首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multi-fan system (MFS) for single culture beds was developed to improve the airflow in a plant factory with artificial light. The MFS had seven fans which were installed on both the front and back sides of culture beds to generate airflow from two opposite horizontal directions. The fans that push the air into the culture bed were air inlets while those that pull the air out of the culture bed were air outlets. In this study, three airflow patterns were evaluated: T1, the front and back sides of the culture bed were air inlets; T2, the front side was an air inlet and the backside was an air outlet; and T3, both the front and back sides were air outlets. A culture bed with no MFS was used as a control (T4). Lettuce growth and tipburn occurrence were evaluated and leaf boundary layer resistance (1/gbv), sensible heat flux (Sh), and latent heat flux (Lh) of lettuce plants were estimated. The airflow pattern in T1 improved the air velocity (Va) by an average of 0.75 m s-1 and a variation coefficient of 65%. The 1/gbv decreased significantly with the increase in Va, and the lowest value of 54.0 s m-1 was observed in T1. The low resistance to heat and moisture transfer enhanced the Sh and Lh of lettuce plants. The average Sh and Lh were 40% and 46% higher in T1 compared with those in T4. The fresh and dry weights of lettuce plants in T1 were 1.13 and 1.06 higher than those in T4, respectively. No tipburn occurrence was observed in lettuce plants grown under the MFS while five leaves per plant were injured with tipburn in T4. The results indicated that improving the airflow can improve the growth of indoor cultured lettuce and alleviate the occurrence of tipburn due to the decrease in the 1/gbv and the increase in the transpiration rate.  相似文献   

2.
Short-term effects of ozone (O3) on phyllosphere fungi were studied by examining fungal populations from leaves of giant sequoia (Sequoiadendron giganteum (Lindl.) Buchholz) and California black oak (Quercus kelloggii Newb.). Chronic effects of both O3 and sulfur dioxide (SO2) were studied by isolating fungi from leaves of mature Valencia orange (Citrus sinensis L.) trees. In this chronic-exposure experiment, mature orange trees were fumigated in open-top chambers at the University of California, Riverside, for 4 years with filtered air, ambient air plus filtered air (1:1), ambient air, or filtered air plus SO2 at 9.3 parts per hundred million. Populations of Alternaria alternata (Fr.) Keissler and Cladosporium cladosporioides (Fres.) de Vries, two of the four most common fungi isolated from orange leaves, were significantly reduced by chronic exposure to ambient air. In the short-term experiments, seedlings of giant sequoia or California black oak were fumigated in open-top chambers in Sequoia National Park for 9 to 11 weeks with filtered air, ambient air, or ambient air plus O3. These short-term fumigations did not significantly affect the numbers of phyllosphere fungi. Exposure of Valencia orange trees to SO2 at 9.3 parts per hundred million for 4 years reduced the number of phyllosphere fungi isolated by 75% compared with the number from the filtered-air treatment and reduced the Simpson diversity index value from 3.3 to 2.5. A significant chamber effect was evident since leaves of giant sequoia and California black oak located outside of chambers had more phyllosphere fungi than did seedlings within chambers. Results suggest that chronic exposure to ambient ozone or SO2 in polluted areas can affect phyllosphere fungal communities, while short-term exposures may not significantly disturb phyllosphere fungi.  相似文献   

3.
A number of fruits and bulky storage organs were studied with respect to the effect of pure O2 on the extent and time-course of the respiratory rise induced by ethylene. In one group, of which potato (Solanum tuberosum var. Russet) and carrot (Daucus carota) are examples, the response to ethylene in O2 is much greater than in air. In a second group, of which avocado (Persea americana Mill. var. Hass) and banana (Musa cavendishii Lambert var. Valery) are examples, air and O2 are equally effective. When O2-responsive organs are peeled, air and O2 synergize the ethylene response to the same extent in parsnip (Pastinaca sativa), whereas O2 is more stimulatory than air in carrots. In the latter instance, carrot flesh is considered to contribute significantly to diffusion resistance. The release of CO2, an ethylene antagonist, is recognized as another element in the response to peeling.  相似文献   

