首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Riboflavin significantly enhanced the efficacy of simulated solar disinfection (SODIS) at 150 watts per square meter (W m−2) against a variety of microorganisms, including Escherichia coli, Fusarium solani, Candida albicans, and Acanthamoeba polyphaga trophozoites (>3 to 4 log10 after 2 to 6 h; P < 0.001). With A. polyphaga cysts, the kill (3.5 log10 after 6 h) was obtained only in the presence of riboflavin and 250 W m−2 irradiance.Solar disinfection (SODIS) is an established and proven technique for the generation of safer drinking water (11). Water is collected into transparent plastic polyethylene terephthalate (PET) bottles and placed in direct sunlight for 6 to 8 h prior to consumption (14). The application of SODIS has been shown to be a simple and cost-effective method for reducing the incidence of gastrointestinal infection in communities where potable water is not available (2-4). Under laboratory conditions using simulated sunlight, SODIS has been shown to inactivate pathogenic bacteria, fungi, viruses, and protozoa (6, 12, 15). Although SODIS is not fully understood, it is believed to achieve microbial killing through a combination of DNA-damaging effects of ultraviolet (UV) radiation and thermal inactivation from solar heating (21).The combination of UVA radiation and riboflavin (vitamin B2) has recently been reported to have therapeutic application in the treatment of bacterial and fungal ocular pathogens (13, 17) and has also been proposed as a method for decontaminating donor blood products prior to transfusion (1). In the present study, we report that the addition of riboflavin significantly enhances the disinfectant efficacy of simulated SODIS against bacterial, fungal, and protozoan pathogens.Chemicals and media were obtained from Sigma (Dorset, United Kingdom), Oxoid (Basingstoke, United Kingdom), and BD (Oxford, United Kingdom). Pseudomonas aeruginosa (ATCC 9027), Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633), Candida albicans (ATCC 10231), and Fusarium solani (ATCC 36031) were obtained from ATCC (through LGC Standards, United Kingdom). Escherichia coli (JM101) was obtained in house, and the Legionella pneumophila strain used was a recent environmental isolate.B. subtilis spores were produced from culture on a previously published defined sporulation medium (19). L. pneumophila was grown on buffered charcoal-yeast extract agar (5). All other bacteria were cultured on tryptone soy agar, and C. albicans was cultured on Sabouraud dextrose agar as described previously (9). Fusarium solani was cultured on potato dextrose agar, and conidia were prepared as reported previously (7). Acanthamoeba polyphaga (Ros) was isolated from an unpublished keratitis case at Moorfields Eye Hospital, London, United Kingdom, in 1991. Trophozoites were maintained and cysts prepared as described previously (8, 18).Assays were conducted in transparent 12-well tissue culture microtiter plates with UV-transparent lids (Helena Biosciences, United Kingdom). Test organisms (1 × 106/ml) were suspended in 3 ml of one-quarter-strength Ringer''s solution or natural freshwater (as pretreated water from a reservoir in United Kingdom) with or without riboflavin (250 μM). The plates were exposed to simulated sunlight at an optical output irradiance of 150 watts per square meter (W m−2) delivered from an HPR125 W quartz mercury arc lamp (Philips, Guildford, United Kingdom). Optical irradiances were measured using a calibrated broadband optical power meter (Melles Griot, Netherlands). Test plates were maintained at 30°C by partial submersion in a water bath.At timed intervals for bacteria and fungi, the aliquots were plated out by using a WASP spiral plater and colonies subsequently counted by using a ProtoCOL automated colony counter (Don Whitley, West Yorkshire, United Kingdom). Acanthamoeba trophozoite and cyst viabilities were determined as described previously (6). Statistical analysis was performed using a one-way analysis of variance (ANOVA) of data from triplicate experiments via the InStat statistical software package (GraphPad, La Jolla, CA).The efficacies of simulated sunlight at an optical output irradiance of 150 W m−2 alone (SODIS) and in the presence of 250 μM riboflavin (SODIS-R) against the test organisms are shown in Table Table1.1. With the exception of B. subtilis spores and A. polyphaga cysts, SODIS-R resulted in a significant increase in microbial killing compared to SODIS alone (P < 0.001). In most instances, SODIS-R achieved total inactivation by 2 h, compared to 6 h for SODIS alone (Table (Table1).1). For F. solani, C. albicans, ands A. polyphaga trophozoites, only SODIS-R achieved a complete organism kill after 4 to 6 h (P < 0.001). All control experiments in which the experiments were protected from the light source showed no reduction in organism viability over the time course (results not shown).

TABLE 1.

Efficacies of simulated SODIS for 6 h alone and with 250 μM riboflavin (SODIS-R)
OrganismConditionaLog10 reduction in viability at indicated h of exposureb
1246
E. coliSODIS0.0 ± 0.00.2 ± 0.15.7 ± 0.05.7 ± 0.0
SODIS-R1.1 ± 0.05.7 ± 0.05.7 ± 0.05.7 ± 0.0
L. pneumophilaSODIS0.7 ± 0.21.3 ± 0.34.8 ± 0.24.8 ± 0.2
SODIS-R4.4 ± 0.04.4 ± 0.04.4 ± 0.04.4 ± 0.0
P. aeruginosaSODIS0.7 ± 0.01.8 ± 0.04.9 ± 0.04.9 ± 0.0
SODIS-R5.0 ± 0.05.0 ± 0.05.0 ± 0.05.0 ± 0.0
S. aureusSODIS0.0 ± 0.00.0 ± 0.06.2 ± 0.06.2 ± 0.0
SODIS-R0.2 ± 0.16.3 ± 0.06.3 ± 0.06.3 ± 0.0
C. albicansSODIS0.2 ± 0.00.4 ± 0.10.5 ± 0.11.0 ± 0.1
SODIS-R0.1 ± 0.00.7 ± 0.15.3 ± 0.05.3 ± 0.0
F. solani conidiaSODIS0.2 ± 0.10.3 ± 0.00.2 ± 0.00.7 ± 0.1
SODIS-R0.3 ± 0.10.8 ± 0.11.3 ± 0.14.4 ± 0.0
B. subtilis sporesSODIS0.3 ± 0.00.2 ± 0.00.0 ± 0.00.1 ± 0.0
SODIS-R0.1 ± 0.10.2 ± 0.10.3 ± 0.30.1 ± 0.0
SODIS (250 W m−2)0.1 ± 0.00.1 ± 0.10.1 ± 0.10.0 ± 0.0
SODIS-R (250 W m−2)0.0 ± 0.00.0 ± 0.00.2 ± 0.00.4 ± 0.0
SODIS (320 W m−2)0.1 ± 0.10.1 ± 0.00.0 ± 0.14.3 ± 0.0
SODIS-R (320 W m−2)0.1 ± 0.00.1 ± 0.10.9 ± 0.04.3 ± 0.0
A. polyphaga trophozoitesSODIS0.4 ± 0.20.6 ± 0.10.6 ± 0.20.4 ± 0.1
SODIS-R0.3 ± 0.11.3 ± 0.12.3 ± 0.43.1 ± 0.2
SODIS, naturalc0.3 ± 0.10.4 ± 0.10.5 ± 0.20.3 ± 0.2
SODIS-R, naturalc0.2 ± 0.11.0 ± 0.22.2 ± 0.32.9 ± 0.3
A. polyphaga cystsSODIS0.4 ± 0.10.1 ± 0.30.3 ± 0.10.4 ± 0.2
SODIS-R0.4 ± 0.20.3 ± 0.20.5 ± 0.10.8 ± 0.3
SODIS (250 W m−2)0.0 ± 0.10.2 ± 0.30.2 ± 0.10.1 ± 0.2
SODIS-R (250 W m−2)0.4 ± 0.20.3 ± 0.20.8 ± 0.13.5 ± 0.3
SODIS (250 W m−2), naturalc0.0 ± 0.30.2 ± 0.10.1 ± 0.10.2 ± 0.1
SODIS-R (250 W m−2), naturalc0.1 ± 0.10.2 ± 0.20.6 ± 0.13.4 ± 0.2
Open in a separate windowaConditions are at an intensity of 150 W m−2 unless otherwise indicated.bThe values reported are means ± standard errors of the means from triplicate experiments.cAdditional experiments for this condition were performed using natural freshwater.The highly resistant A. polyphaga cysts and B. subtilis spores were unaffected by SODIS or SODIS-R at an optical irradiance of 150 W m−2. However, a significant reduction in cyst viability was observed at 6 h when the optical irradiance was increased to 250 W m−2 for SODIS-R only (P < 0.001; Table Table1).1). For spores, a kill was obtained only at 320 W m−2 after 6-h exposure, and no difference between SODIS and SODIS-R was observed (Table (Table1).1). Previously, we reported a >2-log kill at 6 h for Acanthamoeba cysts by using SODIS at the higher optical irradiance of 850 W m−2, compared to the 0.1-log10 kill observed here using the lower intensity of 250 W m−2 or the 3.5-log10 kill with SODIS-R.Inactivation experiments performed with Acanthamoeba cysts and trophozoites suspended in natural freshwater gave results comparable to those obtained with Ringer''s solution (P > 0.05; Table Table1).1). However, it is acknowledged that the findings of this study are based on laboratory-grade water and freshwater and that differences in water quality through changes in turbidity, pH, and mineral composition may significantly affect the performance of SODIS (20). Accordingly, further studies are indicated to evaluate the enhanced efficacy of SODIS-R by using natural waters of varying composition in the areas where SODIS is to be employed.Previous studies with SODIS under laboratory conditions have employed lamps delivering an optical irradiance of 850 W m−2 to reflect typical natural sunlight conditions (6, 11, 12, 15, 16). Here, we used an optical irradiance of 150 to 320 W m−2 to obtain slower organism inactivation and, hence, determine the potential enhancing effect of riboflavin on SODIS.In conclusion, this study has shown that the addition of riboflavin significantly enhances the efficacy of simulated SODIS against a range of microorganisms. The precise mechanism by which photoactivated riboflavin enhances antimicrobial activity is unknown, but studies have indicated that the process may be due, in part, to the generation of singlet oxygen, H2O2, superoxide, and hydroxyl free radicals (10). Further studies are warranted to assess the potential benefits from riboflavin-enhanced SODIS in reducing the incidence of gastrointestinal infection in communities where potable water is not available.  相似文献   

