首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to assess the suitability of sewage sludge use for mung bean {Vigna radiata L. cv. Malviya janpriya (HUM 6)} plants by evaluating the growth, and yield responses, nutritional quality and heavy metal accumulation at different sewage sludge amendment (SSA) rates. Sewage sludge amendment modified the physico-chemical properties of soil by decreasing pH and increasing organic carbon, total iron and heavy metals. Plants showed increments in shoot length, leaf area and total biomass at all SSA rates, but root length increased only up to 9 kg m?2 SSA rates. Plants grown at different SSA rates showed higher nutrients and heavy metals in seeds, but protein content declined. Sewage sludge application caused about 39, 76 and 60% more yield at 6, 9 and 12 kg m?2 treatments, respectively. Concentrations of Pb and Ni in grains were higher than the Indian permissible limits at and above 9 kg m?2 and of Cd at 12 kg m?2 SSA rates.The study suggests that SSA at a rate lower than 9 kg m?2 may be recommended due to better fertilizing value for soil and promoting mung bean yield. Higher rate of sewage sludge application leads to elevated accumulation of heavy metals in seeds, which limits the suitability for human consumption.  相似文献   

2.
Mangrove wetlands are important in the removal of nutrients, heavy metals, and organic pollutants from wastewater within estuarine systems due to the presence of oxidized and reduced conditions, periodic flooding by incoming and outgoing tides, and high clay and organic matter content. This study investigated the removal efficiency of nutrients and heavy metals from wastewater by the mangrove Sonneratia apetala Buch-Ham in a simulated wetland. Eight different treatments, namely, three concentration levels of wastewaters, with and without planting of the mangrove species, and one control (with salted water) each for both with and without planting of the mangrove species, were employed in this study. Results showed that the amounts of total mangrove biomass from different treatments were in the following order: PL-TW (planted with ten times higher-than-normal wastewater concentration) > PL-FW (planted with five times higher-than-normal wastewater concentration) > PL-SW (planted with normal wastewater concentration) > PL-NW (planted with no wastewater), whereas the magnitude of the heavy metal contents in the biomass was in the following order: Cu > Pb > Cd > Zn. Very good linear correlations existed between the biomass and the nutrients or heavy metals. The Sonneratia apetala Buch-Ham species had its own selectivity for uptake of heavy metals regardless of the initial heavy metal contents and was more effective in the removal of nutrients than heavy metals. Our study suggested that mangrove wetlands with Sonneratia apetala Buch-Ham species had great potential for the removal of nutrients and heavy metals in coastal areas.  相似文献   

3.
The hypothesis tested in this study was if medicinal plants could be grown as alternative crops in heavy metal polluted soils without contamination of the final marketable produce. Furthermore, medicinal crops may offer a phytoremediation option for mildly heavy metal polluted agricultural soils. The effect of metal-enriched soils was evaluated in five medicinal species (Bidens tripartita L., Leonurus cardiaca L., Marrubium vulgare L., Melissa officinalis L. and Origanum heracleoticum L.). Soils were sampled in the vicinities of the Non-Ferrous Metals Combine (Pb–Zn smelter) near Plovdiv, Bulgaria, from plots at 0.5 km (soil 1), 3 km (soil 2), 6 km (soil 3) and 9 km (control soil) from the smelter. Cadmium, Pb and Zn concentration in soil 1 were above the critical total (HNO3-extractable) concentrations for these elements in soils. Generally, heavy metals in soil 1 decreased dry mater yields of the five species relative to the control. However, the essential oil content of M. vulgare, M. officinalis and O. heracleoticum was within the usual range for respective species and was not affected by the treatments. The overall metal uptake was in the order: B. tripartita > M. vulgare > O. heracleoticum > L. cardiaca > M. officinalis for Cd, L. cardiaca = M. vulgare > B. tripartita = M. officinalis = O. heracleoticum for Pb, L. cardiaca = M. vulgare > O. heracleoticum > B. tripartita = M. officinalis for Cu and B. tripartita > L. cardiaca = M. vulgare > M. officinalis = O. heracleoticum for Mn and Zn. Overall, metal concentration in plant parts was in the order: roots > leaves > flowers > stems for Cd, Pb and Cu, leaves > roots > flowers > stems for Mn and Zn. The concentration of Cd, Pb, Cu and Zn in plant tissue correlated to the exchangeable (EXCH) and the carbonate (CARB) bound fractions of metals in soil. Heavy metals caused disruptions of the plasma membrane of some root cortical cells and alterations in chloroplasts thylakoids in plants grown in soil 1. Metal content in teas prepared from the species was negligible, the essential oils were free of metals. Generally, the transfer factor (TF) was less than 1, indicating the tested species did not have a significant phytoextraction potential. This study demonstrated the three essential oil species M. vulgare, M. officinalis and O. heracleoticum can be grown as alternative high-value crops in metal polluted agricultural soils around the smelter and provide metal-free marketable produce.  相似文献   