4.
We have investigated two approaches to enhance and extend H2 photoproduction yields in heterocystous, N2-fixing cyanobacteria entrapped in thin alginate films. In the first approach, periodic CO2 supplementation was provided to alginate-entrapped, N-deprived cells. N deprivation led to the inhibition of photosynthetic activity in vegetative cells and the attenuation of H2 production over time. Our results demonstrated that alginate-entrapped ΔhupL cells were considerably more sensitive to high light intensity, N deficiency, and imbalances in C/N ratios than wild-type cells. In the second approach, Anabaena strain PCC 7120, its ΔhupL mutant, and Calothrix strain 336/3 films were supplemented with N2 by periodic treatments of air, or air plus CO2. These treatments restored the photosynthetic activity of the cells and led to a high level of H2 production in Calothrix 336/3 and ΔhupL cells (except for the treatment air plus CO2) but not in the Anabaena PCC 7120 strain (for which H2 yields did not change after air treatments). The highest H2 yield was obtained by the air treatment of ΔhupL cells. Notably, the supplementation of CO2 under an air atmosphere led to prominent symptoms of N deficiency in the ΔhupL strain but not in the wild-type strain. We propose that uptake hydrogenase activity in heterocystous cyanobacteria not only supports nitrogenase activity by removing excess O2 from heterocysts but also indirectly protects the photosynthetic apparatus of vegetative cells from photoinhibition, especially under stressful conditions that cause an imbalance in the C/N ratio in cells.  相似文献   

5.
Conditions for the simultaneous production of argon and xenon chlorides and excited nitrogen molecules in a longitudinal dc glow discharge in Ar/Cl2/air, Xe/Cl2/air, and Ar/Xe/Cl2/air mixtures are studied. The electrical parameters of the plasma and its optical characteristics in the 130-to 350-nm wavelength range are investigated. It is shown that a small admixture of air added to argon or xenon leads to the production of excited nitrogen molecules, whose decay is accompanied by the molecular band emission in the range Δλ=176–271 nm. The conditions for simultaneous emission of the ArCl(B-X), XeCl(B-X), and nitrogen molecular bands are determined.  相似文献   

6.
The red seaweed Hypnea spinella (Gigartinales, Rhodophyta), was cultured at laboratory scale under three different CO2 conditions, non-enriched air (360?ppm CO2) and CO2-enriched air at two final concentrations (750 and 1,600?ppm CO2), in order to evaluate the influence of increased CO2 concentrations on growth, photosynthetic capacity, nitrogen removal efficiency, and chemical cellular composition. Average specific growth rates of H. spinella treated with 750 and 1,600?ppm CO2-enriched air increased by 85.6% and 63.2% compared with non-enriched air cultures. CO2 reduction percentages close to 12% were measured at 750?ppm CO2 with respect to 5% and 7% for cultures treated with air and 1,600?ppm CO2, respectively. Maximum photosynthetic rates were enhanced significantly for high CO2 treatments, showing P max values 1.5-fold higher than that for air-treated cultures. N–NH 4 + consumption rates were also faster for algae growing at 750 and 1,600?ppm CO2 than that for non-enriched air cultures. As a consequence of these experimental conditions, soluble carbohydrates increased and soluble protein contents decreased in algae treated with CO2-enriched air. However, internal C and N contents remained constant at the different CO2 concentrations. No significant differences in data obtained with both elevated CO2 treatments, under the assayed conditions, indicate that H. spinella is saturated at dissolved inorganic carbon concentrations close by twice the actual atmospheric levels. The results show that increased CO2 concentrations might be considered a key factor in order to improve intensively cultured H. spinella production yields and carbon and nitrogen bioremediation efficiencies.  相似文献   

7.
Two gas spargers, a novel membrane-tube sparger and a perforated plate sparger, were compared in terms of hydrodynamics and mass transfer (or oxygen transfer) performance in an internal-loop airlift bioreactor. The overall gas holdup ε T, downcomer liquid velocity V d, and volumetric mass transfer coefficient K L a were examined depending on superficial gas velocity U G increased in Newtonian and non-Newtonian fluids for the both spargers. Compared with the perforated plate sparger, the bioreactor with the membrane-tube sparger increased the values of ε T by 4.9–48.8 % in air–water system when the U G was from 0.004 to 0.04 m/s, and by 65.1–512.6 % in air–CMC solution system. The V d value for the membrane-tube sparger was improved by 40.0–86.3 %. The value of K L a was increased by 52.8–84.4 % in air–water system, and by 63.3–836.3 % in air–CMC solution system. Empirical correlations of ε T, V d, and K L a were proposed, and well corresponding with the experimental data with the deviation of 10 %.  相似文献   