2.
3.
Basal cell carcinoma (BCC) is a very common malignant skin tumor that rarely metastatizes, but is often locally aggressive. Several factors, like large size (more than 3 cm), exposure to ultraviolet rays, histological variants, level of infiltration and perineural or perivascular invasion, are associated with a more aggressive clinical course. These morphological features seem to be more determinant in mideface localized BCC, which frequently show a significantly higher recurrence rate. An immunohistochemical profile, characterized by reactivity of tumor cells for p53, Ki67 and alpha-SMA has been associated with a more aggressive behaviour in large BCCs. The aim of this study was to verify if also little (<3 cm) basal cell carcinomas can express immunohistochemical markers typical for an aggressive behaviour.Basal cell carcinoma (BCC) is a very common malignant skin tumor that rarely metastatizes, even If Is often locally aggressive. Several factors, like large size (more than 3 cm), face localization, exposure to ultraviolet rays, histological variants, infiltration level and perineural or perivascular invasion, are associated with a more aggressive clinical course. In particular, the incidence of metastasis and/or death correlates with tumors greater than 3 cm in diameter in which setting patients are said to have 1–2 % risk of metastases that increases to 20–25% in lesions greater than 5 cm and to 50% in lesions greater than 10 cm in diameter (Snow et al., 1994). Histologically morpheiform, keratotic types and infiltrative growth of BCC are also considered features of the most aggressive course (Crowson, 2006). This can be explained by the fact that both the superficial and nodular variants of BCC are surrounded by a continuous basement membrane zone comprising collagens type IV and V admixed with laminin, while the aggressive growth variants (i.e. morpheiform, metatypical, and infiltrative growth subtypes) manifest the absence of basement membrane (Barsky et al., 1987).The molecular markers which characterize aggressive BCC include: increased expression of stromolysin (MMP-3) and collagenase-1 (MMP-1) (Cribier et al., 2001), decreased expression of syndecan-1 proteoglycan (Bayer-Garner et al., 2000) and of anti-apoptotic protein bcl-2 (Ramdial et al., 2000; Staibano et al., 2001).C-ras , c-fos (Urabe et al., 1994; Van der Schroeff et al., 1990) and p53 tumor supressor gene mutations (Auepemikiate et al., 2002) are indicative of an aggressive course.Focusing upon bcl-2 and p53 expression in BCC, there have been numerous studies documenting the utility of bcl-2 as a marker of favourable clinical behaviour while p53 expression may be a feature of a more aggressive outcome (Ramdial et al., 2000; Staibano et al., 2001; Bozdogan et al., 2002).An increased expression of cytoskeletal microfilaments like α–smooth muscle actin, frequently found in invasive BCC subtypes (Jones JCR et al., 1989), may explain an enhanced tumor mobility and deep tissue invasion through the stroma. (Cristian et al., 2001; Law et al., 2003). The aim of this preliminary study was to verify if also little (<3 cm) basal cell carcinomas may express aggressive immunohistochemical markers like p53, Ki67 and alpha-SMA. We used 31 excisional BCCs with tumor size less than 2 cm (ranging from 2 up to 20 mm) and with different skin localization (19 in the face, 6 in the trunk and 6 in the body extremities). All cases were immunostained for p53, BCL2, Ki67 and alpha-smooth muscle actin (α-SMA) (
AgeSexLocationHystotypeMax.DimDepthUlcEssInfp53Bcl-2Ki67AML
161MExtrKeratotic10×81No+++URD+++++-
261MFaceAdenoid10×94No+URD+++---
364MExtrSup mult11×130.8No+DRD+---
473MFaceNodular10×82Yes+DRD+++++++++
584MFaceNodular9×122Yes+DRD----
684MFaceAdenoid50.8No+URD+++---
784MExtrNodular13×103No+DRD+++++-
852FFaceNodular40.8No+URD+++-
976FFaceAdenoid10×44No+DRD+++-++-
1077FFaceMorph8×61Yes+++DRD+++---
1186MFaceMorph81Yes+DRD+++-++
1263FFaceAdenoid41No+URD+++++
1376FFaceNodular71.5No+DRD++++++-
1484MFaceNodular114Yes+++DRD+--+
1563FFaceKeratotic10×61.8No++DRD-+++-
1668FTrunkSup mult10×60.7No++URD++--
1767MFaceSup mult12×60.4No+URD+-+-
1867MExtrSup mult4×30.3No+URD+++++-
1932FExtrSup mult1×30.4No+URD+++-
2045MTrunkNodular7×52Yes+++URD+++-
2162MTrunkSup mult11×70.9No++URD-++-++
2265MTrunkAdenoid7×61.5No+URD+++++-
2372MTrunkNodular12×61No+URD+++-++
2486FFaceKeratotic20×113.1No++DRD+++-
2585MFaceNodular0.51.3No++DRD++++-
2674FExtrNodular4×40.9No+URD--+-
2771MFaceNodular6×121.7No+DRD--+-
2864FTrunkSup mult1.3×1.50.4No++URD+++---
2978FFaceNodular4×31.5No++DRD+++-+++
3080MFaceKeratotic4×41.6Yes+DRD--++++
Open in a separate window Our data show that p53 (75%), Bcl2 (50%) and Ki67 (63%) positivity was generally diffuse in the majority of cases. On the contrary, cytoplasmatic α-SMA expression was present only in 8 out of 31 cases (25,8%). All these 8 α-SMA positive BCCs, prevalently found in the mideface (6 out of 8), were characterized by an initial invasion beyond the dermis. Among these 6 face-localized α-SMA positive BCCs, 1 showed a sclerosing aggressive histotype, 1 a keratotic type and 4 a nodular histotype.These 8 little α-SMA-positive BCCs, compared to the others 23 α-SMA negative samples, all showed a major aggressiveness features: facial location, ulceration, morpheiform histotype and deeper infiltration into the dermis (Location
Histotype
Local aggressiveness
Immunohistochemistry
FaceKeratoticMorpheiformDepht of invasion Mean value(mm)UlcerationInfiltration of the dermisP53Bcl-2Ki678 α-SMA Positive cases75%12%12%1.650%63%75%50%63%23 α-SMA Negative cases56%13%4%1.413%48%78%43%65%
Open in a separate windowGiven the absence of a specific difference between α-SMA positive cases and α-SMA negative cases in the expression of aggressive immunohistochemical markers, except for a light reduction of bcl-2 in the α-SMA positive group (and2).2). By the analysis of the data, we selected the combination that could better define an aggressive behaviour even for little BCC: α-SMA, p53, Ki67 positivity and bcl-2 negativity. We considered p53 and ki67 markers of proliferation and cell-cycle alteration, combined with a loss of apoptotic activity expressed by Bcl-2 negativity, quite characteristic of aggressiveness; moreover α-SMA positivity probably reflects invasive potential and acquired mobility by neoplastic cells.This immunohistochemical profile (α-SMA, p53, Ki67 positivity and bcl-2 negativity) in our cases of BCC is present in two of them; one is a morpheiform BCC, that is an aggressive variant, while the other one is a nodular subtype (less aggressive).Therefore, our preliminary data suggest that only α-SMA positivity should be considered as an early diagnostic marker of potential aggressiveness in little BCC: all α-SMA positive little BCC in fact showed clinical and histological features of aggressiveness. Invasive potential is probably acquired by some BCCs not only when they reach large size, but it is probably present also when they have still little size, and can be revealed by α-SMA positivity in the neoplastic cells. Open in a separate windowFigure 1BCC, nodular type, HE, 10×. Open in a separate windowFigure 2BCC, nodular type, α-SMA positivity, 10×.  相似文献   