4.
The hypothesis tested in this study was if medicinal plants could be grown as alternative crops in heavy metal polluted soils without contamination of the final marketable produce. Furthermore, medicinal crops may offer a phytoremediation option for mildly heavy metal polluted agricultural soils. The effect of metal-enriched soils was evaluated in five medicinal species (Bidens tripartita L., Leonurus cardiaca L., Marrubium vulgare L., Melissa officinalis L. and Origanum heracleoticum L.). Soils were sampled in the vicinities of the Non-Ferrous Metals Combine (Pb–Zn smelter) near Plovdiv, Bulgaria, from plots at 0.5 km (soil 1), 3 km (soil 2), 6 km (soil 3) and 9 km (control soil) from the smelter. Cadmium, Pb and Zn concentration in soil 1 were above the critical total (HNO3-extractable) concentrations for these elements in soils. Generally, heavy metals in soil 1 decreased dry mater yields of the five species relative to the control. However, the essential oil content of M. vulgare, M. officinalis and O. heracleoticum was within the usual range for respective species and was not affected by the treatments. The overall metal uptake was in the order: B. tripartita > M. vulgare > O. heracleoticum > L. cardiaca > M. officinalis for Cd, L. cardiaca = M. vulgare > B. tripartita = M. officinalis = O. heracleoticum for Pb, L. cardiaca = M. vulgare > O. heracleoticum > B. tripartita = M. officinalis for Cu and B. tripartita > L. cardiaca = M. vulgare > M. officinalis = O. heracleoticum for Mn and Zn. Overall, metal concentration in plant parts was in the order: roots > leaves > flowers > stems for Cd, Pb and Cu, leaves > roots > flowers > stems for Mn and Zn. The concentration of Cd, Pb, Cu and Zn in plant tissue correlated to the exchangeable (EXCH) and the carbonate (CARB) bound fractions of metals in soil. Heavy metals caused disruptions of the plasma membrane of some root cortical cells and alterations in chloroplasts thylakoids in plants grown in soil 1. Metal content in teas prepared from the species was negligible, the essential oils were free of metals. Generally, the transfer factor (TF) was less than 1, indicating the tested species did not have a significant phytoextraction potential. This study demonstrated the three essential oil species M. vulgare, M. officinalis and O. heracleoticum can be grown as alternative high-value crops in metal polluted agricultural soils around the smelter and provide metal-free marketable produce.  相似文献   

