate at least two major populations of oligomeric intermediates between the native monomer and fibrils. Both have significantly non-native conformations, and indicate that fibrillation occurs from a beta-rich structure significantly distinct from the native fold.  相似文献   

19.
The deposition of fibrillated human islet β-cell peptide islet amyloid polypeptide (hIAPP) into amyloid plaques is characteristic of the pathogenesis of islet cell death during type 2 diabetes. We investigated the effects of the neuroendocrine secretory proteins 7B2 and proSAAS on hIAPP fibrillation in vitro and on cytotoxicity. In vitro, 21-kDa 7B2 and proSAAS blocked hIAPP fibrillation. Structure–function studies showed that a central region within 21-kDa 7B2 is important in this effect and revealed the importance of the N-terminal region of proSAAS. Both chaperones blocked the cytotoxic effects of exogenous hIAPP on Rin5f cells; 7B2 generated by overexpression was also effective. ProSAAS and 7B2 may perform a chaperone role as secretory anti-aggregants in normal islet cell function and in type 2 diabetes.  相似文献   

20.
Heegaard PM  Pedersen HG  Flink J  Boas U 《FEBS letters》2004,577(1-2):127-133
The prion protein (PrP) peptide 106-126 forms amyloid aggregates in vitro and this sequence is speculated to be involved in the formation of amyloid fibrils by the abnormally folded PrP protein (PrPSc) found in spongiform encephalopathies. It is shown here by incubation experiments in water using Thioflavin T (ThT) as a fluorescent probe for amyloid formation that changes in C-terminal charge, oxidation state and conformational stabilisation lead to large changes in amyloid forming behaviour (amyloidogenicity) of this peptide. Amyloid formation is favoured by a charged C-terminus and is strongly inhibited by oxidation. Furthermore, cationic dendrimers are shown to perturb peptide fibrillation in a process dependent on the nature of the charged groups on the dendrimer surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号