4.
Analysis of the Clonal Relationship of Serotype O26:H11 Enterohemorrhagic Escherichia coli Isolates from Cattle     
Lutz Geue  Sabrina Klare  Christina Schnick  Birgit Mintel  Katharina Meyer  Franz J. Conraths 《Applied and environmental microbiology》2009,75(21):6947-6953
Twelve cluster groups of Escherichia coli O26 isolates found in three cattle farms were monitored in space and time. Cluster analysis suggests that only some O26:H11 strains had the potential for long-term persistence in hosts and farms. As judged by their virulence markers, bovine enterohemorrhagic O26:H11 isolates may represent a considerable risk for human infection.Shiga toxin (Stx)-producing Escherichia coli (STEC) strains comprise a group of zoonotic enteric pathogens (42). In humans, infections with some STEC serotypes result in hemorrhagic or nonhemorrhagic diarrhea, which can be complicated by hemolytic-uremic syndrome (HUS) (49). These STEC strains are also designated “enterohemorrhagic E. coli” (EHEC). Consequently, EHEC strains represent a subgroup of STEC with a high pathogenic potential for humans. Strains of the E. coli serogroup O26 were originally classified as enteropathogenic E. coli due to their association with outbreaks of infantile diarrhea in the 1940s. In 1977, Konowalchuk et al. (37) recognized that these bacteria produced Stx, and 10 years later, the Stx-producing E. coli O26:H11/H− strains were classified as EHEC. EHEC O26 strains constitute the most common non-O157 EHEC group associated with diarrhea and HUS in Europe (12, 21, 23, 24, 26, 27, 55, 60). Reports on an association between EHEC O26 and HUS or diarrhea from North America including the United States (15, 30, 33), South America (51, 57), Australia (22), and Asia (31, 32) provide further evidence for the worldwide spread of these organisms. Studies in Germany and Austria (26, 27) on sporadic HUS cases between 1996 and 2003 found that EHEC O26 accounted for 14% of all EHEC strains and for ∼40% of non-O157 EHEC strains obtained from these patients. A proportion of 11% EHEC O26 strains was detected in a case-control study in Germany (59) between 2001 and 2003. In the age group <3 years, the number of EHEC O26 cases was nearly equal to that of EHEC O157 cases, although the incidence of EHEC O26-associated disease is probably underestimated because of diagnostic limitations in comparison to the diagnosis of O157:H7/H− (18, 34). Moreover, EHEC O26 has spread globally (35). Beutin (6) described EHEC O26:H11/H−, among O103:H2, O111:H, O145:H28/H−, and O157:H7/H−, as the well-known pathogenic “gang of five,” and Bettelheim (5) warned that we ignore the non-O157 STEC strains at our peril.EHEC O26 strains produce Stx1, Stx2, or both (15, 63). Moreover, these strains contain the intimin-encoding eae gene (11, 63), a characteristic feature of EHEC (44). In addition, EHEC strains possess other markers associated with virulence, such as a large plasmid that carries further potential virulence genes, e.g., genes coding for EHEC hemolysin (EHEC-hlyA), a catalase-peroxidase (katP), and an extracellular serine protease (espP) (17, 52). The efa1 (E. coli factor for adherence 1) gene was identified as an intestinal colonization factor in EHEC (43). EHEC O26 represents a highly dynamic group of organisms that rapidly generate new pathogenic clones (7, 8, 63).Ruminants, especially cattle, are considered the primary reservoir for human infections with EHEC. Therefore, the aim of this study was the molecular characterization of bovine E. coli field isolates of serogroup O26 using a panel of typical virulence markers. The epidemiological situation in the beef herds from which the isolates were obtained and the spatial and temporal behavior of the clonal distribution of E. coli serogroup O26 were analyzed during the observation period. The potential risk of the isolates inducing disease in humans was assessed.In our study, 56 bovine E. coli O26:H11 isolates and one bovine O26:H32 isolate were analyzed for EHEC virulence-associated factors. The isolates had been obtained from three different beef farms during a long-term study. They were detected in eight different cattle in farm A over a period of 15 months (detected on 10 sampling days), in 3 different animals in farm C over a period of 8 months (detected on 3 sampling days), and in one cow on one sampling day in farm D (Table (Table1)1) (28).

TABLE 1.

