首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One method for managing livestock-wastewater N is the use of treatment wetlands. The objectives of this study were to (1) assess the magnitude of denitrification enzyme activity (DEA) in the suspended sludge layers of bulrush and cattail treatment wetlands, and (2) evaluate the impact of nitrogen pretreatment on DEA in the suspended sludge layer. The study used four wetland cells (3.6 m × 33.5 m) with two cells connected in series. Each wetland series received either untreated or partially nitrified swine wastewater from a single-cell anaerobic lagoon. The DEA of the suspended sludge layers of the constructed wetlands was measured by the acetylene inhibition method. The control DEA treatment for the sludge layer had a mean rate of 18 μg N2O-N g?1 sludge h?1. Moreover, the potential DEA (nitrate-N and glucose-C added) mean was very large, 121 μg N2O-N g?1 sludge h?1. These DEA rates are consistent with the previously reported high levels of nitrogen removal by denitrification from these wetlands, especially when the wastewater was partially nitrified. Stepwise regression using distance within the wetland, wastewater nitrate, and wastewater ammonia explained much of the variation in DEA rates. In both bulrush and cattail wetlands, there were zones of very high potential DEA.  相似文献   

2.
Nitrate-nitrogen retention in wetlands in the Mississippi River Basin   总被引:1,自引:0,他引:1  
《Ecological Engineering》2005,24(4):267-278
Nitrate-nitrogen retention as a result of river water diversions is compared in experimental wetland basins in Ohio for 18 wetland-years (9 years × 2 wetland basins) and a large wetland complex in Louisiana (1 wetland basin × 4 years). The Ohio wetlands had an average nitrate-nitrogen retention of 39 g-N m−2 year−1, while the Louisiana wetland had a slightly higher retention of 46 g-N m−2 year−1 for a similar loading rate area. When annual nitrate retention data from these sites are combined with 26 additional wetland-years of data from other wetland sites in the Basin Mississippi River (Ohio, Illinois, and Louisiana), a robust regression model of nitrate retention versus nitrate loading is developed. The model provides an estimate of 22,000 km2 of wetland creation and restoration needed in the Mississippi River Basin to remove 40% of the nitrogen estimated to discharge into the Gulf of Mexico from the river basin. This estimated wetland restoration is 65 times the published net gain of wetlands in the entire USA over the past 10 years as enforced by the Clean Water Act and is four times the cumulative total of the USDA Wetland Reserve Program wetland protection and restoration activity for the entire USA.  相似文献   

3.
Integration of partial nitrification (nitritation) and anaerobic ammonium oxidation (anammox) in constructed wetlands creates a sustainable design for nitrogen removal. Three wetland treatment systems were operated with synthetic wastewater (60 mg NH3–N L?1) in a batch mode of fill – 1-week reaction – drain. Each treatment system had a surface flow wetland (unplanted, planted, and planted plus aerated, respectively) with a rooting substrate of sandy loam and limestone pellets, followed by an unplanted subsurface flow wetland. Meanwhile, three surface flow wetlands with a substrate of sandy loam and pavestone were operated in parallel to the former surface flow wetlands. Influent and effluent were monitored weekly for five cycles. Aeration reduced nitrogen removal due to hindered nitrate reduction. Vegetation maintained pH near neutral and moderate dissolved oxygen, significantly improved ammonia removal by anammox, and had higher TN removal due to coexistence of anammox and denitrification in anaerobic biofilm layers. Nitrite production was at a peak at the residence time of 4–5 d. Relative to pavestone, limestone increased the nitrite mass production peak by 97%. The subsurface flow wetlands removed nitrogen via nitritation and anammox, having an anammox activity of up to 2.4 g N m?3 d?1 over a startup operation of two months.  相似文献   

