首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Mechanical interactions between neighbouring roots during pullout tests   总被引:1,自引:0,他引:1  

Background and Aims

The quantification of root reinforcement function is important for landscape managers and engineers. The estimation of root mechanical reinforcement is often based on models that do not consider the potential interaction between neighbouring roots. Root-soil mechanical interactions related to the root spacing and bundle geometry remain unclear including potential effects on the reliability of the current models. The objective of this study is to quantify the mechanical interactions among neighbouring roots or roots networks using modelling approaches and pullout laboratory experiments.

Methods

Based on simple geometrical characterization of individual root geometry, we calculated dissipation patterns of frictional root-soil interfacial stresses in radial and longitudinal directions. Considering simple superposition of shear stresses within the soil matrix, we quantified characteristic root densities at which the radial mechanical interactions influence global pullout behaviour of the root bundle both for branched and unbranched roots. Laboratory pullout tests on root bundles were carried out at root spacings of 15, 35 and 105 mm. In addition, we tested effects of non-parallel (crossing) root bundle geometry.

Results

We found no significant statistical differences in root pullout force for the different root spacing in parallel alignment of roots. Branches increase pullout force by 1.5 times. Moreover, the mean displacement at the pullout peak-force was 7.2 % of length for unbranched roots and about 4.1 % of length for branched roots. The model shows its potential comparing it with empirical results concerning the holes leaved by roots, according with the branch pattern.

Conclusion

The study quantifies the influence of root spacing and arrangement geometry within a root bundle on its mechanical behaviour. The assumption of “non-interacting” neighbouring roots in root reinforcement methods is no longer valid for root spacing less than 15 mm and root reinforcement methods. Moreover crossing roots shown a statistical difference. This information is important for improved understanding root reinforcement mechanisms in steep hill slope and the interplay between anchoring /failure and root bundle pullout vs root breakage.  相似文献   

2.
We propose a method for assessing root profiles by means of hydrological, pedological and above-ground vegetation information. The method is analytical and allows one to relate the vertical distribution of plant roots to the local climatic and pedological conditions. The model does not require calibration and employs only data that are easily available. The model has been applied to two case studies in central Italy and proved effective for assessing both root area and average rooting depth as functions of depth. Plant rooting systems turn out to be closer to the soil surface where the soils are clay-textured and where the evaporation/precipitation ratio is large (intensive water use). The proposed methodology would be useful for slope ecosystem restoration, non-destructive analysis of the stability of vegetated slopes, and planning soil bio-engineering works.  相似文献   

3.
4.
The mechanics of root reinforcement have been described satisfactorily for a single root or several roots passing a potential slip plane and verified by field experiments. Yet, precious little attempts have been made to apply these models to the hillslope scale pertinent to landsliding at which variations in soil and vegetation become important. On natural slopes positive pore pressures occur often at the weathering depth of the soil profile. At this critical depth root reinforcement is crucial to avert slope instability. This is particularly relevant for the abandoned slopes in the European part of the Mediterranean basin where root development has to balance the increasing infiltration capacity during re-vegetation. Detailed investigations related to root reinforcement were made at two abandoned slopes susceptible to landsliding located in the Alcoy basin (SE Spain). On these slopes semi-natural vegetation, consisting of a patchy herbaceous cover and dispersed Aleppo pine trees, has established itself. Soil and vegetation conditions were mapped in detail and large-scale, in-situ direct shear tests on the topsoil and pull-out tests performed in order to quantify root reinforcement under different vegetation conditions. These tests showed that root reinforcement was present but limited. Under herbaceous cover, the typical reinforcement was in the order of 0.6 kPa while values up to 18 kPa were observed under dense pine cover. The tests indicate that fine root content and vegetation conditions are important factors that explain the root reinforcement of the topsoil. These findings were confirmed by the simulation of the direct shear tests by means of an advanced root reinforcement model developed in FLAC 2D. Inclusion of the root distribution for the observed vegetation cover mimics root failure realistically but returns over-optimistic estimates of the root reinforcement. When the root reinforcement is applied with this information at the hillslope scale under fully saturated and critical hydrological conditions, root pull-out becomes the dominant root failure mechanism and the slip plane is located at the weathering depth of the soil profile where root reinforcement is negligible. The safety factors increase only slightly when roots are present but the changes in the surface velocity at failure are more substantial. Root reinforcement on these natural slopes therefore appears to be limited to a small range of critical hydrological conditions and its mitigating effect occurs mainly after failure.  相似文献   