Typing of E. coli O26 isolates
Sampling day, source, and isolateSerotypeVirulence profile by:
fliC PCR-RFLPstx1 genestx2 geneStx1 (toxin)Stx2 (toxin)Subtype(s)
efa1 genebEHEC-hlyA genekatP geneespP genePlasmid size(s) in kbCluster
stx1/stx2eaetirespAespB
Day 15
    Animal 6 (farm A)
        WH-01/06/002-1O26:H11H11++stx1ββββ+/++++110, 127
        WH-01/06/002-2O26:H11H11++stx1ββββ+/++++110, 127
        WH-01/06/002-3O26:H11H11++stx1ββββ+/++++110, 127
    Animal 8 (farm A)
        WH-01/08/002-2O26:H11H11++stx1ββββ+/++++110, 127
    Animal 26 (farm A)
        WH-01/26/001-2O26:H11H11++stx1ββββ+/++++130, 127
        WH-01/26/001-5O26:H11H11++stx1ββββ+/++++110, 127
        WH-01/26/001-6O26:H11H11++stx1ββββ+/++++110, 127
        WH-01/26/001-7O26:H11H11++stx1ββββ+/−+++110, 127
Day 29
    Animal 2 (farm A)
        WH-01/02/003-1O26:H11H11++stx1ββββ+/++++110, 126
        WH-01/02/003-2O26:H11H11++stx1ββββ+/++++110, 126
        WH-01/02/003-5O26:H11H11++stx1ββββ+/++++110, 126
        WH-01/02/003-6O26:H11H11++stx1ββββ+/+++110, 126
        WH-01/02/003-7O26:H11H11++stx1ββββ+/++++110, 126
        WH-01/02/003-8O26:H11H11++stx1ββββ−/++++110, 126
        WH-01/02/003-9O26:H11H11++stx1ββββ+/++++1106
        WH-01/02/003-10O26:H11H11++stx1ββββ+/++++1106
    Animal 26 (farm A)
        WH-01/26/002-2O26:H11H11++stx1ββββ+/++++130, 125
        WH-01/26/002-5O26:H11H11++stx1ββββ+/++++130, 125
        WH-01/26/002-8O26:H11H11++stx1ββββ+/++++130, 125
        WH-01/26/002-9O26:H11H11++stx1ββββ+/++110, 125
        WH-01/26/002-10O26:H11H11++stx1ββββ+/++++130, 125
Day 64
    Animal 20 (farm A)
        WH-01/20/005-3O26:H11H11++stx1ββββ+/+130, 2.52
Day 78
    Animal 29 (farm A)
        WH-01/29/002-1O26:H11H11++stx1ββββ+/−+130, 12, 2.54
        WH-01/29/002-2O26:H11H11++stx1ββββ+/++++130, 12, 2.54
        WH-01/29/002-3O26:H11H11++stx1ββββ+/++++130, 12, 2.54
        WH-01/29/002-4O26:H11H11++stx1ββββ+/++++130, 12, 2.54
        WH-01/29/002-5O26:H11H11++stx1ββββ+/++130, 12, 2.54
Day 106
    Animal 27 (farm A)
        WH-01/27/005-2O26:H11H11++stx1ββββ+/−+++145, 110, 123
        WH-01/27/005-5O26:H11H11++stx1ββββ+/++++130, 12, 2.55
        WH-01/27/005-6O26:H11H11++stx1ββββ+/+130, 12, 2.55
Day 113
    Animal 7 (farm C)
        WH-04/07/001-2O26:H11H11++++stx1/stx2ββββ+/+++55, 35, 2.511
        WH-04/07/001-4O26:H11H11++++stx1/stx2ββββ+/++++5512
        WH-04/07/001-6O26:H11H11++++stx1/stx2ββββ+/++++5512
Day 170
    Animal 22 (farm C)
        WH-04/22/001-1O26:H11H11++stx1ββββ+/++++110, 12, 6.312
        WH-04/22/001-4O26:H11H11++stx1ββββ+/++++110, 12, 6.312
        WH-04/22/001-5O26:H11H11++stx1ββββ+/++++110, 12, 6.312
Day 176
    Animal 14 (farm D)
        WH-03/14/004-8O26:H11H11++stx1ββββ+/+++11010
Day 218
    Animal 27 (farm A)
        WH-01/27/009-1O26:H11H11++++stx1/stx2ββββ+/++++110, 129
        WH-01/27/009-2O26:H11H11++++stx1/stx2ββββ+/++++110, 129
        WH-01/27/009-3O26:H11H11++++stx1/stx2ββββ+/++++110, 128
        WH-01/27/009-8O26:H11H11++++stx1/stx2ββββ+/++110, 128
        WH-01/27/009-9O26:H11H11++++stx1/stx2ββββ+/++++110, 129
Day 309
    Animal 29 (farm A)
        WH-01/29/010-1O26:H11H11++stx1ββββ+/++++110, 35, 124
        WH-01/29/010-2O26:H11H11++stx1ββββ+/++130, 55, 358
        WH-01/29/010-3O26:H11H11++stx1ββββ+/++++130, 35, 128
Day 365
    Animal 8 (farm C)
        WH-04/08/008-6O26:H11H11++stx1ββββ+/++++110, 5512
Day 379
    Animal 9 (farm A)
        WH-01/09/016-2O26:H32H32++stx1/stx2−/−145, 130, 1.81
    Animal 27 (farm A)
        WH-01/27/014-3O26:H11H11++stx1ββββ+/++++110, 129
        WH-01/27/014-4O26:H11H11++stx1ββββ+/++++110, 129
        WH-01/27/014-5O26:H11H11++stx1ββββ+/++++110, 128
Day 407
    Animal 29 (farm A)
        WH-01/29/013-4O26:H11H11++stx1ββββ+/++++110, 12, 2.58
        WH-01/29/013-7O26:H11H11++stx1ββββ+/++++110, 12, 2.58
Day 478
    Animal 27 (farm A)
        WH-01/27/017-1O26:H11H11++++stx1/stx2ββββ+/++++110, 128
        WH-01/27/017-5O26:H11H11++++stx1/stx2ββββ+/++++110, 128
        WH-01/27/017-6O26:H11H11++++stx1/stx2ββββ+/++++1108
        WH-01/27/017-7O26:H11H11++++stx1/stx2ββββ+/++++1108
        WH-01/27/017-10O26:H11H11+++stx1ββββ+/++++130, 12, 2.58
Open in a separate windowastx1/stx2, gene stx1 or stx2.befa1 was detected by two hybridizations (with lifA1-lifA2 and lifA3-lifA4 probes). +/+, complete gene; +/− or −/+, incomplete gene; −/−, efa1 negative.The serotyping of the O26 isolates was confirmed by the results of the fliC PCR-restriction fragment length polymorphism (RFLP) analysis performed according to Fields et al. (25), with slight modifications described by Zhang et al. (62). All O26:H11 isolates showed the H11 pattern described by Zhang et al. (62). In contrast, the O26:H32 isolate demonstrated a different fliC RFLP pattern that was identical to the H32 pattern described by the same authors. It has been demonstrated that EHEC O26:H11 strains belong to at least four different sequence types (STs) in the common clone complex 29 (39). In the multilocus sequence typing analysis for E. coli (61), the tested five EHEC O26:H11 isolates (WH-01/02/003-1, WH-01/20/005-3, WH-01/27/009-9, WH-03/14/004-8, and WH-04/22/001-1) of different farms and clusters were characterized as two sequence types (ST 21 and ST 396). The isolates from farms A and C belong to ST 21, the most frequent ST of EHEC O26:H11 isolates found in humans and animals (39), but the single isolate from farm D was characterized as ST 396.Typing and subtyping of genes (stx1 and/or stx2, eae, tir, espA, espB, EHEC-hlyA, katP, and espP) associated with EHEC were performed with LightCycler fluorescence PCR (48) and different block-cycler PCRs. To identify the subtypes of the stx2 genes and of the locus of enterocyte effacement-encoding genes eae, tir, espA, and espB, the PCR products were digested by different restriction endonucleases (19, 26, 46). The complete pattern of virulence markers was detected in most bovine isolates examined in our study. An stx1 gene was present in all O26 isolates. In addition, an stx2 gene was found in nine O26:H11 isolates in farm A and in three isolates of the same type in farm C, as well as in the O26:H32 isolate. Both Stx1 and Stx2 were closely related to families of Stx1 and Stx2 variants or alleles. EHEC isolates with stx2 genes are significantly more often associated with HUS and other severe disease manifestations than isolates with an stx1 gene, which are more frequently associated with uncomplicated diarrhea and healthy individuals (13). In contrast to STEC strains harboring stx2 gene variants, however, STEC strains of the stx2 genotype were statistically significantly associated with HUS (26). The stx2 genotype was found in all O26 isolates with an stx2 gene, while the GK3/GK4 amplification products after digestion with HaeIII and FokI restriction enzymes showed the typical pattern for this genotype described by Friedrich et al. (26). The nucleotide sequences of the A and B subunits of the stx2 gene of the selected bovine O26:H11 isolate WH-01/27/017-1 (GenBank accession no. EU700491) were identical to the stx2 genes of different sorbitol-fermenting EHEC O157:H− strains associated with human HUS cases and other EHEC infections in Germany (10) and 99.3% identical in their DNA sequences to the stx2 gene of the EHEC type strain EDL933, a typical O157:H7 isolate from an HUS patient. A characteristic stx1 genotype was present in all O26 isolates. The nucleotide sequences of the A and B subunits of the stx1 gene of the tested bovine O26:H11 isolate WH-01/27/017-1 (GenBank accession no. EU700490) were nearly identical to those of the stx1 genes of the EHEC O26:H11 reference type strains H19 and DEC10B, which had been associated with human disease outbreaks in Canada and Australia. Nucleotide exchanges typical for stx1c and stx1d subtypes as described by Kuczius et al. (38) were not found. All bovine O26:H11 strains produced an Stx1 with high cytotoxicity for Vero cells tested by Stx enzyme-linked immunosorbent assay and Vero cell neutralization assay (53). The Stx2 cytotoxicity for Vero cells was also very high in the O26:H11 isolates.Not only factors influencing the basic and inducible Stx production are important in STEC pathogenesis. It has been suggested that the eae and EHEC-hlyA genes are likely contributors to STEC pathogenicity (2, 3, 13, 50). Ritchie et al. (50) found both genes in all analyzed HUS-associated STEC isolates. In all O26:H11 isolates we obtained, stx genes were present in combination with eae genes. Only the O26:H32 isolate lacked an eae gene. To date, 10 distinct variants of eae have been described (1, 19, 