5.
Pot experiments were performed to evaluate the phytoremediation capacity of plants of Atriplex halimus grown in contaminated mine soils and to investigate the effects of organic amendments on the metal bioavailability and uptake of these metals by plants. Soil samples collected from abandoned mine sites north of Madrid (Spain) were mixed with 0, 30 and 60 Mg ha−1 of two organic amendments, with different pH and nutrients content: pine-bark compost and horse- and sheep-manure compost. The increasing soil organic matter content and pH by the application of manure amendment reduced metal bioavailability in soil stabilising them. The proportion of Cu in the most bioavailable fractions (sum of the water-soluble, exchangeable, acid-soluble and Fe–Mn oxides fractions) decreased with the addition of 60 Mg ha−1 of manure from 62% to 52% in one of the soils studied and from 50% to 30% in the other. This amendment also reduced Zn proportion in water-soluble and exchangeable fractions from 17% to 13% in one of the soils. Manure decreased metal concentrations in shoots of A. halimus, from 97 to 35 mg kg−1 of Cu, from 211 to 98 mg kg−1 of Zn and from 1.4 to 0.6 mg kg−1 of Cd. In these treatments there was a higher plant growth due to the lower metal toxicity and the improvement of nutrients content in soil. This higher growth resulted in a higher total metal accumulation in plant biomass and therefore in a greater amount of metals removed from soil, so manure could be useful for phytoextraction purposes. This amendment increased metal accumulation in shoots from 37 to 138 mg pot−1 of Cu, from 299 to 445 mg pot−1 of Zn and from 1.8 to 3.7 mg pot−1 of Cd. Pine bark amendment did not significantly alter metal availability and its uptake by plants. Plants of A. halimus managed to reduce total Zn concentration in one of the soils from 146 to 130 mg kg−1, but its phytoextraction capacity was insufficient to remediate contaminated soils in the short-to-medium term. However, A. halimus could be, in combination with manure amendment, appropriate for the phytostabilization of metals in mine soils.  相似文献   

6.
Soil is a non-renewable resource and its preservation is essential for food security, ecosystem services and our sustainable future. Simultaneously, it is a major challenge to substitute non-renewable fossil based resources with renewable resources to reduce environmental load. In order to check soil erosion vis-a-vis degradation of sloppy lands of rainfed maize–wheat rotation system, fertilization with organic manure supplemented with inorganic fertilizers is required. In order to address these issues, substitution of 50% NPK through four organic manures viz. farmyard manure (FYM), vermicompost (VC), poultry manure (PM) and in situ green manuring (GM) of sunnhemp (Crotalaria juncea L.) were evaluated against 100% NPK through inorganic fertilizers and through FYM for energy budgeting and emergy synthesis during 2009–2014. Integrated use of FYM along with 50% NPK fertilizers could maintain the highest energy ratio (7.3), human energy profitability (142.4), energy productivity (0.22 kg MJ−1), and energy profitability (6.3 MJ ha−1) over other treatments. However, GM and inorganic fertilizers on equal NPK basis maintained the highest energy intensiveness (24.61 MJ US $−1) and exhibited higher emergy yield ratio (2.66) and lower emergy investment ratio (0.60) and environmental loading ratio (3.74) which resulted into higher environmental sustainability index (0.71) over other treatments. Fertilization with organic manure (FYM) alone could not compete with other fertilized options to energy budgeting and emergy synthesis except specific energy. The study demonstrated that innovative integrated nutrient management of chemical fertilizers and organic manures particularly FYM for energy budgeting and GM for emergy synthesis may be considered as feasible and environment-friendly options for soil conservation, thereby benefiting a 50% saving on costly chemical fertilizers in non-OPEC countries which import most of its phosphorus and potassium fertilizers.  相似文献   

7.
Several studies have argued that under field conditions plant–soil feedback may be related to the local density of a plant species, but plant–soil feedback is often studied by comparing conspecific and heterospecific soils or by using mixed soil samples collected from different locations and plant densities. We examined whether the growth of the early successional species Jacobaea vulgaris in soil collected from the field is related to the local variation in plant density of this species. In a grassland restoration site, we selected eight 8 m × 8 m plots, four with high and four with low densities of J. vulgaris plants. In 16 subplots in each plot we recorded the density and size of J. vulgaris, and characteristics of the vegetation and the soil chemistry. Soil collected from each subplot was used in a greenhouse pot-experiment to study the growth of J. vulgaris, both in pure field soil and in sterile soil inoculated with a small part of field soil.In the field, flowering J. vulgaris plants were taller, the percentage of rosette plants was higher and seed density was larger in High- than in Low-density plots. In the pot experiment, J. vulgaris had a negative plant–soil feedback, but biomass was also lower in soil collected from High- than from Low-density plots, although only when growing in inoculated soil. Regression analyses showed that J. vulgaris biomass of plants growing in pure soil was related to soil nutrients, but also to J. vulgaris density in the field.We conclude that in the field there is local variation in the negative plant–soil feedback of J. vulgaris and that this variation can be explained by the local density of J. vulgaris, but also by other factors such as nutrient availability.  相似文献   