4.
Constructed treatment wetlands (CTWs) have been used effectively to treat a range of wastewaters and non-point sources contaminated with nitrogen (N). But documented long-term case studies of CTWs treating dilute nitrate-dominated agricultural runoff are limited. This study presents an analysis of four years of water quality data for a 1.6-ha surface-flow CTW treating irrigation return flows in Yakima Basin in central Washington. The CTW consisted of a sedimentation basin followed by two surface-flow wetlands in parallel, each with three cells. Inflow typically contained 1–3 mg-N/L nitrate and <0.4 mg-N/L total Kjeldahl N (TKN). Hydraulic loading was fairly constant, ranging from around 125 cm/d in the sedimentation basin to 12 cm/d in the treatment wetlands. Concentration removal efficiencies for nitrate averaged 34% in the sedimentation basin and 90–93% in the treatment wetlands. Total N removal efficiencies averaged 21% and 57–63% in the sedimentation basin and treatment wetlands, respectively. Area-based first-order removal rate constants for nitrate in the wetlands averaged 142–149 m/yr. Areal removal rates for nitrate in treatment wetlands averaged 139–146 mg-N/m2/d. Outflow from the CTW typically contained <0.1 mg-N/L nitrate and <0.6 mg-N/L TKN. Rates of nitrate loss in wetlands were highly seasonal, generally peaking in the summer months (June–August). Nitrate loss rates also correlated significantly with water temperature (positively) and dissolved oxygen (negatively). Based on the modified Arrhenius relationship, θ for nitrate loss in the wetlands was 1.05–1.09. The CTW also significantly affected temperature and dissolved oxygen concentration in waters flowing through the system. On average, the sedimentation basin caused an increase in temperature (+1.7 °C) and dissolved oxygen (+1.5 mg/L); in contrast the wetlands caused a decrease in temperature (?1.6 °C) and dissolved oxygen (?5.0 mg/L). Results show that CTWs with surface-flow wetlands can be extremely effective at polishing dilute non-point sources, particularly in semi-arid environments where warm temperatures and low oxygen levels in treatment wetland water promote biological denitrification.  相似文献   

5.
《Ecological Engineering》2005,24(3):185-198
In 2001, to foster the practical development of constructed wetlands (CWs) used for domestic wastewater treatment in Turkey, vertical subsurface flow constructed wetlands (30 m2 of each) were implemented on the campus of the METU, Ankara, Turkey. The main objective of the research was to quantify the effect of different filter media on the treatment performance of vertical flow wetlands in the prevailing climate of Ankara. Thus, a gravel-filled wetland and a blast furnace granulated iron slag-filled wetland were operated identically with primarily treated domestic wastewater (3 m3 d−1) at a hydraulic loading rate of 0.100 m d−1, intermittently. Both of the wetland cells were planted with Phragmites australis. According to the first year results, average removal efficiencies for the slag and gravel wetland cells were as follows: total suspended solids (TSS) (63% and 59%), chemical oxygen demand (COD) (47% and 44%), NH4+–N (88% and 53%), total nitrogen (TN) (44% and 39%), PO43−-P (44% and 1%) and total phosphorus (TP) (45% and 4%). The treatment performances of the slag-filled wetland were better than that of the gravel-filled wetland in terms of removal of phosphorus and production of nitrate. Since this study was a pioneer for implementation of subsurface constructed wetlands in Turkey using local sources, it has proved that this eco-technology could also be used effectively for water quality enhancement in Turkey.  相似文献   

6.
Constructed treatment wetlands have served the City of Columbia, MO, for fourteen years. Four free water surface wetland units in series, comprised of 23 cells, are an addition to the activated sludge wastewater treatment plant, for the purpose of added biochemical oxygen demand (BOD) and total suspended solids (TSS) control. The system operates year-round, and supplies water to the Eagle Bluffs Conservation Area for wetland maintenance. The cattail wetlands processed an average of 57,000 m3/d, at a water depth of 20 cm. The resulting detention time was approximately 2 days, and the hydraulic loading was 13 cm/d. Water temperatures were warm leaving the treatment plant and in the wetlands in winter, because of the short detention. The period of record average carbonaceous biochemical oxygen demand (CBOD) leaving the wetlands was 5.0 mg/L, and the TSS was 14.7 mg/L. Dissolved oxygen was depressed in summer, likely because of the high sediment demand. Nutrient concentrations were only minimally reduced, total nitrogen (TN) by 22% and total phosphorus (TP) by 6%. However, load reductions were maximal, 98 t/yr for nitrogen, and 3.6 t/yr for phosphorus. Fecal coliforms were reduced by 98%, and E. coli by 95%. First order rate coefficients were high for CBOD (64 m/yr), nitrate (61 m/yr) and organic nitrogen (42 m/yr), but relatively low for ammonia (8 m/yr) and phosphorus (5.7 m/yr). Nitrogen removal was strongly affected by vegetative uptake. Sediment accretion in the wetland inlets was substantial, at 1.6 cm/yr in the inlets to the upstream wetland units. Muskrats caused vegetation damage, and waterfowl use was high in winter, causing TSS excursions.  相似文献   