36, 45, 47). Some serotypes were closely associated with a particular intimin variant: the O157 serogroup was linked to γ-eae, the O26 serogroup to β-eae, and the O103 serogroup to ɛ-eae (4, 19, 20, 58). Our study confirms these associations. All bovine O26:H11 isolates were also typed as members of the β-eae subgroup. A translocated intimin receptor gene (tir gene) and the type III secreted proteins encoded by the espA and espB genes were found in all 56 O26:H11 isolates but not in the O26:H32 isolate. These other tested locus of enterocyte effacement-associated genes belonged to the β-subgroups. These results are in accord with the results of China et al. (19), who detected the pathotypes β-eae, β-tir, β-espA, and β-espB in all investigated human O26 strains. Like the eae gene, the EHEC-hlyA gene was found in association with severe clinical disease in humans (52). Aldick et al. (2) showed that EHEC hemolysin is toxic (cytolytic) to human microvascular endothelial cells and may thus contribute to the pathogenesis of HUS. In our study, the EHEC-hlyA gene was detected in 50 of the 56 bovine E. coli O26:H11 isolates which harbored virulence-associated plasmids of different sizes (Table (Table1).1). The presence of virulence-associated plasmids corresponded to the occurrence of additional virulence markers such as the espP and katP genes (17). The katP gene and the espP gene were detected in 49 and 50 of the 56 O26:H11 isolates, respectively. The espP gene was missing in six of the seven bovine O26:H11 isolates in which the katP genes were also absent. Both genes were not found in the O26:H32 isolate (Table (Table1).1). Although we found large plasmids of the same size in O26:H11 isolates, they lacked one or more of the plasmid-associated virulence factors (Table (Table1).1). Two DNA probes were used to detect the efa1 genes by colony hybridization. (DNA probes were labeled with digoxigenin [DIG] with lifA1-lifA2 and lifA3-lifA4 primers [14] using the PCR DIG probe synthesis kit [Roche Diagnostics, Mannheim, Germany]; DIG Easy Hyb solution [Roche] was used for prehybridization and hybridization.) Positive results with both DNA probes were obtained for 52 of 56 E. coli O26:H11 isolates. A positive signal was only found in three isolates with the lifA1-lifA2 DNA probe and in one isolate with the lifA3-lifA4 probe. An efa1 gene was not detected in the O26:H32 isolate (Table (Table11).We also analyzed the spatial and temporal behavior of the O26:H11/H32 isolates in the beef herds by cluster analysis (conducted in PAUP* for Windows version 4.0, 2008 [http://paup.csit.fsu.edu/about.html]). This was performed with distance matrices using the neighbor-joining algorithm, an agglomerative cluster method which generates a phylogenetic tree. The distance matrices were calculated by pairwise comparisons of the fragmentation patterns produced by genomic typing through pulsed-field gel electrophoresis analysis with four restriction endonucleases (XbaI, NotI, BlnI, and SpeI) and the presence or absence of potential virulence markers (Fig. (Fig.11 and Table Table1).1). To this end, the total character difference was used, which counts the pairwise differences between two given patterns. During a monitoring program of 3 years in four cattle farms (29), different O26:H11 cluster groups and one O26:H32 isolate were detected in three different farms. The genetic distance of the O26:H32 isolate was very high relative to the O26:H11 isolates. Therefore, the O26:H32 isolate was outgrouped. The O26:H11 isolates of each farm represented independent cluster groups. The single isolate from farm D fitted better to the isolates from farm C than to those from farm A. This finding is in accord with the geographical distance between the farms. The fact that the farms were located in neighboring villages may suggest that direct or indirect connections between the farms were possible (e.g., by person contacts or animal trade). However, the isolates from farm C and farm D belonged to different sequence types (ST 21 and ST 396), which may argue against a direct connection. Interestingly, O26:H11 isolates with and without stx2 genes were detected in the same clusters. This phenomenon was observed in both farm A and farm C. In farm A, the isolates with additional stx2 genes were found in animal 27 and were grouped in clusters 8 and 9 (day 218). An stx2 gene was repeatedly found (four isolates) in the same animal (animal 27). The isolates grouped in cluster 8 on a later day of sampling (day 478). All other O26:H11 isolates grouped in the same clusters and obtained from the same animals (27 and 29) on different sampling days lacked an stx2 gene. Also, the isolates obtained from animal 27 on previous sampling days, which grouped in clusters 3 and 5, exhibited no stx2 genes. In farm C, the three isolates with additional stx2 genes obtained from animal 7 grouped in clusters 11 and 12. An stx2 gene was absent from all other O26:H11 isolates grouped in the same cluster 12 on later sampling days, and no other isolates of cluster 11 were found later on. However, we detected members of many clusters over relatively long periods (clusters 5, 8, and 9 in farm A and cluster 12 in farm C), but members of other clusters were only found on single occasions. This patchy temporal pattern is apparently not a unique property of O26:H11, as we found similar results for cluster groups of other EHEC serotypes of bovine origin (28). The isolates grouped in the dominant cluster 8 were found on 5 of 9 sampling days over a period of 10 months. In contrast, we found the members of clusters 4, 5, 9, and 12 only on two nonconsecutive sampling days. The period during which isolates of these groups were not detected was particularly long for cluster 4 (231 days). We also observed the coexistence of different clusters over long periods in the same farm and in the same cattle (clusters 8 and 9), while one of the clusters dominated. Transmission of clusters between cattle was also observed. These results suggest that some of the EHEC O26:H11 strains had the potential for a longer persistence in the host population, while others had not. The reasons for this difference are not yet clear. Perhaps the incomplete efa1 gene found in isolates of clusters which were only detected once might explain why some strains disappeared rapidly. Efa1 has been discussed as a potential E. coli colonization factor for the bovine intestine used by non-O157 STEC, including O26 (54, 56). The O165:H25 cluster detected during a longer period in farm B may have disappeared after it had lost its efa1 gene (28). The precise biological activity of Efa1 in EHEC O26 is not yet known, but it has been demonstrated that the molecule is a non-Stx virulence determinant which can increase the virulence of EHEC O26 in humans (8).Open in a separate windowFIG. 1.Neighbor-joining tree of bovine E. coli O26:H11/H32 strains based on the restriction pattern obtained after digestion with XbaI, NotI, BlnI, and SpeI.We distinguished 12 different clusters, but complete genetic identity was only found in two isolates. The variations in the O26:H11 clusters may be due to increasing competition between the bacterial populations of the various subtypes in the bovine intestine or to potential interactions between EHEC O26:H11 and the host.The ephemeral occurrence of additional stx2 genes in different clusters and farms may be the result of recombination events due to horizontal gene transfer (16). The loss of stx genes may occur rapidly in the course of an infection, but the reincorporation by induction of an stx-carrying bacteriophage into the O26:H11 strains is possible at any time (9, 40). Nevertheless, an additional stx2 gene may increase the dangerousness of the respective EHEC O26:H11 strains. While all patients involved in an outbreak caused by an EHEC O26:H11 strain harboring the gene encoding Stx2 developed HUS (41), the persons affected by another outbreak caused by an EHEC O26:H11 strain that produced exclusively Stx1 had only uncomplicated diarrhea (60).In conclusion, our results showed that bovine O26:H11 isolates can carry virulence factors of EHEC that are strongly associated with EHEC-related disease in humans, particularly with severe clinical manifestations such as hemorrhagic colitis and HUS. Therefore, strains of bovine origin may represent a considerable risk for human infection. Moreover, some clusters of EHEC O26:H11 persisted in cattle and farms over longer periods, which may increase the risk of transmission to other animals and humans even further.  相似文献   

