首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global rivers connect three large carbon reservoirs in the world: soil, atmosphere, and ocean. The amount and spatial pattern of riverine carbon flux are essential for the global carbon budget but are still not well understood. Therefore, three linear regression models for riverine DOC (dissolved organic carbon), POC (particulate organic carbon), and DIC (dissolved inorganic carbon) fluxes were established with related generating and transfer factors based on an updated global database. The three models then were applied to simulate the spatial distribution of riverine DOC, POC, and DIC fluxes and to estimate the total global riverine carbon flux. The major conclusions of this study are as follows: the correlation analysis showed that riverine DOC flux is significantly related to discharge (r2 = 0.93, n = 109) and soil organic carbon amount (r2 = 0.60), POC flux increases with discharge (r2 = 0.55, n = 98) and amount of soil erosion (r2 = 0.48), and DIC flux is strongly linked to CO2 consumption by rock weathering (r2 = 0.66, n = 111) and discharge (r2 = 0.63). In addition, Asia exports more DOC and POC than other continents and North America exports more DIC. The Atlantic Ocean accepts the major portion of riverine DOC, POC, and DIC fluxes of all the oceans. The highest riverine DOC flux occurs in the 0–30°S zone, and the highest riverine POC and DIC fluxes appear in the 30–60°N zone. Furthermore, re-estimation revealed that global rivers export approximately 1.06 Pg C to oceans every year, including 0.24 Pg DOC, 0.24 Pg POC, 0.41 Pg DIC, and 0.17 Pg PIC.  相似文献   

2.
Rural areas of developing countries require low-cost treatment systems to purify wastewater which is contaminated with pesticides and organic matter. This work evaluated for six months the simultaneous removal of chlorpyrifos and dissolved organic matter in water using four horizontal sub-surface flow constructed wetlands (SSFCW) at a pilot scale, that were planted with Phragmites australis at 20 ± 2 °C water temperature. In each wetland, three concentrations of chlorpyrifos and three of dissolved organic carbon (DOC) were tested by liquid chromatography and an organic carbon analyzer respectively. The pesticide and DOC were added to the wetlands in synthetic wastewater. For the experiments, four wetlands of equal dimensions were used, with granular material of igneous rocks, 3.9–6.4 mm in diameter and at a depth of 0.3 m with a layer of water 0.2 m deep. For each treatment, regular sampling was carried out for the influent and effluents. As a supporting feature NH4+, NO3? and PO43? were quantified and in situ measurements of dissolved oxygen (DO), pH, electrical conductivity, water temperature and redox potential were taken. The overall removal of the chlorpyrifos (92.6%) and DOC (93.2%) was high, as was DOC removal as a function of pesticide concentration in the influent. The minimum magnitude (92.0%) was reached with 425.6 μg L?1 of chlorpyrifos and, with the highest pesticide removal (96.8%). At lower concentrations of the agrochemical, DOC removal increased. The removals were possibly due to mineralization processes, biological decomposition and sorption in plants. These findings demonstrate that SSFCW are capable of simultaneously removing dissolved organic matter and organophosphate pesticides such as chlorpyrifos, which indicate that chlorpyrifos did not interfere with the removal of organic material.  相似文献   