7.
Natural wetlands play an important role in the global carbon cycle, and loss of dissolved carbon through water has been indicated as one of the most important carbon sources for riverine ecosystems. During the last century, a large natural wetland area was reported to be converted to other land use types such as rice paddy land around the world. In this study, we explored the dynamics of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in two natural freshwater wetlands and a rice paddy field, which was reclaimed from the natural wetlands in the Sanjiang Plain, Northeastern China, during the growing season (May–October) of 2009. The DOC and DIC concentrations in the two ecosystems were significantly different (P < 0.05). The mean DOC concentrations during the growing season in the surface water of the Deyeuxia angustifolia and Carex lasiocarpa wetlands were 49.88 ± 5.44 and 27.97 ± 1.69 mg/L, respectively, while it was only 8.63 ± 2.54 mg/L in the rice paddy field. Specific ultra-violet light absorption at 254 nm (SUVA254) of DOC increased by an average of 19.54% in the surface water from the natural wetlands to rice paddy, suggesting that DOC mobilized in the natural wetlands was more aromatic than that in the rice paddy field. The mean DIC concentration in surface water of the rice paddy was 5.25 and 5.04 times higher than that in the natural D. angustifolia and C. lasiocarpa wetlands, respectively. The average ratio of DIC to dissolved total carbon (DTC) for the water sampled from the artificial drainage ditch in the rice paddy field was 61.82%, while it was 14.75% from the nearby channel of natural wetlands. The significant differences in dissolved carbon concentration in surface water and channels originating from different land use types suggested that reclamation of natural wetlands to rice paddy field would reduce DOC runoff and increase the DIC concentration to adjacent watersheds. Our study results for the changed pattern in dissolved carbon after the natural wetland was transformed to paddy field could have important implications for studying the impacts of the large-scale land use change to carbon cycle and management.  相似文献   

8.
The ability of riverine ecosystems to retain nutrients depends on different hydrological, chemical and biological conditions including exchange processes between streams and wetlands. We investigated nutrient retention in a stream wetland complex on the time scale of daily hydrological exchange between both systems. Daily mass balances of NO3-N, NH4-N, TP and SRP were calculated with data obtained by two automated measurement stations in a stream reach upstream and downstream of a wetland. The pattern of hydrological exchange between stream and wetland was used to classify characteristic hydrological periods like floods, base and low flows. The nutrient retention function of the stream wetland complex varied considerably during phases of similar hydrologic conditions. Despite re-wetting measures in the wetland, an overall net export of all nutrients except for NH4-N characterised the whole growing season. Nitrate retention occurred during summer flood (retention in the wetland, 23 kg NO3-N d?1, 17% of the input load) and low flow (retention in the stream, 1 kg NO3-N d?1, 2% of the input load). TP retention during summer could be assigned to sedimentation (0.7 kg TP d?1, 7% during flooding in the wetland, 0.2 kg TP d?1, 4% during low flow in the stream). SRP retention was only intermittent. We concluded that the nutrient retention of streams and wetlands can only be optimised by restoration measures that regard both systems as one functional unit in terms of nutrient retention.  相似文献   

9.
In Egypt, disposing of partially treated or untreated domestic and industrial wastewater into agricultural drains deteriorates their water quality. A growing interest in effective low-cost treatment of polluted water and wastewater has resulted in many studies on constructed wetlands.This study evaluates free water surface constructed wetlands (by far the largest application project is named “Lake Manzala Engineered Wetland [Egypt]”) utilized to improve the water quality in Bahr El Baqar drain, which is located at the northeastern edge of the Nile Delta. This drain discharges its water into Manzala Lake, which in turn has many fishing activities and is connected to the Mediterranean Sea. The full capacity of the constructed wetland system is 25,000 m3/day. Three various flow rate wetlands were investigated; five wetland beds of high flow rate of 0.344 m3/m2-day, five wetland beds of low flow rate of 0.048 m3/m2-day and reciprocated cells of flow of 500 m3/day.The concentrations of different contaminants along the constructed wetlands system were measured to determine the treatment efficiency. The effluent was compared with the Egyptian standards of water quality in agricultural drains (Law 48/1982). Due to the high percentage of the agricultural water drain, the concentrations of contaminants in the influent were relatively low. The percentages of removal for the different contaminants were BOD5: 52%, COD: 50%, TSS: 87%, TDS: 32%, NH4-N: 66%, PO4: 52%, Fe: 51%, Cu: 36%, Zn: 47% and Pb: 52%. The natural vegetation considerably increased the value of dissolved oxygen in the treated effluent. There were little differences in the removal efficiency between the high and low flow rates beds in the system.  相似文献   