5.
Metrics for antibody therapeutics development     
Janice M Reichert 《MABS-AUSTIN》2010,2(6):695-700
  相似文献   

6.
Detection and Identification of tdh- and trh-Positive Vibrio parahaemolyticus Strains from Four Species of Cultured Bivalve Molluscs on the Spanish Mediterranean Coast     
Ana Roque  Carmen Lopez-Joven  Beatriz Lacuesta  Laurence Elandaloussi  Sariqa Wagley  M. Dolores Furones  Imanol Ruiz-Zarzuela  Ignacio de Blas  Rachel Rangdale  Bruno Gomez-Gil 《Applied and environmental microbiology》2009,75(23):7574-7577
Presented here is the first report describing the detection of potentially diarrheal Vibrio parahaemolyticus strains isolated from cultured bivalves on the Mediterranean coast, providing data on the presence of both tdh- and trh-positive isolates. Potentially diarrheal V. parahaemolyticus strains were isolated from four species of bivalves collected from both bays of the Ebro delta, Spain.Gastroenteritis caused by Vibrio parahaemolyticus has been reported worldwide, though only sporadic cases have been reported in Europe (7, 14). The bacterium can be naturally present in seafood, but pathogenic isolates capable of inducing gastroenteritis in humans are rare in environmental samples (2 to 3%) (15) and are often not detected (10, 19, 20).The virulence of V. parahaemolyticus is based on the presence of a thermostable direct hemolysin (tdh) and/or the thermostable direct hemolysin-related gene (trh) (1, 5). Both are associated with gastrointestinal illnesses (2, 9).Spain is not only the second-largest producer in the world of live bivalve molluscs but also one of the largest consumers of bivalve molluscs, and Catalonia is the second-most important bivalve producer of the Spanish Autonomous Regions. Currently, the cultivation of bivalves in this area is concentrated in the delta region of the Ebro River. The risk of potentially pathogenic Vibrio spp. in products placed on the market is not assessed by existing legislative indices of food safety in the European Union, which emphasizes the need for a better knowledge of the prevalence of diarrheal vibrios in seafood products. The aim of this study was to investigate the distribution and pathogenic potential of V. parahaemolyticus in bivalve species exploited in the bays of the Ebro delta.Thirty animals of each species of Mytilus galloprovincialis, Crassostrea gigas, Ruditapes decussatus, and Ruditapes philippinarum were collected. They were sampled from six sites of the culture area, three in each bay of the Ebro River delta, at the beginning (40°37′112"N, 0°37′092"E [Alfacs]; 40°46′723"N, 0°43′943"E [Fangar]), middle (40°37′125"N, 0°38′570"E [Alfacs]; 40°46′666"N, 0°45′855"E [Fangar]), and end (40°37′309"N, 0°39′934"E [Alfacs]; 40°46′338"N, 0°44′941"E [Fangar]) of the culture polygon. Clams were sampled from only one site per bay as follows: in the Alfacs Bay from a natural bed of R. decussatus (40°37′44"N, 0°38′0"E) and in the Fangar Bay from an aquaculture bed of R. philippinarum (40°47′3"N, 0°43′8"E). In total, 367 samples were analyzed in 2006 (180 oysters, 127 mussels, 30 carpet shell clams, and 30 Manila clams) and 417 samples were analyzed in 2008 (178 oysters, 179 mussels, 30 carpet shell clams, and 30 Manila clams).All animals were individually processed and homogenized, and 1 ml of the homogenate was inoculated into 9 ml of alkaline peptone water (Scharlau, Spain). Following a 6-h incubation at 37°C, one loopful of the contents of each tube of alkaline peptone water was streaked onto CHROMagar vibrio plates (CHROMagar, France) and incubated for 18 h at 37°C. Mauve-purple colonies were purified, and each purified isolate was cryopreserved at −80°C (135 isolates in 2006 and 96 in 2008). From the initial homogenate portion, 100 μl was inoculated onto marine agar (Scharlau, Spain) and onto thiosulfate citrate-bile salts-sucrose agar (Scharlau, Spain) for total heterotrophic marine bacteria counts and total vibrio counts, respectively (Table (Table11).

TABLE 1.