5.
Slope stability models traditionally use simple indicators of root system structure and strength when vegetation is included as a factor. However, additional root system traits should be considered when managing vegetated slopes to avoid shallow substrate mass movement. Traits including root distribution, length, orientation and diameter are recognized as influencing soil fixation, but do not consider the spatial and temporal dimensions of roots within a system. Thick roots act like soil nails on slopes and the spatial position of these thick roots determines the arrangement of the associated thin roots. Thin roots act in tension during failure on slopes and if they traverse the potential shear zone, provide a major contribution in protecting against landslides. We discuss how root traits change depending on ontogeny and climate, how traits are affected by the local soil environment and the types of plastic responses expressed by the plant. How a landslide engineer can use this information when considering slope stability and management strategies is discussed, along with perspectives for future research. This review encompasses many ideas, data and concepts presented at the Second International Conference ‘Ground Bio- and Eco-engineering: The Use of Vegetation to Improve Slope Stability—ICGBE2’ held at Beijing, China, 14–18 July 2008. Several papers from this conference are published in this edition of Plant and Soil.  相似文献   

6.
植物根系固坡抗蚀的效应与机理研究进展   总被引:22,自引:0,他引:22  
植物根系对抵抗坡体浅层滑坡和表土侵蚀起着巨大的作用.植物根系通过增强土体的抗剪强度发挥固坡效应.目前有关植物根系固坡机理的模型较多,普遍接受的是Wu-Waldron模型.该模型表明,植物根系产生的土体抗剪强度的增量与根系的平均抗拉强度和根面积比成正比,应用该模型评价根系固坡效应的2个最重要因素是根系的平均抗拉强度和根面积比.研究发现,土壤抗侵蚀性随着植物根系数量的增加而提高,但未有一致的定量函数关系.植物根系提高土壤抗侵蚀性主要通过直径小于1mm的须根起作用.须根通过增加土壤水稳性团聚体的数量与粒径等作用来提高土壤的稳定性,以抵抗水流分散;须根还能有效地增强土壤渗透性,减少径流,从而达到减少土壤冲刷的目的.  相似文献   

7.
This study attempts to quantify the reinforcement effect of the Makino bamboo (Phyllostachys makinoi Hayata) root system on the stability of slopeland through numerical analyses and in situ tests. Based on the field surveys of Makino bamboo root morphology, a three-dimensional (3-D) numerical model of the soil–root system consisting of the reverse T-shape tap root and hair roots was developed and successfully applied to the finite element simulations of in situ pull-out tests. In the simulations, the soil mass was simulated by a soil element with a perfect elastic–plastic (or Mohr–Coulomb) material model whereas the root system was simulated by a ground anchor element with a linear elastic material model. In addition, a mechanical conversion model with simple mathematical form, which enables a direct transformation of the ultimate pull-out resistance into the shear strength increment of soil–root system was proposed. The conversion model offered a convenient way to quantify the reinforcement effect of the Makino bamboo root system required for the 3-D slope stability analyses. The numerical results indicated that the shear strength increment of the Makino bamboo soil–root system ranged from 18.4 to 26.3 kPa and its effect on the slope stability was insignificant when compared with those adverse influence factors such as the steep slope angle (=50–70°), shallow root depth (=0.8–1.0 m) and large growth height (>10 m) of the Makino bamboo forest slopeland. It can be also speculated that the tension cracks widespread over the slope surface due to the wind loading acting on the bamboo stems and the sequential rainwater infiltration is the dominating factor in the collapse failure of slopeland. For a Makino bamboo forest slopeland with medium slope (25° < slope angle β < 40°), the reinforcement effect of the Makino bamboo root system can mobilize its maximum stabilization capacity when compared with those of slopeland with mild (β < 25°) and steep slopes (β > 40°). Conclusively, the contribution of the Makino bamboo root system to the stability of slopeland is not as significant as expected.  相似文献   