3.
There are large temporal and spatial variations of methane (CH4) emissions from natural wetlands. To understand temporal changes of CH4 production potential (MPP), soil samples were collected from a permanently inundated Carex lasiocarpa marsh and a summer inundated Calamagrostis angustifolia marsh over the period from June to October of 2011. MPP, dissolved organic carbon (DOC) concentration, abundance and community structure of methanogenic archaea were assessed. In the C. lasiocarpa marsh, DOC concentration, MPP and the methanogen population showed similar seasonal variations and maximal values in September. MPP and DOC in the C. angustifolia marsh exhibited seasonal variations and values peaked during August, while the methanogen population decreased with plant growth. Methanogen abundance correlated significantly (P?=?0.02) with DOC only for the C. lasiocarpa marsh. During the sampling period, the dominant methanogens were the Methanosaetaceae and Zoige cluster I (ZC-Ι) in the C. angustifolia marsh, and Methanomicrobiales and ZC-Ι in the C. lasiocarpa marsh. MPP correlated significantly (P?=?0.04) with DOC and methanogen population in the C. lasiocarpa marsh but only with DOC in the C. angustifolia marsh. Addition of C. lasiocarpa litter enhanced MPP more effectively than addition of C. angustifolia litter, indicating that temporal variation of substrates is controlled by litter deposition in the C. lasiocarpa marsh while living plant matter is more important in the C. angustifolia marsh. This study indicated that there was no apparent shift in the dominant types of methanogen during the growth season in the species-specific freshwater wetlands. Temporal variation of MPP is controlled by substrates and substrate-driven changes in the abundance of methanogenic archaea in the C. lasiocarpa marsh, while MPP depends only on substrate availability derived from root exudates or soil organic matter in the C. angustifolia marsh.  相似文献   

4.
The effects of elevated atmospheric CO2 (eCO2) and water table draw-down on soil carbon sequestration in an ombrotrophic bog ecosystem were examined. Peat monoliths (11 cm diameter, 25 cm deep) with intact bog vegetation were exposed to ambient or elevated (ambient + 200 mg l?1) atmospheric CO2, combined with a natural water table (level with the peat surface) or a water table draw-down (?5 cm). Eight observations per treatment were included in the study, which was conducted over a 12 week period. Concentration of dissolved organic carbon (DOC), phenolic compounds and the fluxes of CO2 and CH4 were measured. The eCO2 treatment caused an increase in the CH4 and CO2 fluxes and a small decrease in both the DOC and phenolic concentrations. The water table draw-down invoked decreases in phenolic and DOC concentrations, a decrease in CH4 flux and a small increase in CO2 flux. The combined (eCO2 + water table draw-down) treatment caused a larger than expected CH4 flux decrease and CO2 flux increase and an increase in DOC concentration. Our results suggest very different effects on the system dependent on the treatment applied. The draw-down treatment principally increased oxidation of the rhizosphere resulting in increased decomposition and as such a removal of material from the dissolved carbon pool. The data also suggest labile carbon availability may be limiting the rate of decomposition and so slowing inorganic nutrient and carbon pool turn-over. The elevated CO2 addressed the labile-carbon limitation. Under the environment of the combined treatment, these limitations were effectively removed, culminating in a destabilisation of the carbon-sequestering environment to a weaker sink (or even a source) of atmospheric carbon.  相似文献   

5.
The impact of conservation tillage practices on soil carbon has been of great interest in recent years. Conservation tillage might have the potential to enhance soil carbon accumulation and alter the depth distribution of soil carbon compared to conventional tillage based systems. Changes in the soil organic carbon (SOC) as influenced by tillage, are more noticeable under long-term rather than short-term tillage practices. The objective of this study was to determine the impacts of long-term tillage on SOC and dissolved organic carbon (DOC) status after 19 years of four tillage treatments in a Hydragric Anthrosol. In this experiment four tillage systems included conventional tillage with rotation of rice and winter fallow system (CTF), conventional tillage with rotation of rice and rape system (CTR), no-till and ridge culture with rotation of rice and rape system (NT) and tillage and ridge culture with rotation of rice and rape system (TR). Soils were sampled in the spring of 2009 and sectioned into 0–10, 10–20, 20–30, 30–40, 40–50 and 50–60 cm depth, respectively.Tillage effect on SOC was observed, and SOC concentrations were much larger under NT than the other three tillage methods in all soil depths from 0 to 60 cm. The mean SOC concentration at 0–60 cm soil depth followed the sequence: NT (22.74 g kg?1) > CTF (14.57 g kg?1) > TR (13.10 g kg?1) > CTR (11.92 g kg?1). SOC concentrations under NT were significantly higher than TR and CTR (P < 0.01), and higher than CTF treatment (P < 0.05). The SOC storage was calculated on equivalent soil mass basis. Results showed that the highest SOC storage at 0–60 cm depth presented in NT, which was 158.52 Mg C ha?1, followed by CTF (106.74 Mg C ha?1), TR (93.11 Mg C ha?1) and CTR (88.60 Mg C ha?1). Compared with conventional tillage (CTF), the total SOC storage in NT increased by 48.51%, but decreased by 16.99% and 12.77% under CTR and TR treatments, respectively. The effect of tillage on DOC was significant at 0–10 cm soil layer, and DOC concentration was much higher under CTF than the other three treatments (P < 0.01). Throughout 0–60 cm soil depth, DOC concentrations were 32.92, 32.63, 26.79 and 22.10 mg kg?1 under NT, CTF, CTR and TR, and the differences among the four treatments were not significant (P > 0.05). In conclusion, NT increased SOC concentration and storage compared to conventional tillage operation but not for DOC.  相似文献   