Vibrio parahaemolyticus isolates, serotypes, and origins and total number of vibrios/heterotrophic bacteria contained in the bivalvea
IsolateDate of collectionOrganism and site of originTemp (°C)Salinity (‰)Gene(s)SerotypeBacterial count using indicated medium (CFU ml−1)
TCBS agarMarine agar
I7458 August 2006Mg-F24.537tdhND1.5 × 1041.2 × 104
I79314 August 2006Cg-A2535tdhND9.2 × 1028.5 × 103
I80514 August 2006Cg-A2535tdhO2:KUT7.2 × 1029 × 103
I80614 August 2006Cg-A2535tdh and trhO3:K331.9 × 1034.6 × 103
I80914 August 2006Cg-A2535tdhO2:K288 × 1047.3 × 102
I6784 July 2006Rd-A28.636tdhO2:K283.1 × 1052.5 × 105
I6284 July 2006Rd-A28.636tdhO4:KUT2.9 × 1048.4 × 104
I7758 August 2006Cg-A24.537tdhND4.21 × 1031.1 × 104
I6914 July 2006Rd-A28.636trhO1:K322.2 × 1052.6 × 105
I71227 July 2006Mg-A29.435.5trhO1:KUT8.6 × 1038.4 × 103
I7658 August 2006Cg-F24.537trhO4:K341 × 104Uncountable
I98022 July 2008Cg-A26.733.5tdhO1:K322.7 × 1041.3 × 104
I98122 July 2008Cg-A26.733.5trhO1:KUT1 × 1042.2 × 104
I99322 July 2008Cg-A26.733.5tdhO5:K173 × 1031.1 × 104
I99429 July 2008Mg-A27.737trhO3:KUT3.4 × 1037 × 103
I10315 August 2008Cg-F27.737tdhO5:KUT5.5 × 1043.3 × 104
I10345 August 2008Cg-F27.737tdhO3:KUT8.7 × 1044 × 104
I10405 August 2008Cg-F27.737tdhO3:KUT1.6 × 1043.2 × 104
I10425 August 2008Cg-F27.737tdh and trhND2.8 ×1043 × 104
I10505 August 2008Cg-F27.737tdhO1:KUT4.7 × 1047.3 × 104
I106320 August 2008Mg-F25.936tdhO3:KUT7.9 ×1041.4 × 104
I106520 August 2008Mg-F25.936tdhO2:KUT2.2 × 1031.2 × 104
I106820 August 2008Mg-F25.936tdhO5:KUT2.6 × 1045.2 × 104
I106920 August 2008Mg-F25.936tdhO3:KUT2.4 × 1035.3 × 104
I107320 August 2008Mg-F25.936tdhO5:KUT2.3 × 1037.5 × 103
I107420 August 2008Mg-F25.936tdhO3:KUT7.6 × 1046.9 × 104
I107720 August 2008Mg-F25.936tdhO4:KUT1.7 × 1031.6 × 103
I107920 August 2008Mg-F25.936trhO3:KUT2.5 × 1031.1 × 104
I109220 August 2008Mg-F25.936tdhND1.7 × 1031.6 × 103
I113025 August 2008Rd-A26.435tdhND1.7 × 1043.8 × 104
I114325 August 2008Rd-A26.435tdhND1.1 × 1041.9 × 104
I116525 August 2008Rd-A26.435trhO2:KUT4.4 × 1046.8 × 104
I113325 August 2008Rp-F25.536.5tdhND3.4 × 1044 × 104
I113425 August 2008Rp-F25.536.5tdhND3.9 × 1045.8 × 104
I115825 August 2008Rp-F25.536.5trhO4:KUT6.6 × 1044.7 × 104
I116125 August 2008Rp-F25.536.5trhO3:KUT2.2 × 1046.6 × 104
Open in a separate windowaMg, Mytilus galloprovincialis; Cg, Crassostrea gigas; Rd, Ruditapes decussatus; Rp, R. phillipinarum; A, Alfacs; F, Fangar; ND, not determined; TCBS, thiosulfate citrate-bile salts-sucrose.Total DNA was extracted from each purified isolate using the Wizard genomic DNA purification kit (Promega), following the instructions of the manufacturer. A one-step PCR analysis was performed to identify/confirm which isolates were tl positive (species marker for V. parahaemolyticus). Further detection of the tdh or trh gene was carried out on all positive tl strains. All PCR analyses were carried out using the primers described by Bej et al. (2) with the following amplification conditions on the thermocycler (Eppendorf Mastercycler Personal): an initial denaturation at 95°C for 8 min, followed by 40 cycles of a 1-min denaturation at 94°C, annealing at 55°C for 1 min, elongation at 72° for 1 min, and a final extension of 10 min at 72°C. Positive and negative controls were included in all reaction mixtures: two positive controls, tl and tdh CAIM 1400 and trh CAIM 1772 (Collection of Aquatic Important Microorganisms [http://www.ciad.mx/caim/CAIM.html]), and negative control DNA-free molecular grade water (Sigma-Aldrich, Spain). Expected amplicons were visualized in 2% agarose gels stained with ethidium bromide.Fifty-eight isolates contained the gene tl in 2006 and 96 in 2008, which confirmed their identity as V. parahaemolyticus. In 2006, the distribution of the 58 isolates was as follows: 7 from 127 mussels, 34 from 180 oysters, and 17 from 30 R. decussatus clams. No tl-positive isolates were found in R. philippinarum. PCR analysis of the tl-positive isolates for the presence of the tdh or trh gene indicated that eight isolates contained the tdh gene and four contained the trh gene. In 2008, the source of the confirmed V. parahaemolyticus isolates was as follows: 31 from 88 oysters, 44 from 89 mussels, 9 from 30 R. decussatus clams, and 12 from 30 R. philippinarum clams. Of these, 17 were found to contain the tdh gene and 7 contained the trh gene. Two isolates (I806 and I1042) contained both toxigenic genes, tdh and trh.Putative tdh- and trh-positive PCR products were purified using the QIAquick PCR purification kit (Qiagen) following the manufacturer''s instructions and were sequenced bidirectionally by Macrogen Inc. Sequences were aligned using BioEdit (8) and analyzed using BLAST (National Center for Biotechnology Information). None of the toxigenic isolates was found positive by PCR analysis for the presence of open reading frame 8 of the phage 237 (16), a marker for the pandemic strain O3:K6.The isolates were fingerprinted by repetitive extragenic palindromic PCR (rep-PCR) as described previously (3), and the resulting electrophoretic band patterns were analyzed with the GelCompar II software (v4.5; Applied Maths). The similarity matrix was calculated with the Jaccard coefficient with a band position tolerance of 0.8%, and the dendrogram was constructed with the Ward algorithm. A high level of genomic diversity was found among the 32 toxigenic isolates characterized by rep-PCR. Three clonal groups were identified (those having identical rep-PCR band patterns) (Fig. 1a to c).Open in a separate windowFIG. 1.rep-PCR dendrogram of toxigenic isolates of V. parahaemolyticus isolated in the Ebro delta. Letters denote clonal groups of isolates.In vitro antibiotic susceptibility tests were performed using the diffusion disc test following a previously described protocol (18). The antibiotics used were gentamicin (10 μg), oxolinic acid (10 μg), amoxicillin (25 μg), polymyxin B (300 UI), vancomycin (30 μg), trimethoprim sulfamethoxazole (1.25/23.75 μg), nitrofurantoin (300 μg), doxycyclin (30 μg), ceftazidime (30 μg), streptomycin (10 μg), neomycin (30 UI), penicillin (6 μg), flumequine (30 μg), tetracycline (30 μg), ampicillin (10 μg), kanamycin (30 μg), ciprofloxacin (5 μg), and sulfonamide (300 μg). All tests were performed in duplicate. A Student t test for two samples with unequal variance was performed to compare the sensitivity of all 2006 isolates against the sensitivity of 2008 isolates for each antibiotic (Microsoft Office Excel 97-2003). Antibiogram results revealed a lower susceptibility in 2008 than in 2006, indicating a possible shift in overall susceptibility. Results from the t test indicated that significantly lower susceptibility in 2008 was detected (P ≤ 0.05; n = 36) for the following antibiotics: vancomycin, polymyxin B, ampicillin, amoxicillin, gentamicin, neomycin, trimethoprim sulfamethoxazole, nitrofurantoin, doxycyclin, ceftazidime, tetracycline, flumequine, and ciprofloxacin.The serological types for 27 strains were determined by the agglutination method using commercially available V. parahaemolyticus antisera (Denka Seiken Ltd.; Cosmos Biomedical Ltd, United Kingdom) following the manufacturer''s instructions. Potentially toxigenic V. parahaemolyticus isolates collected in 2006 were serologically heterogeneous (8 out of the 11 isolates) (Table (Table1).1). In isolates collected in 2008, results were more homogenous, with seven serotypes found among 19 isolates analyzed. The O3:K6 serotype was not detected in any of the strains analyzed, in agreement with the open reading frame 8 PCR results.The present study is the first to report the detection of potentially diarrheal V. parahaemolyticus strains isolated from cultured bivalves on Spanish Mediterranean coasts, providing data on the presence of both tdh- and trh-positive isolates. V. parahaemolyticus has previously been detected in several European countries (4, 13, 21, 22). A recent study carried out in Spain detected tdh-positive V. parahaemolyticus strains from patients who had consumed fresh oysters in a market in Galicia on the Atlantic coast of Spain (12) and potentially pathogenic V. parahaemolyticus strains have also been reported in France (17). These studies indicate that the risk of infections caused by V. parahaemolyticus in Europe is low compared to that in America or Asia (15). However, this risk could have been underestimated, since V. parahaemolyticus is not included in the current European surveillance programs, such as the European Network for Epidemiological Surveillance and Control of Communicable Diseases.Toxigenic V. parahaemolyticus strains detected in this study were genomically and serologically heterogeneous. The pandemic serotype O3:K6 was not detected, and although attempts to isolate O3:K6 from the environment and from seafood have not always been successful in previous studies reviewed by Nair and coauthors (15), this finding seems to be in agreement with the fact that no outbreak of diarrhea was observed in the area. Interestingly, isolates I806 and I1042 have been found positive for both tdh and trh in PCR tests. The coexistence of tdh and trh genes has already been reported in isolates from Japan, the United States, and Mexico (3, 6, 11, 19, 23). To our knowledge, no occurrence of an environmental isolate positive for both tdh and trh had previously been reported in Europe. All isolates tested were slightly different in their antibiotic resistance profiles. Typically, a high level of resistance could be determined. The detection of tdh- and/or trh-positive V. parahaemolyticus strains for the first time on the Mediterranean coast emphasizes the need to monitor for the presence of potentially diarrheal vibrios and bacterial gastroenteritis, and these data should be taken into consideration to revise the European legislation on the requirements for shellfish harvested for consumption in order to include the surveillance of these pathogens in Europe.  相似文献   