8.
Highway embankments and cutting slopes in the United Kingdom, particularly in the South East of England, are often constructed of or within stiff over-consolidated clays. These clays are prone to softening with time leading to shallow slope failures and costly repairs. Reinforcement by natural vegetation is potentially a cost-effective method of stabilising these types of slopes over the medium–long term. However, there is a lack of information on how natural vegetation reinforces and stabilises clay slopes. To investigate this problem, the potential reinforcement of selected oak (Quercus robur L.) and hawthorn (Crataegus monogyna Jacq.) roots was assessed by conducting in situ root pull-out experiments on a London Clay cutting in south-east England. Pull-out tests were carried out using specifically designed clamps and either a hand pull system with a spring balance and manual recording of force for oak roots or a jacking system with electronic data logging of applied force and displacement for hawthorn roots. Oak roots had a mean pull-out resistance of 7 MPa and that of hawthorn roots was 8 MPa. The electronic data logging of applied force (pull-out resistance) and displacement of the hawthorn roots provided additional data on the failure of branched roots which could be correlated with variations in root morphology. The failure of the roots can be categorised into three modes: Type A: single root failure with rapid rise in pull-out resistance until failure occurs; Type B: double peak failure of a forked or branched root and Type C: stepped failure with multiple branches failing successively. The different types of root–soil bonds are described in relation to root anchorage and soil stability.  相似文献   

9.
The potential for reducing the occurrence of shallow landslides through targeted reforestation of critical parts of a river basin is explored through mathematical modelling. Through the systematic investigation of land management options, modelling allows the optimum strategies to be selected ahead of any real intervention in the basin. Physically based models, for which the parameters can be evaluated using physical reasoning, offer particular advantages for predicting the effects of possible future changes in land use and climate. Typically a physically based landslide model consists of a coupled hydrological model (for soil moisture) and a geotechnical slope stability model, along with an impact model, such as basin sediment yield. An application of the SHETRAN model to the 65.8-km2 Guabalcón basin in central Ecuador demonstrates a technique for identifying the areas of a basin most susceptible to shallow landsliding and for quantifying the effects of different vegetation covers on landslide incidence. Thus, for the modelled scenario, increasing root cohesion from 300 to 1500 Pa causes a two-thirds reduction in the number of landslides. Useful information can be obtained even on the basis of imperfect data availability but model output should be interpreted carefully in the light of parameter uncertainty.  相似文献   

10.
Bamboo is considered useful for controlling landslides, but we observed numerous shallow-slope failures in forests of big node bamboo (Phyllostachys nidularia) in Sichuan, China. Therefore, we inventoried landslide occurrence and vegetation type along one valley. To quantify bamboo root anchorage, we performed uprooting tests and measured plant morphological characteristics. Landslide occurrence was greatest at sites with bamboo and young trees. Culm failure was common because of the high length to diameter ratio (242 ± 6). Uprooting tests showed that the maximal force to cause failure was small (1615 ± 195 N). Uprooting force was strongly and positively regressed with a combination of the predictors lateral root number and volume (R(2) = 0.92), and root systems were highly superficial (depth = 0.15 ± 0.12 m), contributing little to slope stability. In P. nidularia, which grows on landslide-prone slopes, surprisingly few resources have been allocated to anchorage. We suggest that this strategy puts this pioneer at an advantage on steep slopes, where it contributes little to slope stability and colonizes frequently formed gaps through vegetative regeneration. Fewer disturbances would result in subsequent secondary succession and dying back of this shade intolerant species.  相似文献   

11.
The influence of plant diversity on slope stability was investigated at early phases of succession in a mixed forest in Sichuan, China. The first phase comprised big node bamboo (Phyllostachys nidularia Munro) only. In the second phase, bamboo co-existed with deciduous tree species and in the third phase, deciduous species existed alone. Root density at different depths and root tensile strength were determined for each species. The factor of safety (FOS) was calculated for slopes with and without vegetation for each succession phase. For phase 2, FOS was determined for different species mixtures and positions. In phase 3, simulations were performed with a single tree at the top, middle or toe of the slope. Due to its shallow root system, bamboo contributed little to slope stability. In simulations with the tree at the top or middle of the slope, FOS decreased because tree weight added a surcharge to the slope. FOS increased with the tree at the bottom of the slope. Different mixtures of species along the slope had no influence on FOS. Differences in root tensile strength between species played a small role in FOS calculations, and tree size and density were the most important factors affecting slope stability, excluding hydrological factors.  相似文献   