10.
Knowledge regarding the fate, accumulation and distribution of arsenic inside constructed wetlands is still insufficient. Based on a complete mass balance analysis, the aim of this study was to investigate the fate and distribution of As in distinct wetland compartments and different segments along the wetland gradient. Experiments were carried out in laboratory-scale wetland systems, two planted with Juncus effusus and one unplanted, using an As-containing artificial wastewater. The obtained results revealed that the planted wetlands have a substantially higher As-mass retention capacity (59–61% of the total As inflow) than wetlands without plantation (only 44%). However, different loads of organic carbon within the inflowing artificial wastewater showed no remarkable influence on As-mass retention in the planted wetlands. Nearly 47–52% of the total inflowing As mass was found to be retained within the first half of the planted wetlands and this retention decreased step by step along the flow path. In contrast, only 28% of the total inflowing As mass was retained within the first half of the unplanted wetland. In general, a different fate and distribution of As was observed inside the planted and unplanted wetlands. Higher As concentrations were exhibited by the plant roots (51.5–161.5 mg As kg?1 dry wt.) compared to the shoots (1.1–6.4 mg As kg?1 dry wt.). Analysis of the total As-mass balance in the planted wetlands revealed that nearly 44–49% of the total inflowing As was recovered or concentrated within the plant roots, only 1% was sequestered within the plant shoots, 7–10% were entrapped or deposited within the gravel bed sediments, 2–3% were retained in the standing pore water, 39–41% were flushed out as outflow and the remaining 1–2% is still considered to be unaccountable. Total As accumulation in the plant shoots made a small contribution to the mass balance, and plant root biomass was found to be the most important compartment for As retention. In contrast, nearly 11% of the total inflowing As were found in the sediment, 2% in the standing pore water, 57% in the outflow and a substantially higher portion (nearly 30%) remained unaccountable in the unplanted bed, which might be released as volatile As compounds or lost from the system due to various unknown reasons. The results indicate that plants have a remarkable effect on As retention and stability of already retained As; hence planted wetlands might be a suitable option for treating As-contaminated wastewater.  相似文献   

11.
Many factors can influence the improvement of water quality in surface-flow constructed wetlands (SFW). To test if water quality was improved, especially in nutrient and salt content, after passage through SFW, 11 wetland plots of various sizes (50, 200, 800 and 5000 m2) were established within constructed wetlands on agricultural soils in the Ebro River basin (NE Spain) that had been affected by salinization. A set of 15 water quality parameters (e.g., nutrients, salts, sediments, and alkalinity) was obtained from samples collected at the inflow and outflow of the wetlands during the first 4 years after the wetlands were constructed. NO3-N retention rates were as high as 99% in the largest (5000 m2) wetlands. After 4 years, total phosphorus was still being released from the wetlands but not salts. Over the same period, in small wetlands (50, 200, and 800 m2), retention rate relative to the input of NO3-N increased from 40% to almost 60%. Retention of NO3-N amounted to up to 500 g N m?2 per year, for an average load concentration at inflow of ~20 mg l?1. Release of Na+ declined from 16% to 0–2% by volume, for an average load concentration at inflow of ~70 mg l?1. At the current retention rate of NO3-N (76–227 g m?2 per year), 1.5–4% of the catchment should be converted into wetlands to optimize the elimination of NO3-N.  相似文献   