8.
Spaceflight and its bed rest analog impair thermoregulatory responses, including elevated core temperature observed at rest and during exercise. Natural air flow has been found to increase cold sensation significantly compared to artificial constant air flow (CAF). The present study tested the hypothesis that simulated natural air flow (SNAF) ventilation would ameliorate impaired thermoregulatory function to a greater extent than CAF under simulated microgravity conditions. Seven healthy males underwent 30 days of −6° head-down bed rest (HDBR). During pre-HDBR and the day 29 of HDBR (HDBR 29), the subjects were exposed to three air flow patterns at 23 °C while in a supine posture: a still air flow control (CON), CAF, and SNAF. The mean air velocity of the latter two patterns was 0.2 m/s. Subjective perception of the thermal environment was recorded by thermal sensation vote (TSV), and rectal temperature (Tre), skin temperature (Tsk), and cutaneous vascular conductance (CVC) were also measured during the sessions. Tre was significantly elevated after 29 days of HDBR and decreased to a greater extent in SNAF than in CAF on HDBR 29. However, there was no significant difference between Tre in SNAF on HDBR 29 and that in CON on pre-HDBR. Mean Tsk, CVC, and TSV in SNAF were also significantly lower than those in CAF on HDBR 29. Moreover, TSV was close to ‘neutral’ under SNAF on HDBR 29. These data indicate that simulated natural air movement might be more effective than constant air movement at preserving core temperature at a thermoneutral ambient temperature during HDBR.  相似文献   

9.
全球范围内加速的城市化导致空气质量严重退化。随着北京市建设范围不断扩大和机动汽车数量迅猛增长,空气污染日益严重。浓度不断增加的近地层臭氧作为影响全球气候变化的重要因素和危害人类健康、动植物生长的二次污染物,受到广泛关注。城市树木能够有效地去除大气污染物,进而提高空气质量。目前已有很多研究关于区域尺度上城市树木吸收臭氧,然而,冠层尺度上城市树木吸收臭氧特征少有研究。因此,本文基于树干液流技术,结合天气变化和大气臭氧浓度分析,研究夏秋季节北京市典型绿化树种刺槐(Robinia pseudoacacia)整树冠层吸收臭氧特征及环境影响因素。结果表明,在日尺度上,刺槐吸收臭氧速率变化呈单峰曲线,于下午15:00左右达到峰值;夏季峰值范围较宽,秋季峰值范围较窄;中午前后累积吸收臭氧量增加最明显。在季节尺度上,夏季刺槐吸收臭氧速率高于秋季;夏季累积吸收臭氧量显著增加,秋季略有增加。刺槐吸收臭氧的时间变化规律取决于大气臭氧浓度和冠层对臭氧的导度。臭氧浓度日变化和季节变化明显,导致刺槐吸收臭氧速率时间变化格局与之接近。在一定的臭氧浓度下,刺槐吸收臭氧速率的变化主要由冠层对臭氧的导度调控,进而受水汽压亏缺和总辐射的影响。随着水汽压亏缺降低,刺槐冠层对臭氧的导度明显下降;总辐射大于600 W/m2,冠层对臭氧的导度迅速下降。研究树种刺槐单位冠层投影面积上年吸收臭氧量约为0.16 g/m2,明显低于基于模型得到的结果,表明评估森林受臭氧危害的风险应考虑树种冠层臭氧通量。  相似文献   

10.
《Journal of Asia》2002,5(1):131-133
Eighteen essential oils were tested for their fumigant toxicity towards Proisotoma minuta (Tullberg). The essential oils of citronella (LD50=0.65 μL/L air), petitgrain (LD50=2.3 μL/L air), and thyme (LD50=2.8 μI/L air) produced potent activity towards the species.  相似文献   