6.
Constructed treatment wetlands (CTWs) have been used effectively to treat a range of wastewaters and non-point sources contaminated with nitrogen (N). But documented long-term case studies of CTWs treating dilute nitrate-dominated agricultural runoff are limited. This study presents an analysis of four years of water quality data for a 1.6-ha surface-flow CTW treating irrigation return flows in Yakima Basin in central Washington. The CTW consisted of a sedimentation basin followed by two surface-flow wetlands in parallel, each with three cells. Inflow typically contained 1–3 mg-N/L nitrate and <0.4 mg-N/L total Kjeldahl N (TKN). Hydraulic loading was fairly constant, ranging from around 125 cm/d in the sedimentation basin to 12 cm/d in the treatment wetlands. Concentration removal efficiencies for nitrate averaged 34% in the sedimentation basin and 90–93% in the treatment wetlands. Total N removal efficiencies averaged 21% and 57–63% in the sedimentation basin and treatment wetlands, respectively. Area-based first-order removal rate constants for nitrate in the wetlands averaged 142–149 m/yr. Areal removal rates for nitrate in treatment wetlands averaged 139–146 mg-N/m2/d. Outflow from the CTW typically contained <0.1 mg-N/L nitrate and <0.6 mg-N/L TKN. Rates of nitrate loss in wetlands were highly seasonal, generally peaking in the summer months (June–August). Nitrate loss rates also correlated significantly with water temperature (positively) and dissolved oxygen (negatively). Based on the modified Arrhenius relationship, θ for nitrate loss in the wetlands was 1.05–1.09. The CTW also significantly affected temperature and dissolved oxygen concentration in waters flowing through the system. On average, the sedimentation basin caused an increase in temperature (+1.7 °C) and dissolved oxygen (+1.5 mg/L); in contrast the wetlands caused a decrease in temperature (?1.6 °C) and dissolved oxygen (?5.0 mg/L). Results show that CTWs with surface-flow wetlands can be extremely effective at polishing dilute non-point sources, particularly in semi-arid environments where warm temperatures and low oxygen levels in treatment wetland water promote biological denitrification.  相似文献   

7.
To obtain genetic information and to evaluate the composition of T4-type bacteriophage (phage) communities in wetlands, environmental soil and water DNAs were obtained from two natural wetlands dominated by Carex lasiocarpa and Deyeuxia angustifolia plant species, and a neighboring paddy field in Sanjiang plain of northeast China. The biomarker gene of g23, which encodes the major capsid protein of T4-type phages, was amplified with primers MZIA1bis and MZIA6, and the PCR products were cloned and sequenced. In total, 96 and 50 different g23 clones were obtained from natural wetlands and a paddy field, respectively. A larger number of clones with low levels of identity to known sequences were found in water than in soil both in the natural wetlands and the paddy field, suggesting that many of T4-type phages in wetland water and paddy floodwater in Sanjiang plain are uncharacterized. Phylogenetic analyses showed that the g23 clones in natural wetlands, irrespective of water and soil, were distinctly different from those in marine waters, lake waters, and upland black soils, but were similar to those in paddy fields. The UniFrac analysis of g23 assemblages indicated that T4-type phage community compositions were different between soils and waters, and also were different between the natural wetlands and the paddy field. In general, the global analysis of g23 clone assemblages demonstrated that T4-type phage community compositions were different among natural wetlands, marines, lakes, paddy fields, and upland black soils.  相似文献   