12.
Currently used in many countries in the world, vetiver grass (Vetiveria zizanioides) applications include soil and water conservation systems in agricultural environment, slope stabilization, mine rehabilitation, contaminated soil and saline land remediation, as well as wastewater treatment. The root system morphology of vetiver was investigated in a small plantation growing on abandoned marl terraces in southern Spain. Root distribution with depth, laterally from the plant, as well as root parameters such as root diameter and tensile strength were also investigated. The profile wall method combined with the block excavation showed that the vetiver grass grows numerous positively gravitropic roots of more or less uniform diameter. These were generally distributed in the uppermost soil horizon closer to the culm base. In situ shear test on blocks of soil permeated with vetiver roots were carried out and showed a greater shear strength resistance than the samples of non vegetated soil. The root reinforcement measured in situ was comparable to the one predicted by the perpendicular root reinforcement model. The stability of a modelled terraced slope planted with vetiver was marginally greater than the one of a non-vegetated slope. A local instability on one terrace can have a detrimental effect on the overall stability of the terraced slope.  相似文献   

13.
植被恢复作为黄土高原防治水土流失的重要措施,但极端降雨诱发的浅层滑坡在植被恢复的沟坡上频繁发生,影响流域的产流产沙过程。基于野外原位模拟降雨试验,在60 mm/h降雨强度下,研究草被沟坡浅层滑坡发生特征及其发生前后的产流产沙差异。结果表明:(1)极端降雨所诱发的草被沟坡上的浅层滑坡深度为14-36 cm,与自然强降雨所导致的浅层滑坡深度相贴合,均是低于50 cm。(2)植被根系与土壤容重、孔隙度等土壤性质显著相关(P<0.05),致使滑坡面上、下层土壤物理性质差异显著(P<0.05)。由于土壤性质的差异,在极端降雨下滑坡面上层土壤水分更快达到饱和(饱和度>90%),导致浅层滑坡的发生。(3)草被坡面浅层滑坡后的径流与产沙均显著增大(P<0.05)。三个小区的平均径流率在滑坡后增大了4.0-13.1倍,其平均含沙量和产沙率在滑坡后分别增大了9.9-54.9倍和70-841倍。研究结果有助于加深了解植被沟坡的侵蚀产沙机理,并为浅层滑坡防治提供科学依据。  相似文献   

14.
官琦  徐则民  田林 《生态学杂志》2013,24(10):2888-2896
极端异常气候诱发植被发育斜坡发生滑坡灾害的数量逐年攀升,土体大孔隙产生的优先流对其有重要影响.本文结合水分穿透曲线和Poiseulle方程对马卡山植被发育玄武岩斜坡土体大孔隙的半径范围、数量、平均体积进行估算,分析了该区土体大孔隙分布情况及其主要影响因素.结果表明:研究区域主要植被下土体大孔隙半径在0.3~1.8 mm,主要集中在0.5~1.2 mm,1.4~1.8 mm的大半径孔隙相对较少, 而<1.4 mm的小半径孔隙较多.随着剖面发育,大孔隙表现为上部土层多、下部土层少的特点.大孔隙平均体积决定了稳定出流速率84.7%的变异.在影响大孔隙平均体积大小的诸多因素中,植被根系质量密度与其呈线性关系,相关系数为0.70,土壤有机质含量与其呈线性关系,相关系数为0.64.  相似文献   

15.
This study aims at assessing the influence of slope angle and multi-directional flexing and their interaction on the root architecture of Robinia pseudoacacia seedlings, with a particular focus on architectural model and trait plasticity. 36 trees were grown from seed in containers inclined at 0° (control) or 45° (slope) in a glasshouse. The shoots of half the plants were gently flexed for 5 minutes a day. After 6 months, root systems were excavated and digitized in 3D, and biomass measured. Over 100 root architectural traits were determined. Both slope and flexing increased significantly plant size. Non-flexed trees on 45° slopes developed shallow roots which were largely aligned perpendicular to the slope. Compared to the controls, flexed trees on 0° slopes possessed a shorter and thicker taproot held in place by regularly distributed long and thin lateral roots. Flexed trees on the 45° slope also developed a thick vertically aligned taproot, with more volume allocated to upslope surface lateral roots, due to the greater soil volume uphill. We show that there is an inherent root system architectural model, but that a certain number of traits are highly plastic. This plasticity will permit root architectural design to be modified depending on external mechanical signals perceived by young trees.  相似文献   

