首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental patterning in the developing CNS.  相似文献   

2.
We have examined the process by which cell diversity is generated in neuroblast (NB) lineages in the central nervous system of Drosophila melanogaster. Thoracic NB6-4 (NB6-4t) generates both neurons and glial cells, whereas NB6-4a generates only glial cells in abdominal segments. This is attributed to an asymmetric first division of NB6-4t, localizing prospero (pros) and glial cell missing (gcm) only to the glial precursor cell, and a symmetric division of NB6-4a, where both daughter cells express pros and gcm. Here we show that the NB6-4t lineage represents the ground state, which does not require the input of any homeotic gene, whereas the NB6-4a lineage is specified by the homeotic genes abd-A and Abd-B. They specify the NB6-4a lineage by down-regulating levels of the G1 cyclin, DmCycE (CycE). CycE, which is asymmetrically expressed after the first division of NB6-4t, functions upstream of pros and gcm to specify the neuronal sublineage. Loss of CycE function causes homeotic transformation of NB6-4t to NB6-4a, whereas ectopic CycE induces reverse transformations. However, other components of the cell cycle seem to have a minor role in this process, suggesting a critical role for CycE in regulating cell fate in segment-specific neural lineages.  相似文献   

3.
During development, neural progenitor cells or neuroblasts generate a great intra- and inter-segmental diversity of neuronal and glial cell types in the nervous system. In thoracic segments of the embryonic central nervous system of Drosophila, the neuroblast NB6-4t undergoes an asymmetric first division to generate a neuronal and a glial sublineage, while abdominal NB6-4a divides once symmetrically to generate only 2 glial cells. We had earlier reported a critical function for the G1 cyclin, CyclinE (CycE) in regulating asymmetric cell division in NB6-4t. Here we show that (i) this function of CycE is independent of its role in cell cycle regulation and (ii) the two functions are mediated by distinct domains at the protein level. Results presented here also suggest that CycE inhibits the function of Prospero and facilitates its cortical localization, which is critical for inducing stem cell behaviour, i.e. asymmetric cell division of NB6-4t. Furthermore our data imply that CycE is required for the maintenance of stem cell identity of most other neuroblasts.  相似文献   

4.
Hox genes control many developmental events along the AP axis, but few target genes have been identified. Whether target genes are activated or repressed, what enhancer elements are required for regulation, and how different domains of the Hox proteins contribute to regulatory specificity are poorly understood. Six2 is genetically downstream of both the Hox11 paralogous genes in the developing mammalian kidney and Hoxa2 in branchial arch and facial mesenchyme. Loss-of-function of Hox11 leads to loss of Six2 expression and loss-of-function of Hoxa2 leads to expanded Six2 expression. Herein we demonstrate that a single enhancer site upstream of the Six2 coding sequence is responsible for both activation by Hox11 proteins in the kidney and repression by Hoxa2 in the branchial arch and facial mesenchyme in vivo. DNA-binding activity is required for both activation and repression, but differential activity is not controlled by differences in the homeodomains. Rather, protein domains N- and C-terminal to the homeodomain confer activation versus repression activity. These data support a model in which the DNA-binding specificity of Hox proteins in vivo may be similar, consistent with accumulated in vitro data, and that unique functions result mainly from differential interactions mediated by non-homeodomain regions of Hox proteins.  相似文献   

5.
6.
7.
8.
9.
10.
In the development of the Drosophila central nervous system, some of the neuroblasts designated as neuroglioblasts generate both glia and neurons. Little is known about how neuroglioblasts produce these different cell types. NB6-4 in the thoracic segment (NB6-4T) is a neuroglioblast, although the corresponding cell in the abdominal segment (NB6-4A) produces only glia. Here, we describe the cell divisions in the NB6-4T lineage, following changes in cell number and cell arrangement. We also examined successive changes in the expression of glial cells missing (gcm) mRNA and protein, activity of which is known to direct glial fate from the neuronal default state. The first cell division of NB6-4T occurred in the medial-lateral orientation, and was found to bifurcate the glial and neuronal lineage. After division, the medial daughter cell expressed GCM protein to produce three glial cells, while the lateral daughter cell with no GCM expression produced ganglion mother cells, secondary precursors of neurons. Although gcm mRNA was present evenly in the cytoplasm of NB6-4T before the first cell division, it became detected asymmetrically in the cell during mitosis and eventually only in the medial daughter cell. In contrast, NB6-4A showed a symmetrical distribution of gcm mRNA and GCM protein through division. Our observations suggest that mechanisms regulating gcm mRNA expression and its translation play an important role in glial and neuronal lineage bifurcation that results from asymmetric cell division.  相似文献   

11.
12.
13.
14.
The generation of cellular diversity in the nervous system involves the mechanism of asymmetric cell division. Besides an array of molecules, including the Par protein cassette, a heterotrimeric G protein signalling complex, Inscuteable plays a major role in controlling asymmetric cell division, which ultimately leads to differential activation of the Notch signalling pathway and correct specification of the two daughter cells. In this context, Notch is required to be active in one sibling and inactive in the other. Here, we investigated the requirement of genes previously known to play key roles in sibling cell fate specification such as members of the Notch signalling pathway, e.g., Notch (N), Delta (Dl), and kuzbanian (kuz) and a crucial regulator of asymmetric cell division, inscuteable (insc) throughout lineage progression of 4 neuroblasts (NB1-1, MP2, NB4-2, and NB7-1). Notch-mediated cell fate specification defects were cell-autonomous and were observed in all neuroblast lineages even in cells born from late ganglion mother cells (GMC) within the lineages. We also show that Dl functions non-autonomously during NB lineage progression and clonal cells do not require Dl from within the clone. This suggests that within a NB lineage Dl is dispensable for sibling cell fate specification. Furthermore, we provide evidence that kuz is involved in sibling cell fate specification in the central nervous system. It is cell-autonomously required in the same postmitotic cells which also depend on Notch function. This indicates that KUZ is required to facilitate a functional Notch signal in the Notch-dependent cell for correct cell fate specification. Finally, we show that three neuroblast lineages (NB1-1, NB4-2, and NB7-1) require insc function for sibling cell fate specification in cells born from early GMCs whereas insc is not required in cells born from later GMCs of the same lineages. Thus, there is differential requirement for insc for cell fate specification depending on the stage of lineage progression of NBs.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号