8.
Wetlands provide a large pool of organic matter and nutrients, and are important for maintaining material cycle balances in terrestrial ecosystems, and also help retard climate change. Land use changes in wetlands have greatly disturbed the natural evolution of wetland ecosystems. Wetland drainage and reclamation alters the physical, chemical and biological conditions of the wetland, thus significantly disturbing the material cycles, leading to significant changes in the biogeochemical processes of carbon, nitrogen and phosphorus in the wetland. The wetlands in the Sanjiang Plain are the largest area of fresh wetlands in China. However, the area has experienced major land uses changes since the 1950s; areas of the wetland have been drained and converted to arable land. Some studies have been conducted into the effects of land use change on material cycles in the Sanjiang Plain wetlands but few reports have discussed the C/N and C/P ratios and pH values as indicators of wetland degradation due to land use changes. We selected eight land uses: humus marsh (HM), marshy meadow (MM), drained humus marsh (DHM), drained marshy meadow (DMM), tillage land (TL), abandoned land (AL), natural secondary forest (NSF) and artificial forest (AF), in the Honghe area of the Sanjiang Plain. We studied changes in the total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), C/N and C/P ratios and pH values in topsoil (0–20 cm) of these eight different land uses. The possible mechanisms underlying the changes, and the significance of the C/N and C/P ratios as indicators of soil quality were also discussed. In the natural wetland, the TOC, TN and TP concentrations in the soil were high, with values of 203.5 g/kg, 20.2 g/kg and 1.44 g/kg, respectively, in HM; and 59.2 g/kg, 5.28 g/kg and 0.83 g/kg, respectively, in MM. Drainage of the HM has led to decreases in the TOC, TN and TP concentrations of about 50%. Significant decreases were also observed in TOC, TN and TP for NSF and AF compared to HM. Drained MM led to decreases in the TOC and TN of about 45%, but had little effect on TP. Marshy meadow that had been drained for more than 10 years experienced an exponential decline in TOC, TN and TP, with decreases of more than 60% for TOC and TN, and 20% for TP. However, after being abandoned for a short time (5 years), the TOC, TN and TP concentrations in soil experienced little change because poor water conditions combined with low productivity led to a large loss of soil organic matter. Land use change in the marsh areas has led to a decrease in C/N and C/P ratios of the soil, which are positively related to TOC and TN with different land uses (P < 0.05). Marsh reclamation has led to decreasing C/N and C/P ratios in soil and increasing pH values, which are negatively related to TOC, TN and TP (P < 0.05). Changes in carbon, nitrogen and phosphorus in soil with different land uses were mainly regulated by water-heat conditions and microbial activity, while the C/N and C/P ratios were mainly regulated by substrate availability. Our results suggest that C/N and C/P ratios and the pH value could be used as indicators to evaluate the quality and nutrient status of wetland soil under different land uses.  相似文献   