8.
In this study, a survey for the spatial distribution of heavy metals in Hengshuihu Wetland of China was conducted. Samples were collected from three compartments, water, sediment, and reed (Phragmites communis Trin), at different sites, and their contents of heavy metals, including mercury (Hg), arsenic (As), chromium (Cr), lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd), were analyzed. The results showed heavy metals in the sediments distributed in the Buffer Zone and Wangkou Sluice area at concentrations relatively higher than those in other areas, while concentrations in the Core Zone were lower. The heavy metal concentrations of water bodies in all areas, except those for Hg and Pb, were lower than the cutoff values for the first-grade water quality that was set as the highest standard to protect the national nature reserves. The heavy metal distributions among the three compartments were significantly different, with the following order: sediment > plant > water. In the reeds, accumulated amounts of different heavy metals varied in the following order: Hg > Zn > As > Cu > Cr. Concentrations of heavy metals only showed weak correlations between the water bodies and the sediments. Concentrations of heavy metals (except Hg and Cr) had no corrections between the sediments and the reeds. The distribution of mercury indicated that it enters the lake mainly from the atmosphere and outside water bodies. The concentrations of As, Hg, Cr, Cu and Zn in different parts of the reeds were detected and their abundances were ranked in the following order: root > leaf > stem.  相似文献   

9.
The aim of the present study was to assess the temporal variation of the heavy metal content (Co, Cu, Fe, Mn, Ni, Pb, and Zn) in surface water and sediments in relation to agricultural practices in the Xanaes River (Córdoba, Argentina). A second objective was to analyze possible relationships between the input of heavy metals on surface water and sediment, heavy metal accumulation and physiological changes in the aquatic plant Myriophyllum aquaticum. Samples were taken from the river at two contrasting sites (between April 2010 and August 2010): (1) a pristine area (mountain site), and (2) an area with intensive agricultural activity located at 60 km down river (agricultural site). The total concentration of heavy metals in surface water was higher in samples collected at the agricultural site but in sediments only the Mn concentration was higher than at the mountain site. The Fe and Mn concentrations in surface water at the agricultural site exceeded the recommended values for Argentinean Legislation of 300 μg L−1 for Fe and 100 μg L−1 for Mn. The accumulations of Zn and Mn in M. aquaticum were higher at the agricultural site and more elevated than the Zn and Mn concentrations in sediments at the same sites and sampling times. At the agricultural site, temporal variations of Cu, Fe and Zn were relatively similar for plants and water column, but the levels of the metals in plants were displaced over time. These results suggest that the levels of pollutants in the river came in pulses from the riverbank. These results show the potential use of M. aquaticum as a suitable accumulation biomonitor at the early stages of heavy metal pollution in rivers.  相似文献   