11.
We estimate the effects of air-pollution exposure on low birthweight, birthweight, and prematurity risk in South China, for all expectant mothers and by maternal age group and child sex. We do so by exploiting exogenous improvement in air quality during the 2010 Guangzhou Asian Games, when strict regulations were mandated to assure better air quality. We use daily air-pollution levels collected from monitoring stations in Guangzhou, the Asian Games host city, and Shenzhen, a nearby control city, between 2009 and 2011. We first show that air quality during the Asian Games significantly improved in Guangzhou, relative to Shenzhen. Next, using birth-certificate data for both cities for 2009–2011 and using expected pregnancy overlap with the Asian Games as an instrumental variable, we study the effects of three pollutants (PM10, SO2, and NO2) on birth outcomes. Four main conclusions emerge: 1) air pollutants significantly reduce average birthweight and increase preterm risk; 2) for birthweight, late pregnancy is most sensitive to PM10 exposure, but there is not consistent evidence of a sensitive period for other pollutants and outcomes; 3) for birthweight, babies of mothers who are at least 35 years old show more vulnerability to all three air pollutants; and 4) male babies show more vulnerability than female babies to PM10 and SO2, but birthweights of female babies are more sensitive than those of male babies to NO2.  相似文献   

12.
The rate of dry matter accumulation by seeds of Vicia faba L. cv. Minica increases with temperature in the range of 16 to 26°C. The duration of dry matter accumulation decreases with temperature, resulting in a decrease of final seed dry weight. In this study we test the hypothesis that a diffusion barrier for O2, located in the seed coat, inhibits seed respiration and growth. The rate of O2 uptake of intact seeds and of excised embryos and seed coats (separated seeds) was measured in air and buffer at 16, 20, and/or 26°C at various O2 concentrations and developmental stages. Oxygen uptake rates of intact seeds in buffer were only 9 to 15% of those in air. In buffer, the respiration rate of intact seeds decreased at a pO2 below air saturation (21 kilopascals), whereas separated seeds showed a decline of O2 uptake only below 80% of air saturation. In air, embryo excision had no effect on the sensitivity of seed respiration to pO2, at both 20 and 26°C. In air at 20°C, separated and intact seeds showed similar rates of O2 uptake. Oxygen uptake by intact seeds, both halfway and beyond the linear growth phase, showed a temperature coefficient Q10 of 2.3 and was insensitive to pO2 in the range of 80 to 100% of ambient. These results indicate that V. faba seed respiration in air is not limited by the diffusion of O2 into the seed.  相似文献   

13.
When division synchronized cultures of Euglena gracilis Klebs (strain Z) were aerated with 5% CO2 in air the specific activity of glycollate dehydrogenase was only 13% of that in cultures receiving unsupplemented air. The concentrations of 10-formyltetrahydrofolate synthetase (EC 6.3.4.3) and formylfolate derivatives were also lowered by this treatment. In contrast, the specific activity of serine hydroxymethyltransferase (EC 2.1.2.1) and the concentration of methylfolates were raised by supplying CO2-supplemented air. These effects on enzyme levels were reversed when air was supplied following a period of CO2 treatment. The levels of glycollate dehydrogenase, 10-formyl-tetrahydrofolate synthetase and formylfolate derivatives were decreased when cells were aerated in media containing 5 mM α-hydroxy-2-pyridinemethane sulphonate. Cell free extracts had the ability to decarboxylate glyoxylate, producing ca equal amounts of CO2 and formate from C-1 and C-2 respectively. Cells receiving 5% CO2 in air had a decreased ability to incorporate formate-[14C] into serine and methionine. It is concluded that during growth at low CO2 concentrations glycollate metabolism will provide substrate for the formyltetrahydrofolate synthetase reaction.  相似文献   

14.
Nest ventilation should be particularly relevant for the huge colonies of leaf-cutting ants, genus Atta. Considerable amounts of O2 are consumed and CO2 produced by both the fungus gardens and the ants inside nest chambers, which are located at deep soil layers characterized by high CO2 and low O2 concentrations. In this work, passive nest ventilation was investigated in field Atta capiguara and Atta laevigata nests, first, by evaluating air movements through the nest using propane as tracer gas as well as the CO2 and O2 concentrations of the circulating air, and second, by exposing the internal nest morphology with the use of cement casts and excavations. Results showed that even though outflow of CO2-rich air and inflow of O2-rich air occurred at high-placed and low-placed openings, respectively, supporting a wind-induced interpretation of air movements through the nest, circulating air was never detected inside fungus chambers. The CO2 and O2 levels inside the fungus chambers increased and decreased with increasing soil depth, respectively, and were in the range observed in the soil phase. Based on the underground nest architecture, it is concluded that although the external shape of the nest induces underground air circulation, the inflowing air is unable to directly reach the fungus chambers. It is argued that colony respiration completely depends on diffusive flows between the chamber air and the adjacent nest and soil atmospheres. Circulating air, although not directly renewing the air inside the nest chambers, may contribute to colony respiration by increasing the capacity of the nest and soil airs to act as an O2-source and a CO2-sink, because of the decrease in the CO2 and the increase in the O2 levels in the underground air phase. Possible adaptations of both ants and fungus to the high CO2 and low O2 concentrations usually found in soils are discussed.  相似文献   