9.
There is a major need to understand the historical condition and chemical/biological functions of the ecosystems following a conversion of wetlands to agricultural functions. To better understand the dynamics of soil total organic carbon (TOC) and phosphorus (P) during beef cattle pastures to wetland reconversion, soil core samples were collected from the beef cattle pasture and from the natural wetland at Plant City, FL, during five summer seasons (2002–2007). The levels of TOC and soil P were significantly affected by changing land use and hydrology. Draining natural wetlands to grazed pastures resulted in very pronounced reduction of TOC from 180.1 to 5.4 g g?1. Cumulative concentrations of total phosphorus (TP) in soils (1134 mg kg?1) under drained condition are two to three times lower than those in soils (2752 mg kg?1) under flooded condition over the periods of land use reconversion. There was a declining trend (r = 0.82**; p  0.01) in total soil P from natural wetland (763 mg kg?1) to altered pastures (340 mg kg?1), largely as organic-bound P (natural wetland, 48%; grazed pastures, 44%; altered pastures, 29%). These results are important in establishing baseline information on soil properties in pasture and wetland prior to restoring and reconverting pasture back to wetland conditions. The results further suggest that changes in soil properties due to changing land use and hydrologic conditions (drying and re-wetting) could be long lasting.  相似文献   

10.
The vegetation portion of the Florida Wetland Condition Index (FWCI), an index of biological integrity, provided consistent and repeatable measures of condition at eighteen wetlands sampled in two consecutive growing seasons. The sample wetlands reflected a gradient of adjacent land use from non-impacted reference areas to wetlands imbedded within silviculture, cattle pasture and residential areas. Wetlands were described as herbaceous depression (n = 6), forested depression (n = 5) and forested strand or floodplain wetlands (n = 7), and represented different states of succession. Even though the wetlands were unique from one another and occurred across a large geographic area in Florida, the FWCI results calculated for all the wetlands were representative of adjacent land use impacts and not sensitive to natural variation. During the duration of this study, changes in weather from drought to tropical storm conditions, as well as management activities such as fire and herbivory, impacted wetlands. These effects were apparent in the change of species composition between sampling periods; 23–56% of species were different when resampled. Even though composition changed, the proportion of indicators remained consistent. The resulting condition scores suggested a one-to-one relationship between sampling periods.  相似文献   

11.
The Sanjiang Plain is the largest freshwater wetlands in Northeast China. In order to feed the growing population, about 84 % of the wetlands in this area have been converted to farmland, especially to paddy fields, since the 1950s. However, little is known about the influence of this conversion on soil microbial community composition. In this study, soil samples were collected from two natural wetlands dominated by plant species Carex lasiocarpa and Deyeuxia angustifolia and from a neighboring paddy field that was changed from wetland more than 10 years ago. The composition and diversity of bacterial communities in the soils were estimated by clone library analysis of nearly full length of 16S rDNA sequences. The results revealed that bacterial diversity was higher in paddy fields, and that the composition of bacterial communities differed among the three samples; the difference was more notable between the paddy field and two natural wetlands than between two natural wetlands. The distribution of clones into different bacterial phyla differed among soil samples, and the conversion from natural wetlands to paddy field increased the abundance of Proteobacteria and Firmicutes but decreased the abundance of Chloroflexi. About 63 % and 71 % of clones from two natural wetlands and 49 % of clones from the paddy field had <93 % similarity with known bacteria, suggesting that the majority of bacteria in natural wetland soils in the Sanjiang Plain are phylogenetically novel. In general, this study demonstrated that long-term conversion from natural wetlands to paddy field changes soil bacterial communities in the Sanjiang Plain.  相似文献   

12.
The turnover of organic carbon in rivers could represent a large source of greenhouse gases to the atmosphere and studies have suggested that of the order of 70% of the dissolved organic carbon exported from soils could be lost in rivers before it flows to continental seas. The Environmental Change Network (ECN) monitoring of the dominantly peat-covered Trout Beck catchment within the Moor House site enabled the amount of dissolved organic carbon (DOC) lost within a stream over a 20-year period to be estimated. The study compared DOC concentrations of precipitation, shallow and deep soil waters with those at the catchment outlet. The mass balance between source and outlet was reconstructed by two methods: a single conservative tracer; and based upon a principal component analysis (PCA) using multiple tracers. The study showed the two methods had different outcomes, with the PCA showing a DOC gain and the single tracer showing a DOC loss. The DOC gain was attributed to an unmeasured groundwater contribution that dominates when the river discharge is lower. The DOC loss was related to the in-stream residence time, the soil temperature and month of the year, with longer in-stream residence times, warmer soils and summer months having larger DOC losses. The single tracer study suggested a 10 year average loss of 8.77 g C m−2 year−1, which is 33.1 g CO2eq m−2 year−1, or 29% of the DOC flux from the source over a mean in-stream residence time of 4.33 h.  相似文献   