10.
Cedrus deodara and Sabina chinensis are widely planted in North China. The needles of C. deodara and S. chinensis were sampled in the urban, suburban, and rural districts of Tianjin where the atmospheric conditions are significantly different according to the environmental monitoring results. The Cu, Mn, Zn, and Pb concentrations in the samples were examined via ICP. The resistance indexes, and the malonic aldehyde (MDA), soluble sugar, and free proline levels were also determined. The Pearson coefficients between the resistance indexes and the heavy metal contents were analyzed to compare the two plants abilities to accumulate heavy metal and their resistance characteristics. The results indicated that the heavy metal concentrations had the following significant trend: urban areas > suburban areas > rural areas. In urban areas, the Mn, Zn, and Pb concentrations in C. deodara were as high as 2024.77 mg·kg? 1, 2397.07 mg·kg? 1, and 130.07 mg·kg? 1, significantly higher than in S. chinensis. The Mn, Zn, and Pb concentrations in C. deodara were extremely significantly positively correlated (P < 0.01), but no significant correlations were noted in S. chinensis. The MDA, soluble sugar, and free proline concentrations in C. deodara increased as the heavy metal contents rose along the urban–rural gradient, and were positively correlated with the plant heavy metal contents. They were much higher than the contents in S. chinensis where no differences were noted among the sampling sites. In conclusion, the heavy metal resistance methods used by C. deodara and S. chinensis are different. C. deodara could absorb and accumulate many heavy metals, mainly through increased physiological resistance to stress. In contrast, S. chinensis resistance relied on avoiding contact with the metals and by reducing absorption. These differences are associated with the biological characteristics of C. deodara and S. chinensis, and are closely connected with their coniferous and morphological differences.  相似文献   

11.
The concentrations of heavy metals in the roots, rhizomes, stems and leaves of the aquatic macrophyte Phragmites australis (common reed), and in the corresponding water and sediment samples from the mouth area of the Imera Meridionale River (Sicily, Italy), were investigated to ascertain whether plant organs are characterized by differential accumulation, and to test the suitability of the various organs for heavy metal biomonitoring of water and soil. Heavy metals considered were Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn. Results showed that belowground organs were the primary areas of metal accumulation. In particular, metal concentrations in plant organs decreased in the order of root > rhizome  leaf > stem. All four organs showed significant differences in concentration for Cr, Hg, Mn, Zn, thus suggesting low mobility from roots to rhizomes and to aboveground organs. Although the organs followed different decreasing trends of metal concentration, the trend Mn > Zn > Pb > Cu was found in each plant organ. Mn showed the highest concentrations in all organs whereas the lowest concentrations regarded Cd and Cr in the belowground and aboveground organs, respectively. The toxic threshold was exceeded by Cr in roots, rhizomes and leaves, Mn in roots and leaves, Ni in roots. The highest average concentrations were found as follows: Cd, Hg, Pb, Zn in root, Cr, Mn, Ni in sediment, Cu in water. Positive linear relationships were found between heavy metal concentrations in all plant organs and those in water and sediment, thus indicating the potential use of such organs for pollution monitoring of water and sediment. Advantages of using plant species as biomonitors, especially Phragmites australis, were also discussed.  相似文献   

12.
Vicia faba L. seeds were grown in a pot experiment on soil, mine tailings, and a mixture of both to mimic field situations in cultivated contaminated areas near mining sites. Metals in the substrates and their translocation in root, stem and leaf tissues were investigated, including morphological responses of plants growing on mine tailings. Metal concentration – and generally bioaccumulation – was in the order: roots > leaves > stems, except Pb and Cd. Translocation was most significant for Zn and Cd, but limited for Pb. Metal concentration in root and leaf was not proportional to that in the substrates, unexpectedly the minimum being observed in the mixed substrate whilst plant growth was retarded by 20% (38% on tailings). Calcium, pH, organic matter and phosphorus were the main influencing factors for metal translocation. The ultrastructure of V. faba L. cells changed a lot in the mine tailings group: root cell walls were thickened with electron dense Pb, Zn and C particles; in chloroplasts, the number of plastoglobuli increased, whereas the thylakoids were swollen and their number decreased in grana. Finally, needle-shaped crystalline concretions made of Ca and P, with Zn content, were formed in the apoplast of the plants. The stratagems of V. faba L. undergoing high concentrations of toxic metals in carbonate substrate, suggest root cell wall thickening to decrease uptake of toxic metals, a possible control of metal transport from roots to leaves by synthesizing phytochelators–toxic metal complexes, and finally a control of exceeded Ca and metal concentration in leaves by crystal P formation as ultimate response to stress defense. The geochemical factors influencing metal availability, guaranty a reduction of metal content in plant growing on mixed tailing/soil substrate as far as carbonate are not completely dissolved.  相似文献   