12.
Several ecological indices have been developed to evaluate the wetland quality in the Laurentian Great Lakes. One index, the water quality index (WQI) can be widely applied to wetlands and produces accurate measurements of wetland condition. The WQI measures the degree of water quality degradation as a result of nutrient enrichment and road runoff. The wetland fish index (WFI), wetland zooplankton index (WZI), and the wetland macrophyte index (WMI), are all derived from the statistical relationships of biotic communities along a gradient of deteriorating water quality. Compared to the WQI, these indices are less labor-intensive, cost less, and have the potential to produce immediate results. We tested the relative sensitivity of each biotic index for 32 Great Lakes wetlands relative to the WQI and to each other. The WMI (r2 = 0.84) and WFI (r2 = 0.75) had significant positive relationships (P < 0.0001) with the WQI in a linear and polynomial fashion. Slopes of the WMI and WFI were similar when comparing the polynomial regressions (ANCOVA; P = 0.117) but intercepts were significantly different (P = 0.004). The WZI had a positive relationship with the WQI in degraded wetlands and a negative relationship in minimally impacted wetlands. The strengths and weaknesses of each index can be explained by the interactions among fish, zooplankton, aquatic plants and water chemistry. The distribution of different species indicative of low and high quality in each index provides insight into the relative wetland community composition in different parts of the Great Lakes and helps to explain the differences in index scores when different organisms are used. Our findings suggest that the WMI and WFI produce comparable results but the WZI should not be used in the minimally impacted wetlands without further study.  相似文献   

13.
In this paper the factors influencing treatment performance of subsurface flow constructed wetlands (SSF wetlands) treating aquaculture effluents were identified and quantified. The financial impact of advanced aquaculture effluent treatment with SSF wetlands was calculated.It is the first long-term, commercial-scale trial of SSF wetland treatment for effluents from intensive trout farming, a highly diluted effluent at very high flow rates (mean total phosphorous concentration 0.34 mg L?1 at 14.3 L s?1). The 12-month survey provided the opportunity to generate calculation fundamentals for the commercial application of SSF wetlands for aquaculture. Treatment efficiencies of up to 75–86% for total ammonia nitrogen (TAN), biological oxygen demand (BOD5) and total suspended solids (TSS) were achieved. The daily area retention rate per square meter wetland area was between 2.1 and 4.5 g for TAN and between 30 and 98 g for TSS.The performance of the six wetland cells comprising three replicated hydraulic loading groups (14.5, 6.9, 3.3 m3 m?2 day?1) was monitored, offering the possibility to identify factors influencing treatment efficiency through multifactor analysis. These factors turned out to be nutrient inflow concentration, hydraulic loading rate and accumulation of TSS within the wetland bed, the only time-dependent factor. Factors such as vegetation period and fish harvesting were shown to be of significant but negligible importance.Inflow nutrient concentration is determined by production intensity, husbandry conditions, feed quality and any pre-treatment of effluent. Hydraulic load is determined by the space and budget available for SSF construction. TSS accumulation in the wetland is influenced by pre-treatment of the solid fraction prior to the wetland and determines the wetland service lifetime.From these factors the expenses of commercial wetland application can be estimated, leading to a cost increase around €0.20 kg?1 fish produced (less than 10% of production costs) and therefore confirm the commercial feasibility of SSF wetland treatment.  相似文献   

14.
The use of surface flow (SFCWs) and subsurface flow constructed wetlands (SFCWs) for the treatment of combined sewer overflows was assessed at pilot scale. Synthetic wastewater was applied in three batches with decreasing concentrations to mimic concentration profiles that are obtained in the field during overflow events. Three simulated combined sewer overflows were applied on each wetland. Composite water samples (60 in total) were taken for a period of 8 days to study the removal of total nitrogen (Ntot), NH4–N, NO3–N, total COD (CODtot) and total phosphorus. Redox potential, which was monitored at various locations along the wetlands, was more negative in the SSFCWs. In general, removal occurred faster in the SSFCWs and the final concentrations were lower. The removal of Ntot was only 36.6 ± 3.3% in the SFCWs due to nitrification-limiting conditions. The conditions in the SSFCWs, in contrast, seemed to promote Ntot removal (removal efficiency 96.7 ± 1.9%). The removal of P was hampered in both wetland types by reducing conditions. P that was initially removed was released again from the substrates later on. First-order removal rate constants were derived for the removal of both CODtot (SSFCWs: 1.1 ± 0.3 m d?1; SFCWs: 0.17 ± 0.06 m d?1) and Ntot (SSFCWs: 0.4 ± 0.1 m d?1; SFCWs: 1.7 ± 0.5 m d?1).  相似文献   