13.
Yan J  Zhu X  Zhao J H 《农业工程》2009,29(3):150-154
Effects of grassland conversion to cropland and forest on soil organic carbon (SOC), dissolved organic carbon (DOC) in the farming-pastoral ecotone of Inner Mongolia were investigated by direct field sampling. SOC content and DOC content in soil decreased after grassland were shifted to forest or cropland, in the sequence of grassland soil > forest soil > cropland soil. SOC stock declined by 18% after grassland shifted from to forest. Reclamation of cropland for 10 years, 15 years and 20 years lost SOC in 0–30 cm soil layer, by 34%, 14% and 18%, respectively, compared with that of grassland. DOC in 3 soil layers was within 21.1–26.5 mg/L in grassland, 12.1–14.6 mg/L in forest soil, and 8.0–14.0 mg/L in cropland soil. Correlation analysis indicated that SOC content and DOC content were positively dependent on total nitrogen content (p < 0.05), but negatively on bulk density or land use type (p < 0.05). DOC was positively correlated SOC (p < 0.01). Moreover, SOC content could be quantitatively described by a linear combination of land use types (p = 0.000, r2 = 0.712), and DOC content by a linear combination of two soil-related variables, land use types and SOC (p = 0.000, r2 = 0.861).  相似文献   

14.
This study is the first to report on the relationships between immature mosquitoes (larvae and pupae) and landscape and environmental habitat characteristics in wetlands associated with row crop agriculture. Indicator species analysis (ISA) was used to test for associations among mosquito species and groups of wetland sites with similar Landscape Development Intensity (LDI) values. Results indicated that Anopheles quadrimaculatus, Culex erraticus, and Psorophora columbiae were associated with agricultural wetlands (LDI > 2.0), whereas Anopheles crucians and Culex territans were associated with forested reference wetlands (LDI < 2.0) in both wet and dry years. The species fidelity to wetland type, regardless of the hydrologic regime, demonstrates these species are robust indicators of wetland condition. Data on immature mosquito assemblages were compared to selected landscape and environmental habitat variables using Akaike's Information Criterion (AICc) model selection. LDI indices, dissolved oxygen concentration, the proportion of emergent vegetation, and the proportion of bare ground in wetlands were important factors associated with the selected mosquito species. These results indicate that LDI indices are useful in predicting the distributions of disease vectors or other nuisance mosquito species across broad geographic areas. Additionally, these results suggest mosquitoes are valuable bioindicators of wetland condition that reflect land use and hydrologic variability.  相似文献   

15.
Accurate and timely rice mapping is important for food security and environmental sustainability. We developed a novel approach for rice mapping through Combined Consideration of Vegetation phenology and Surface water variations (CCVS). Variation of the Land Surface Water Index (LSWI) in rice fields was relatively smaller than that in other crops fields during the period from tillering to heading dates. Therefore, the ratios of change amplitude of LSWI to 2-band Enhanced Vegetation Index 2 (EVI2) during that period were utilized as the primary metric for paddy rice mapping. This algorithm was applied to map paddy rice fields in southern China using an 8-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) in 2013. The resultant rice cropping map was consistent with the agricultural census data (r2 = 0.8258) and ground truth observations (overall accuracy = 93.4%). Validation with Landsat Thematic Mapper images in test regions also revealed its high accuracy (with overall accuracy of 94.3% and kappa coefficient of 0.86). The proposed CCVS method was more robust to intra-class variability and other related uncertainties compared with other related methods in rice mapping. Its successful application in southern China revealed its efficiency and great potential for further utilization.  相似文献   