13.
Studies in different ecosystems have shown that plants take up intact amino acids directly but little is known about the influence of free amino acid concentrations in the soil on this process. We investigated the effect of three different soil amino acid N concentrations (0.025, 0.13 and 2.5 μg N g?1 soil) on direct uptake of four dual labelled (15N, 13C) amino acids (glycine, tyrosine, lysine, valine) in a greenhouse experiment using Anthoxantum odoratum as a model plant.Our results revealed that 8–45% of applied 15N was incorporated into plant root and shoot tissue 48 h after labelling. Additional 13C enrichment showed that 2–70% of this incorporated 15N was taken up as intact amino acid. Total 15N uptake and 15N uptake as intact amino acids were significantly affected by soil amino acid N concentrations and significantly differed between the four amino acids tested.We found a positive effect of soil amino acid concentrations on uptake of mineralized 15N relative to amino acid concentrations for all amino acids which was presumably due to higher diffusion rates of mineralized tracer to the root surface. However, intact amino acid uptake relative to amino acid concentrations as well as the proportion of total 15N taken up directly decreased with increasing soil amino acid N concentrations for all amino acids, irrespective of their microbial degradability. This effect is most likely controlled by the mineral N concentration in soil and perhaps in plants which inhibits direct amino acids uptake.Overall, we conclude that plant internal regulation of amino acid uptake controlled by mineral N is the main mechanism determining direct uptake of amino acids and thus a lower contribution of intact amino acid uptake to the plants N nutrition has to be expected for higher amino acid concentrations accompanied by mineralization in soil.  相似文献   

14.
Muscodor cinnamomi was selected and investigated for its in vitro ability to produce indole-3-acetic acid (IAA) to solubilize different toxic metal (Ca, Co, Cd, Cu, Pb, Zn)-containing insoluble minerals and tolerance to metals, herbicides and an insecticide. The results indicated that this fungus is able to produce IAA (45.36 ± 2.40 μg ml−1) in liquid media. This phytohormone stimulated coleoptile elongation, and increased seed germination and root elongation of tested plants. The metal tolerance and solubilizing ability depended on the type of insoluble minerals. M. cinnamomi showed the highest growth tolerance on Ca-containing media at 150 mM, followed by Zn-containing media at 100 mM and Cd-containing media at 10 mM. This fungus tolerated the three herbicides (2,4-d-dimethylammonium, glyphosate and paraquat dichloride) and an insecticide (methomyl) at the recommended dosages for field application. Moreover, M. cinnamomi completely controlled Rhizoctonia solani AG-2 root rot in tomato plants, and increased root length, shoot dry weight and root dry weight. This is the first report of in vitro IAA production, solubilization of insoluble metal minerals, and tolerance to herbicides, an insecticide and metals as well as the plant growth promoting ability of M. cinnamomi.  相似文献   

15.
The aim of this study was to investigate the influence of ectomycorrhizal fungi (EMF) on the architecture of and nitrogen (N) partitioning in young beech (Fagus sylvatica) plants in response to different light regimes and water deprivation. We hypothesized that EMF modify biomass partitioning and architecture of young beech plants by increased N uptake in comparison with non-mycorrhizal (NM) plants and that therefore, the drought responses of EM and NM plants diverge. We anticipated that full light-exposed plants were more drought tolerant due to improved water status and nutrition, whereas shade-acclimated EM plants were more drought susceptible because of decreased mycorrhizal colonization. To test these hypotheses seedlings were grown in native or sterilized forest soil. To avoid effects of soil pretreatment NM and EM plants were transplanted into sand-peat culture systems and exposed to shade, drought or the combination of both factors. Shade resulted in reduced root biomass production decreasing the root-to-shoot ratio. Mild drought stress (pre-dawn water potential [Ψpd] = −1.3 MPa) did not affect biomass partitioning. EMF colonization did not increase plant biomass, but had strong effects on root architecture: the numbers of root tips as well as the absolute and specific root lengths were increased because of formation of thin roots, especially in the diameter classes from 0.2 to 0.8 mm. In contrast to our expectation N uptake of well irrigated EM plants was not increased despite their larger potential for soil exploitation. Overall, EM plants exhibited higher amounts of carbon fixed per unit of N taken up than NM plants and shifted N partitioning towards the roots. Beneficial effects of EMFs were apparent under mild drought but the responses differed depending on the light availability: shaded EM plants showed a delay in the decrease of Ψpd; light exposed EM plants showed increased N uptake compared with NM beeches. These results indicate that EMFs are involved in mediating divergent responses of beech to drought depending on the light availability.  相似文献   