15.
BackgroundAir pollution has been related to incidence of type 2 diabetes (T2D). We assessed the joint association of various air pollutants with the risk of T2D and examined potential modification by obesity status and genetic susceptibility on the relationship.Methods and findingsA total of 449,006 participants from UK Biobank free of T2D at baseline were included. Of all the study population, 90.9% were white and 45.7% were male. The participants had a mean age of 56.6 (SD 8.1) years old and a mean body mass index (BMI) of 27.4 (SD 4.8) kg/m2. Ambient air pollutants, including particulate matter (PM) with diameters ≤2.5 μm (PM2.5), between 2.5 μm and 10 μm (PM2.5–10), nitrogen dioxide (NO2), and nitric oxide (NO) were measured. An air pollution score was created to assess the joint exposure to the 4 air pollutants. During a median of 11 years follow-up, we documented 18,239 incident T2D cases. The air pollution score was significantly associated with a higher risk of T2D. Compared to the lowest quintile of air pollution score, the hazard ratio (HR) (95% confidence interval [CI]) for T2D was 1.05 (0.99 to 1.10, p = 0.11), 1.06 (1.00 to 1.11, p = 0.051), 1.09 (1.03 to 1.15, p = 0.002), and 1.12 (1.06 to 1.19, p < 0.001) for the second to fifth quintile, respectively, after adjustment for sociodemographic characteristics, lifestyle factors, genetic factors, and other covariates. In addition, we found a significant interaction between the air pollution score and obesity status on the risk of T2D (p-interaction < 0.001). The observed association was more pronounced among overweight and obese participants than in the normal-weight people. Genetic risk score (GRS) for T2D or obesity did not modify the relationship between air pollution and risk of T2D. Key study limitations include unavailable data on other potential T2D-related air pollutants and single-time measurement on air pollutants.ConclusionsWe found that various air pollutants PM2.5, PM2.5–10, NO2, and NO, individually or jointly, were associated with an increased risk of T2D in the population. The stratified analyses indicate that such associations were more strongly associated with T2D risk among those with higher adiposity.

Xiang Li and co-workers study the potential influence of obesity on associations between air pollutants and incidence of type 2 diabetes.  相似文献   

16.
One measurement and an algebraic formula are used to calculate the incident air kerma (Ka,i) at the skin after any CT examination, including cone-beam CT (CBCT) and multi-slice CT (MSCT).Empty scans were performed with X-ray CBCT systems (dental, C-arm and linac guidance scanners) as well as two MSCT scanners. The accumulated Ka,i at the flat panel (in CBCT) or the maximum incident air kerma at the isocentre (in MSCT) were measured using a solid-state probe. The average Ka,i(skin), at the skin of a hypothetical patient, was calculated using the proposed formula. Additional measurements of dose at the isocentre (DFOV) and kerma-area product (KAP), as well as Ka,i(skin) from thermoluminiscence dosimeters (TLDs) and size-specific dose estimates are presented for comparison.The Ka,i(skin) for the standard head size in the dental scanner, the C-arm (high dose head protocol) and the linac (head protocol) were respectively 3.33 ± 0.19 mGy, 15.15 ± 0.76 mGy and 3.23 ± 0.16 mGy. For the first MSCT, the calculated Ka,i(skin) was 13.1 ± 0.7 mGy and the TLDs provided a Ka,i(skin) between 10.3 ± 1.1 mGy and 13.8 ± 1.4 mGy.Estimation of patient air kerma in tomography with an uncertainty below 7% is thus feasible using an empty scan and conventional measurement tools. The provided equations and website can be applied to a standard size for the sake of quality control or to several sizes for the definition of diagnostic reference levels (DRLs). The obtained incident air kerma can be directly compared to the Ka,i from other X-ray modalities as recommended by ICRU and IAEA.  相似文献   