16.
In constructed wetlands, solids accumulation may have two consequences with opposing effects on treatment efficiency: it decreases the longevity by reducing void space and it enhances biological activity by favoring biofilm development. The goal of our study was to estimate the effect of plants (presence and species) and artificial aeration on solids accumulation (volatile and inorganic). The horizontal and vertical distribution of solids was sampled using solids traps in 12 constructed wetland mesocosms (5 years old). Microbial density and activity were estimated in the biological fraction of the sampled solids. The effect of plant presence reduced accumulated solids by 26% and sulphide content by 50% sulphide content. There was more solids accumulation in Typha angustifolia units than in Phragmites australis. Also, T. angustifolia generated more biological activities at the surface and close to the inlet while conditions were more homogeneous throughout P. australis units. Aeration (1) stimulated biofilm development at the inlet of planted beds, (2) seemed to reduce mineral matter accumulation and (3) generated the same pattern of activities in planted beds enabling to reach a total nitrogen removal rate of up to 0.65 g N m?2 d?1.  相似文献   

17.
《Aquatic Botany》2002,72(3-4):219-233
We studied the potential role of dissolved inorganic carbon (DIC) in determining vegetation dominance of Potamogeton pectinatus L. and Chara aspera Deth. ex Willd. by monitoring the seasonal dynamics of DIC in a shallow lake and comparing the use of DIC of the two species. The HCO3-concentration in summer dropped from 2.5 to <0.5 mM with seasonally increasing Chara biomass, whereas outside the vegetation concentrations remained at 2.5 mM. Inside Potamogeton spp. vegetation DIC decreased from 2.5 to ca. 0.75 mM HCO3. A growth experiment showed ash-free biomass for P. pectinatus was nearly two times as high as for C. aspera at 3 mM HCO3, but almost two times lower at 0.5 mM than at 3.0. In a separate experiment, P. pectinatus precultured at a relatively low HCO3-level had a lower net photosynthetic rate (Pmax, 0.1 mmol O2 g−1 DW h−1) than C. aspera (Pmax, 0.1 mmol O2 g−1 DW h−1) over the range of HCO3-concentrations tested (Pmax, 0.14 mmol O2 g−1 DW h−1). In response to CO2 no significant differences between the compensation points (P. pectinatus, 28 mM; C. aspera 66 mM), were observed, but the photosynthetic rate increased faster than for C. aspera than for P. pectinatus. Under field conditions, the use of CO2 is not important since inside vegetation CO2-concentrations were below 10 μM, and thus, not available for photosynthesis of either species during the main part of the growth season. It is suggested that C. aspera may be a better competitor for HCO3 than P. pectinatus in conditions with a low HCO3 supply. As HCO3 is a strong limiting factor for growth inside the vegetation and probably the only carbon source available, the superior ability of C. aspera to use HCO3 may be an important factor explaining its present dominance in Veluwemeer.  相似文献   

18.
Agriculture plays an important role in greenhouse gases (GHGs) emissions and reactive nitrogen (Nr) loss. Therefore, carbon (C) and nitrogen (N) footprint reductions in agro-ecosystem have become an increasingly hot topic in global climate change and agricultural adaptation. The objective of this study was to assess the C footprint (CF) and N footprint (NF) of double rice (Oryza sativa L.) production using life cycle assessment method in Southern China. The results showed that fertilizer application and farm machinery operation contributed the most to both GHGs and Nr emissions from agricultural inputs in the double rice production process. The CF for the early, late, and double rice was 0.86, 0.83, and 0.85 kg CO2-eq kg−1 year−1 at yield-scale, respectively. In addition, the NF was 10.47, 10.89, and 10.68 g N-eq kg−1 year−1 at yield-scale for the early, late and double rice, respectively. The largest fraction of CF and NF of double rice was the share of CH4 emission and NH3 volatilization from the paddy field, respectively. Higher CF and NF at yield-scale for Guangdong, Guangxi, and Hainan provinces were presented, compared to the average level in double rice cropping for the region, while smaller than those of Jiangxi, Hubei, and Hunan provinces. Some effective solutions would be favorable toward mitigating climate change and eutrophication of the double rice cropping region in Southern China, including reduction of fertilizer application rates, improvements in farm machinery operation efficiencies, and changes in regional allocation of double rice cropping areas.  相似文献   