16.
Effect of Root Moisture Content and Diameter on Root Tensile Properties   总被引:1,自引:0,他引:1  
The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation.  相似文献   

17.
Root systems have a pivotal role in plant anchorage and their mechanical interactions with the soil may contribute to soil reinforcement and stabilization of slide-prone slopes. In order to understand the responses of root system to mechanical stress induced by slope, samples of Spartium junceum L., growing in slope and in plane natural conditions, were compared in their morphology, biomechanical properties and anatomical features. Soils sampled in slope and plane revealed similar characteristics, with the exception of organic matter content and penetrometer resistance, both higher in slope. Slope significantly influenced root morphology and in particular the distribution of lateral roots along the soil depth. Indeed, first-order lateral roots of plants growing on slope condition showed an asymmetric distribution between up- and down-slope. Contrarily, this asymmetric distribution was not observed in plants growing in plane. The tensile strength was higher in lateral roots growing up-slope and in plane conditions than in those growing down-slope. Anatomical investigations revealed that, while roots grown up-slope had higher area covered by xylem fibers, the ratio of xylem and phloem fibers to root diameter did not differ among the three conditions, as also, no differences were found for xylem fiber cell wall thickness. Roots growing up-slope were the main contributors to anchorage properties, which included higher strength and higher number of fibers in the xylematic tissues. Results suggested that a combination of root-specific morphological, anatomical and biomechanical traits, determines anchorage functions in slope conditions.  相似文献   

18.
Plant and Soil - Vegetation stabilizes slopes via root mechanical reinforcement and hydrologic reinforcement induced by transpiration. Most studies have focused on mechanical reinforcement and its...  相似文献   

19.
分析喀斯特地区不同地埂篱根系的形态和力学特性,量化其根-土复合体抗剪和抗冲性能的强弱,探寻该地区地埂篱根系固土抗蚀性能的评价因子,为喀斯特坡地水土流失治理中植被恢复措施的科学应用提供参考。选取重庆酉阳龙潭槽谷为研究区,分上、中、下坡分别布设拉巴豆和光叶苕子2种地埂篱,采用根系扫描仪和电子万能试验机测定其根系形态和力学参数,应变控制式直剪仪测定复合体抗剪强度,原状土冲刷水槽法测定复合体抗冲指数。结果表明:(1)抗剪复合体中,拉巴豆平均根长密度和根表面积密度分别高出光叶苕子59.32%和16.86%;抗冲复合体中,拉巴豆平均根长密度、根表面积密度和根体积密度较之光叶苕子高出30.48%、57.78%、92.98%;拉巴豆根系极限抗拉力和抗拉强度均显著高于光叶苕子。(2)2种地埂篱根系均能增强土壤的抗剪和抗冲性能,其中拉巴豆和光叶苕子复合体粘聚力较之对照土体分别增强了113.06%—124.37%和51.56%—87.12%,抗冲指数最高达到对照土体的2.81倍和2.45倍。(3)不同坡位,下坡2种植物的根长密度显著高于上、中坡;拉巴豆根系抗拉特性在下坡表现最优,光叶苕子在上坡表现更好;拉巴...  相似文献   

20.
We investigated three slopes (in southern Poland, the Carpathian Mts, and the Sudeten Mts) subject to catastrophic, sudden landslides. To reconstruct past landslide activity, we analysed the eccentricity of tree rings in the stems of Norway spruce (Picea abies) using a per cent eccentricity index method. We obtained data on year-by-year changes in eccentricity patterns of single specimens, as well as data on landslide events dated from the whole population of trees sampled on each slope (13–30 spruce trees). These data supplied indirect information on the temporal variability of landslide activity on the three slopes revealing that all three slopes were subject to frequent landslide activity (recurrence intervals 2.0–2.7 years) well before catastrophic events that occurred in 1997 and 2010. The study also showed that 3–5 years before a catastrophic event the sample trees started to record increasing ground instability demonstrated as an uninterrupted, sudden increase in the eccentricity of single trees. Our results suggest that the application of dendrochronological methods can reveal slopes at an increased risk of catastrophic landsliding well in advance. The methods we applied show great promise for forecasting catastrophic landslides and assessing landslide hazard, slope stability and the effectiveness of engineering works undertaken to stabilise landslides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号