17.
气候变化对鄱阳湖白鹤越冬种群数量变化的影响   总被引:2,自引:0,他引:2  
分析了1983—2011年鄱阳湖国家级自然保护区越冬白鹤种群数量的年际变化趋势,检验了白鹤种群动态与繁殖地和越冬地气候变化的相关性,气候变量包括月平均气温、月平均最高气温、月平均最低气温和月降水量。研究结果表明,鄱阳湖国家级自然保护区内的白鹤年最大数量平均为(2 130±153)只,呈显著地线性增长趋势(R2=0.454,F=22.441,df=28,P=0.000),但年际波动较大。在越冬地,越冬当年10月、11月、12月的气候变量与白鹤种群数量没有显著的相关性,但越冬初期10月份和越冬后期翌年3月份的气温变量与第4年、第5年、第6年及第7年的白鹤种群数量存在显著的正相关,表明越冬地气候对白鹤种群大小的影响存在时滞效应。越冬初期和末期可能是白鹤补充能量的关键阶段,而且越冬初期的气候可能也与冬季食物的数量或质量相关,因此这两个阶段的适宜气温可能有利于个体尤其是幼鹤的存活,使更多的个体参加繁殖,由于白鹤的性成熟年龄在3—5a,因此其对白鹤种群增长的有利影响会在3a以后表现出来。白鹤种群数量变化与繁殖地繁殖期的降水量没有显著的相关性,而与7月份的气温变量存在显著的正相关。多元线性回归分析结果表明,6a前的10月份平均最低温度、2a前的10月最高温度及5a前的10月平均气温是白鹤种群数量变化的显著预测因子,共同解释了鄱阳湖国家级自然保护区白鹤种群数量变化的74.8%(F=23.807,df=27,P=0.000)。  相似文献   

18.
The effects of temperature, O2, and CO2 on titratable acid content and on CO2 exchange were measured in detached pineapple (Ananas comosus) leaves during the daily 15-hour light period. Comparative measurements were made in air and in CO2-free air. Increasing the leaf temperature from 20 to 35 C decreased the total CO2 uptake in air and slightly increased the total CO2 released into CO2-free air. Between 25 and 35 C, the activation energy for daily acid loss was near 12 kcal mol−1, but at lower temperatures the activation energy was much greater.  相似文献   

19.
Detached first leaves of 3-day-old corn seedlings (Zea mays L. W64AxW183E) were incubated with nitrate in air or 100% O2 in the light. Nitrate accumulation in the leaves was not depressed by O2. NADH:nitrate reductase activity and enzyme protein, as measured with an enzyme-linked immunosorbent assay, increased in parallel during the 8 h nitrate treatment in air, but in O2 the levels of enzyme activity and protein were depressed. NADH:nitrate reductase mRNA levels were the same in the air-and O2-treated leaves. Total soluble protein levels in leaves were slightly depressed by O2 and shifting from O2 to an air environment increased the protein level. Incorporation of [35S]methionine during nitrate treatment revealed that total soluble protein and nitrate reductase protein synthesis were both depressed by the O2 environment relative to air, but both recovered when leaves were shifted from O2 to air. Although O2 accelerated inactivation of nitrate reductase in vitro, the in vivo inactivation rate appeared to be too low to account for the depressed level of nitrate reductase activity in O2-treated leaves. We concluded that O2 inhibition of nitrate reductase biosynthesis in detached corn leaves was largely due to inhibition of total soluble protein synthesis at the level of translation.  相似文献   

20.
Conditions are described whereby suspensions of Chlorella pyrenoidosa and Netrium digitus photosynthetically biosynthesize and excrete glycolate continuously in high yields. Aminooxyacetic acid, an inhibitor of pyridoxal phosphate-linked enzymes, increased the excretion of glycolate approximately 4-fold in 1 hour (8 millimolar) and 20-fold in 4 hours (40 millimolar) in the presence of 0.2% CO2 in air. The amount of glycolate excreted in the presence of aminooxyacetate and an atmosphere of 0.2% CO2 in air equaled or exceeded the amount excreted in 0.2% CO2 in O2 minus aminooxyacetate. CO2 and light were required for glycolate excretion. Aminooxyacetate also stimulated photosynthetic glycolate excretion in an atmosphere of 0.2% CO2 in nitrogen or helium, although the stimulation was not as great as when air or O2 was present.

The excreted glycolate was converted to H2 and CO2 by the combined action of glycolic oxidase and the formic hydrogenlyase complex found in Escherichia coli in total conversion yields of 80%.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号