19.
Complex changes in carbon sources and sinks caused by rapid urbanization have been observed with extensive changes in the quantity, structure, and spatial pattern of land use types. Based on the modified Carnegie-Ames-Stanford Approach model and on gray relational analysis, we analyzed the influence of land use changes on carbon sinks and emissions in Guangzhou from 2000 to 2012. The aim was to identify suitable options for built-up land expansion that would allow for minimal carbon losses. The key results were as follows: (1) Built-up land increased by 118.91% in Guangzhou city over the study period, with this expansion taking the form of concentric circles extending around the old Yuexiu district. (2) Carbon emissions over the period of analysis significantly exceeded carbon sink capabilities. The total carbon sink decreased by 30.02%, from 535.40 × 103 t to 374.6 × 103 t. Total carbon emissions increased by 1.89 times, from 13.73 × 106 t to 39.67 × 106 t; 80% of carbon emissions were derived from energy consumption. (3) There were large differences in the extent of carbon sink losses at different scales of built-up land expansion and land use change. In Guangzhou, the loss of carbon sink is small when cultivated land (though not prime farmland) and water bodies are converted to built-up land on a small scale. The loss of carbon sink is much smaller when grasslands are converted to built-up land on a large scale. However, forested land, which has excellent carbon sink functions, should not be converted. (4) Changes in carbon sinks were mainly affected by natural factors and land urbanization. Changes in carbon emissions were mainly affected by population urbanization, economic urbanization, and land urbanization. (5) To achieve “economical and intensive use of land”, “urban growth boundary” and “ecological red lines” should be determined for government policies on land use management. These factors have great significance for “increasing carbon sinks and reducing carbon emissions” in urban ecological systems.  相似文献   

20.
Wetland creation is a common practice for compensatory mitigation in the United States. Vegetation attributes have been used as a quick measure of mitigation success in most post-creation monitoring, while little attention has been paid to soils that provide the substrate for flora and fauna to establish and develop. Created wetland soils are often found not indicative of ‘hydric soil’ with a lack of development of physicochemical properties (i.e., bulk density, moisture content, and carbon and nitrogen contents) comparable to those in natural wetlands. Moreover, soil bacterial communities are rarely examined though they are integrally involved in biogeochemical functions that are critical for ecosystem development in created wetlands. We analyzed soil physicochemistry and profiled soil bacterial community structure using amplicon length heterogeneity polymerase chain reaction (LH-PCR) of 16S ribosomal DNA in three relatively young wetlands (<10 years old) created in the Piedmont region of Virginia. We examined the data by site and by specific conditions of each site (i.e., induced microtopography and hydrologic regime). Multidimensional scaling (MDS) and analysis of similarity (ANOSIM) showed clear clustering and significant differences both in soil physicochemistry (Global R = 0.70, p = 0.001) and in soil bacterial community profiles (Global R = 0. 77, p = 0.001) between sites. Soil physicochemistry (Global R = 1, p = 0.005) and bacterial community structure (Global R = 0.79, p = 0.005) of soils significantly differed by hydrologic regime within a wetland, but not by microtopography treatment. A significant association was found between physicochemistry and bacterial community structure in wetland soils, revealing a close link between two attributes (ρ = 0.39, p = 0.002). C/N (carbon to nitrogen) ratio was the best predictor of soil bacterial community patterns (ρ = 0.56, p = 0.001). The diversity of soil bacterial community (Shannon's H′) differed between sites with a slightly higher diversity observed in a relatively older created wetland, and seemed also fairly determined by hydrologic regime of a site, with a relatively dry site being more diverse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号