15.
Little information is available to assess the dynamic changes in wetland soil quality in coastal regions, though it is essential for wetland conservation and management. Soil samples were collected in Suaeda salsa wetlands (SWs), Tamarix chinensis wetlands (TWs), Suaeda salsaTamarix chinensis wetlands (STWs), freshwater Phragmites australis wetlands (FPWs) and saltwater Phragmites australis wetlands (SPWs) in three sampling periods (i.e., summer and autumn of 2007 and spring of 2008). According to the flooding characteristics of these wetlands, the study area could be grouped into three sub-regions: short-term flooding region (STFR), seasonal flooding region (SFR) and tidal flooding region (TFR). Soil quality was evaluated using the soil quality index (SQI), which was calculated using the selected minimum data set (MDS) based on principal components analysis (PCA). Our results showed that soil salt content (SSC), total carbon (TC), magnesium (Mg), nitrate nitrogen (NO3-N) and total sulfur (TS) consisted of a MDS among 13 soil properties. The SQI values varied from 0.18 to 0.66 for all soil samples, of which the highest and lowest SQI values were observed in TFR. The average SQI values were significantly higher in summer (0.50 ± 0.13) than in spring (0.37 ± 0.13) and autumn (0.36 ± 0.11) in the whole study area (p < 0.05). The average SQI values followed the order STFR (0.44 ± 0.12) > TFR (0.41 ± 0.15) > SFR (0.35 ± 0.09) although no significant differences were observed among the three regions (p > 0.05). SPWs and SWs soils showed higher SQI values (0.50 ± 0.10 and 0.47 ± 0.15, respectively) than TWs (0.30 ± 0.08) soils (p < 0.05). The SSC was the dominant factor of soil quality with its proportion of 34.1% contributing to the SQI values, followed by TC (24.5%) and Mg (24.1%). Correlation analysis also showed that SQI values were significantly negatively correlated with SSC. SSC might be a characteristic indicator of wetland soil quality assessment in coastal regions. The findings of this study showed that the SQI based on MDS is a powerful tool for wetland soil quality assessment.  相似文献   

16.
《Ecological Engineering》2005,24(3):219-232
Water pollution by agriculture can include inappropriately managed dairy farmyard dirty water. In Ireland, dairy farmyard dirty water includes farmyard runoff, parlour washings, and silage/farmyard manure effluents. The objectives of this study were to determine (i) the quality and quantity of dirty water generated at a farm-scale and (ii) the seasonal effectiveness of a constructed wetland to treat farmyard dirty water. The wetland system was 4800 m2 in area and treated dirty water from a 42-cow organic dairy unit with an open yard area of 2031 m2. Monthly dirty water inflow rate to the wetland ranged between 3.6 and 18.5 m3 d−1. Farmyard dirty water accounted for 27% of hydrological inputs to the wetland, whereas rainfall on wetland, along with wetland bank inflows accounted for 45 and 28%, respectively. Farmyard dirty water quality and quantity did not vary with season. Yearly mass loads discharged to the wetland were 47 ± 10 kg yr−1 of soluble reactive phosphorus (SRP), 128 ± 35 kg yr−1 of NH4+, 5484 ± 1433 kg yr−1 of organic material as measured by five-day biological oxygen demand (BOD5), and 1570 ± 465 kg yr−1 of total suspended solids (TSS). Phosphorus retention by the wetland varied with season (5–84%) with least amounts being retained during winter.  相似文献   

17.
This study is the first to report on the relationships between immature mosquitoes (larvae and pupae) and landscape and environmental habitat characteristics in wetlands associated with row crop agriculture. Indicator species analysis (ISA) was used to test for associations among mosquito species and groups of wetland sites with similar Landscape Development Intensity (LDI) values. Results indicated that Anopheles quadrimaculatus, Culex erraticus, and Psorophora columbiae were associated with agricultural wetlands (LDI > 2.0), whereas Anopheles crucians and Culex territans were associated with forested reference wetlands (LDI < 2.0) in both wet and dry years. The species fidelity to wetland type, regardless of the hydrologic regime, demonstrates these species are robust indicators of wetland condition. Data on immature mosquito assemblages were compared to selected landscape and environmental habitat variables using Akaike's Information Criterion (AICc) model selection. LDI indices, dissolved oxygen concentration, the proportion of emergent vegetation, and the proportion of bare ground in wetlands were important factors associated with the selected mosquito species. These results indicate that LDI indices are useful in predicting the distributions of disease vectors or other nuisance mosquito species across broad geographic areas. Additionally, these results suggest mosquitoes are valuable bioindicators of wetland condition that reflect land use and hydrologic variability.  相似文献   