16.
Biochemical reactions to Cu, Cd, Zn and Pb in the aquatic moss Fontinalis antipyretica were studied in order to characterize the physiological background of the metal response. Chlorophyll fluorescence and intracellular metal localization and stress protein levels were measured. Exposure to 25 or 100 μM Cu over a 7-day period resulted in a decline of chlorophyll fluorescence to about 70% and 52%, respectively. Up to 100 μM Cd caused a decrease in chlorophyll fluorescence to 75%. With all metals used at 25–100 μM concentrations, the intracellular uptake increased. For all metals investigated at 25–100 μM, the intracellular uptake increased. Maximum values were reached at 100 μM Cu, Pb, Zn or Cd exposure. As shown by analytical electron microscopy (EDX, EELS) moss material treated with 50 μM Cu exhibited reduced sulphur levels in the cytoplasm and an increase in phosphate in vacuolar dense particles. EEL-spectra indicated that Cu is chelated in the cytoplasm by SH-groups and coprecipitated with orthophosphate in vacuoles. To monitor the stress response at the protein level, heavy metal induced heat shock protein 70 (hsp70) was measured. An antibody was raised against conserved plant metallothionein p2 motifs derived from Brassica juncea. In all metal-treated samples the antibody bound to proteins of about 8 kDa. However, sequencing failed to reveal significant homologies to known proteins. These experiments provide for the first time results on protein level after heavy metal stress in the aquatic bioindicator moss.  相似文献   

17.
Aluminium toxicity is one of the major limiting factors of crop productivity on acid soils. High levels of available aluminium in soil may induce phosphorus deficiency in plants. This study investigates the influence of Aluminium (Al) on the phosphate (Pi) uptake of two Phaseolus species, Phaseolus vulgaris L. var. Red Kidney and Phaseolus lunatus L. The two bean species were treated first with solutions of Al at different concentrations (0, 25, 50 and 100 μM, pH 4.50) and second with solutions of Pi (150 μM) at pH 4.50. The higher the Al concentration the higher the Al concentration sorbed but P. vulgaris L var. Red Kidney adsorbed significantly more Al than P. lunatus L. Both species released organic acids: P. vulgaris L var. Red Kidney released fumaric acid and P. lunatus L. fumaric and oxalic acids which could have hindered further Al uptake.The two bean species showed a sigmoid Pi uptake trend but with two different mechanisms. P. vulgaris L var. Red Kidney showed a starting point of 3 h whereas P. lunatus L. adsorbed Pi immediately within the first minutes. In addition, P. vulgaris L var. Red Kidney presented significantly higher Pi uptake (higher uptake rate ‘k’ and higher maximum adsorption ‘a’ of the kinetic uptake model). The Al treatments did not significantly influence Pi uptake. Results suggest that P. lunatus L. might adopt an external Al detoxification mechanism by the release of oxalic acid. P. vulgaris L var. Red Kidney on the other hand seemed to adopt an internal detoxification mechanism even if the Al sorbed is poorly translocated into the shoots. More detailed studies will be necessary to better define Al tolerance and/or resistance of Phaseolus spp.  相似文献   