18.
Two demonstration treatment wetland systems were studied for over four years. Both consisted of sedimentation basins, followed by wetland cells. The Imperial, CA system had four wetland cells totaling 4.7 ha, 25% vegetated with bulrushes (Schoenoplectus californicus), and the Brawley, CA system had two wetland cells totaling 1.8 ha, also 25% vegetated with bulrushes. Imperial received irrigation runoff water at 30 cm/day, and Brawley received New River water at 11 cm/day, both with moderately high levels of nutrients, sediments and pathogens. The systems seeped 40–60% of the incoming water. The hydraulic efficiencies of the systems were high because of compartmentalization and high aspect ratios. Concentration reductions of TN, TP and TSS were 50%, 39%, and 97% at Imperial, and 73%, 50% and 96% at Brawley. Imperial achieved about 1.5 log10 reductions in total coliforms, fecal coliforms and Escherichia coli, while Brawley achieved about 2.7 log10 reductions. The sedimentation basins settled most of the incoming TSS, as well as the algal solids that were generated in the basins. Algal uptake removed nutrients in the basins, which were supersaturated with oxygen. The wetlands were effective in denitrification, and trapped the remaining and generated TSS. Removal rate constants, corrected for infiltration, were at the high end of those reported for other wetlands.  相似文献   

19.
Flooding periods can be one of the most important factors influencing nitrogen (N) biogeochemical processes in wetlands ecosystem. We conducted a field study using in situ incubation method to investigate the seasonal dynamics of soil net N mineralization in three coastal salt marshes (Suaeda salsa) with different flooding periods (i.e., short-term (STF), seasonal (SF), and tidal (TF) flooding wetland) in the Yellow River Delta. Selected soil inorganic N pools (ammonium, nitrate and inorganic N) and N transformation (mineralization, nitrification and ammonification) rates in the top 0–10 cm soils were repeatedly quantified from April to October. Clear seasonal patterns in inorganic N pools and transformation rates were observed in accord with the seasonal variations of temperature and moisture. Generally, higher levels of soil inorganic nitrogen, ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) occurred in the early-growing season (April), and NH4+-N contents got a small accumulative peak in midsummer (September). The lower rates (negative) of net mineralization (Rmin), nitrification (Rnit) and ammonification (Ramm) were observed in the early-growing season (April–June) and fall (September–October), whereas higher values (positive) in midsummer (August–September). Flooding had a significant influence on inorganic N pools (except for NH4+-N) and transformation rates (p < 0.05). Rmin values in SF wetland were significantly higher in the August-September period than those in other incubation periods. Rnit values in TF wetland exhibited a small variation and the highest value occured in the June–August period. The results of principal component analysis showed that soil samples were clearly divided into two groups before and after flow-sediment regulation. After flooding events, the Rmin and Ramm values generally increased in the three wetlands, whereas a significant decrease in Rnit values was observed in SF wetland (p < 0.05), thus the differences in NO3-N among these wetlands were eliminated. These results suggested that seasonal variations in temperature and moisture are important factors influencing inorganic N pools and transformation rates.  相似文献   

20.
The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spatial and temporal variability in the fluxes. Fluxes of CH4 were monitored in 12 wetland plots over a year using static chambers, yielding a dataset with more than 800 measured fluxes of CH4. Yearly emissions of CH4 ranged from −0.2 to 38.3 g CH4-C m−2 year−1, and significant effects of groundwater level, soil temperature (10 cm depth), peat depth, sulfate, nitrate, and soil carbon content were found. Two methods based on easily available environmental parameters to estimate yearly CH4 emissions from riparian wetlands are presented. The first uses a generalized linear model (GLM) to predict yearly CH4 emissions based on the humidity preference of vegetation (Ellenberg-F), peat depth and degree of humification of the peat (von Post index). The second method relies solely on plant species composition and uses weighted-average regression and calibration to link the vegetation assemblage to yearly CH4 emission. Both models gave reliable predictions of the yearly CH4 fluxes in riparian wetlands (modeling efficiency > 0.35). Our findings support the use of vegetation, possibly in combination with some soil parameters such as peat depth, as indicator of CH4 emission in wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号