18.
Sediments of the Dohezar River in Tonekabon contain high levels of heavy metals and therefore, they were chemically analyzed to determine concentrations of these elements. In fact, this research intended to evaluate the ecological risks of the heavy metals As, Pb, Cr, Zn, and Cu in the river sediments. Contamination indices such as enrichment factor and contamination factor, potential ecological risk index for each heavy metal (Ei), and potential ecological risk index (RI) were evaluated. Considering the average concentrations of the heavy metals at all of the Stations, the maximum average for the elements was zinc and the minimum was copper. Therefore, the averages of changes in the concentrations of the elements are Zn > Cr > Pb > As > Cu. Considering calculation of the enrichment factors for the heavy metals according to the EF classification table, the maximum number of Stations (43.02%) with respect to contamination with As were in class 4(moderately severe enrichment). With respect to enrichment of Pb, Zn, Cr, and copper, the rest of the stations with 83.72, 77.91, 86.05, and 69.77%, respectively, were in class 2 (minor enrichment). Considering the high concentrations of the studied elements in the sediments of the region compared to the background value, and based on calculations related to contamination factor, arsenic with the average of 11.9 exceeded the most from the standard limit. It was followed by Pb with 2.2, zinc with 2, Cr with 1.8, and Cu with1.6 (copper exceeding the least from the standard limit). With respect to Ei (the potential ecological risk index for each heavy metal), arsenic was the element with the highest environmental risk. Moreover, with respect to RI (potential ecological risk index), most Stations were in the low-grade range (low environmental risk). This research used statistical studies on correlation coefficients and cluster analysis to find the origin of the heavy metals in the sediments of the region. The low correlation between the heavy metals in the soil can indicate they probably did not have the same source. Moreover, these elements have different geochemical behaviors due to their low correlation. Finally, the kriging method was employed to extract interpolation maps of the spatial distribution for each of the heavy metals.  相似文献   

19.
The aim of this study is to determine the short-term effects of fire on nitrogen and phosphorus soil concentration in heathland sites dominated by Calluna vulgaris in the Cantabrian Mountain range (NW Spain). Three C. vulgaris heathlands sites (San Isidro, Riopinos I and Riopinos II) were selected. In June 2005, one plot (20 m × 20 m) per site was subjected to an experimental fire and the other was used as a control. Immediately after the fire, ten ash samples and ten soil samples (at a depth of 5 cm) were collected and thoroughly mixed. Soil moisture, temperature, total N, NH4+, NO3?, total P, available P and pH were determined in each sample. The quantity of ashes deposited was 300 g/m2, with a pH of 9, low N content but higher P concentrations. Significant differences in temperature and soil moisture were detected between the fire-treated and control plots. No significant differences for soil pH, total and available P, total N and NO3? concentration were found between the treatments. However, the concentration of ammoniacal-N indicated a significant increase 11 months post-fire and was produced by the changes in environmental soil conditions after the fire. Our results show that low intensity fires do not modify the concentration of N and P in the soil. However, post-fire conditions favour an increase in ammoniacal-N one year later.  相似文献   

20.
In order to assess the possible health risk associated with the consumption of vegetables harvested from waste dump sites, trace metal levels in Spinacia oleracea planted in soils collected from waste dump sites were investigated. Soil samples from different waste dump sites and mining areas were collected and placed in different pots. Seedlings of S. oleracea were introduced into the pots, harvested after 3 months and analysed for trace metal contents using ICP-MS. From the leaves of the plants, the concentration of Fe was found to be significantly higher than all other trace metals (p < 0.05). The trend in trace metal accumulation from the leaves was in the order Fe > Mn > Zn > Pb > Cu > Cr > Ni > Cd. A significantly different concentration of trace metals in the plant was noticed from different soils in different pots used (p < 0.05). Trace metal concentration from plant parts showed roots > leaves > stem. The risk to human health indicated as Hazard Quotient (HQ) was highest for Zn followed by Cu from all the plant parts. The HQ result showed that humans might be at risk if they consume spinach from these waste dump sites. From the study it was concluded that harvesting/consuming spinach from soil around a waste dump site may be extremely dangerous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号