7.
Escherichia coli O157:H7 and Other E. coli Strains Share Physiological Properties Associated with Intestinal Colonization     
Lisa Jacobsen  Lisa Durso  Tyrell Conway  Kenneth W. Nickerson 《Applied and environmental microbiology》2009,75(13):4633-4635
Escherichia coli isolates (72 commensal and 10 O157:H7 isolates) were compared with regard to physiological and growth parameters related to their ability to survive and persist in the gastrointestinal tract and found to be similar. We propose that nonhuman hosts in E. coli O157:H7 strains function similarly to other E. coli strains in regard to attributes relevant to gastrointestinal colonization.Escherichia coli is well known for its ecological versatility (15). A life cycle which includes both gastrointestinal and environmental stages has been stressed by both Savageau (15) and Adamowicz et al. (1). The gastrointestinal stage would be subjected to acid and detergent stress. The environmental stage is implicit in E. coli having transport systems for fungal siderophores (4) as well as pyrroloquinoline quinone-dependent periplasmic glucose utilization (1) because their presence indicates evolution in a location containing fungal siderophores and pyrroloquinoline quinone (1).Since its recognition as a food-borne pathogen, there have been numerous outbreaks of food-borne infection due to E. coli O157:H7, in both ground beef and vegetable crops (6, 13). Cattle are widely considered to be the primary reservoir of E. coli O157:H7 (14), but E. coli O157:H7 does not appear to cause disease in cattle. To what extent is E. coli O157:H7 physiologically unique compared to the other naturally occurring E. coli strains? We feel that the uniqueness of E. coli O157:H7 should be evaluated against a backdrop of other wild-type E. coli strains, and in this regard, we chose the 72-strain ECOR reference collection originally described by Ochman and Selander (10). These strains were chosen from a collection of 2,600 E. coli isolates to provide diversity with regard to host species, geographical distribution, and electromorph profiles at 11 enzyme loci (10).In our study we compared the 72 strains of the ECOR collection against 10 strains of E. coli O157:H7 and six strains of E. coli which had been in laboratory use for many years (Table (Table1).1). The in vitro comparisons were made with regard to factors potentially relevant to the bacteria''s ability to colonize animal guts, i.e., acid tolerance, detergent tolerance, and the presence of the Entner-Doudoroff (ED) pathway (Table (Table2).2). Our longstanding interest in the ED pathway (11) derives in part from work by Paul Cohen''s group (16, 17) showing that the ED pathway is important for E. coli colonization of the mouse large intestine. Growth was assessed by replica plating 88 strains of E. coli under 40 conditions (Table (Table2).2). These included two LB controls (aerobic and anaerobic), 14 for detergent stress (sodium dodecyl sulfate [SDS], hexadecyltrimethylammonium bromide [CTAB], and benzalkonium chloride, both aerobic and anaerobic), 16 for acid stress (pH 6.5, 6.0, 5.0, 4.6, 4.3, 4.2, 4.1, and 4.0), four for the ability to grow in a defined minimal medium (M63 glucose salts with and without thiamine), and four for the presence or absence of a functional ED pathway (M63 with gluconate or glucuronate). All tests were done with duplicate plates in two or three separate trials. The data are available in Tables S1 to S14 in the supplemental material, and they are summarized in Table Table22.

TABLE 1.

E. coli strains used in this study
E. coli strain (n)Source
ECOR strains (72)Thomas Whittman
Laboratory adapted (6)
    K-12 DavisPaul Blum
    CG5C 4401Paul Blum
    K-12 StanfordPaul Blum
    W3110Paul Blum
    BTyler Kokjohn
    AB 1157Tyler Kokjohn
O157:H7 (10)
    FRIK 528Andrew Benson
    ATCC 43895Andrew Benson
    MC 1061Andrew Benson
    C536Tim Cebula
    C503Tim Cebula
    C535Tim Cebula
    ATCC 43889William Cray, Jr.
    ATCC 43890William Cray, Jr.
    ATCC 43888Willaim Cray, Jr.
    ATCC 43894William Cray, Jr.
Open in a separate window

TABLE 2.

Physiological comparison of 88 strains of Escherichia coli
Growth medium or conditionOxygencNo. of strains with type of growthb
ECOR strains (n = 72)
Laboratory strains (n = 6)
O157:H7 strains (n = 10)
GoodPoorNoneVariableGoodPoorNoneVariableGoodPoorNoneVariable
LB controlaBoth72000600010000
1% SDSAerobic6930060008002
5% SDSAerobic6840060008200
1% SDSAnaerobic53154023101702
5% SDSAnaerobic0684004200704
CTABd (all)Both00720006000100
0.05% BACAerobic31158202220091
0.2% BACAerobic01710105000100
0.05% BACAnaerobic2367001500091
0.2% BACAnaerobic00720006000100
pH 6.5Both72000600010000
pH 6Both72000600010000
pH 5Both7020060009001
pH 4.6Both70200600010000
pH 4.3Aerobic14015731203205
pH 4.3Anaerobic6930031201100
pH 4.1 or 4.2Aerobic00720NDgND
pH 4.0Both0072000600091
M63 with supplemente
    GlucoseAerobicf6912050109010
    GlucoseAnaerobicf7002050109010
    GluconateBoth6912050109010
    GlucuronateAerobic6822050109010
    GlucuronateAnaerobic6912050109010
Open in a separate windowaEight LB controls were run, two for each set of LB experiments: SDS, CTAB, benzalkonium chloride (BAC), and pH stress.bGrowth was measured as either +++, +, or 0 (good, poor, and none, respectively), with +++ being the growth achieved on the LB control plates. “Variable” means that two or three replicates did not agree. All experiments were done at 37°C.c“Anaerobic” refers to use of an Oxoid anaerobic chamber. Aerobic and anaerobic growth data are presented together when the results were identical and separately when the results were not the same or the anaerobic set had not been done. LB plates were measured after 1 (aerobic) or 2 (anaerobic) days, and the M63 plates were measured after 2 or 3 days.dCTAB used at 0.05, 0.2%, and 0.4%.eM63 defined medium (3) was supplemented with glucose, gluconate, or glucuronate, all at 0.2%.fIdentical results were obtained with and without 0.0001% thiamine.gND, not determined.  相似文献   

8.
Phage Display Selection of Cyclic Peptides That Inhibit Andes Virus Infection          下载免费PDF全文
Pamela R. Hall  Brian Hjelle  Hadya Njus  Chunyan Ye  Virginie Bondu-Hawkins  David C. Brown  Kathleen A. Kilpatrick  Richard S. Larson 《Journal of virology》2009,83(17):8965-8969
Specific therapy is not available for hantavirus cardiopulmonary syndrome caused by Andes virus (ANDV). Peptides capable of blocking ANDV infection in vitro were identified using antibodies against ANDV surface glycoproteins Gn and Gc to competitively elute a cyclic nonapeptide-bearing phage display library from purified ANDV particles. Phage was examined for ANDV infection inhibition in vitro, and nonapeptides were synthesized based on the most-potent phage sequences. Three peptides showed levels of viral inhibition which were significantly increased by combination treatment with anti-Gn- and anti-Gc-targeting peptides. These peptides will be valuable tools for further development of both peptide and nonpeptide therapeutic agents.Andes virus (ANDV), an NIAID category A agent linked to hantavirus cardiopulmonary syndrome (HCPS), belongs to the family Bunyaviridae and the genus Hantavirus and is carried by Oligoryzomys longicaudatus rodents (11). HCPS is characterized by pulmonary edema caused by capillary leak, with death often resulting from cardiogenic shock (9, 16). ANDV HCPS has a case fatality rate approaching 40%, and ANDV is the only hantavirus demonstrated to be capable of direct person-to-person transmission (15, 21). There is currently no specific therapy available for treatment of ANDV infection and HCPS.Peptide ligands that target a specific protein surface can have broad applications as therapeutics by blocking specific protein-protein interactions, such as preventing viral engagement of host cell receptors and thus preventing infection. Phage display libraries provide a powerful and inexpensive tool to identify such peptides. Here, we used selection of a cyclic nonapeptide-bearing phage library to identify peptides capable of binding the transmembrane surface glycoproteins of ANDV, Gn and Gc, and blocking infection in vitro.To identify peptide sequences capable of recognizing ANDV, we panned a cysteine-constrained cyclic nonapeptide-bearing phage display library (New England Biolabs) against density gradient-purified, UV-treated ANDV strain CHI-7913 (a gift from Hector Galeno, Santiago, Chile) (17, 18). To increase the specificity of the peptides identified, we eluted phage by using monoclonal antibodies (Austral Biologicals) prepared against recombinant fragments of ANDV Gn (residues 1 to 353) or Gc (residues 182 to 491) glycoproteins (antibodies 6B9/F5 and 6C5/D12, respectively). Peptide sequences were determined for phage from iterative rounds of panning, and the ability of phage to inhibit ANDV infection of Vero E6 cells was determined by immunofluorescent assay (IFA) (7). Primary IFA detection antibodies were rabbit polyclonal anti-Sin Nombre hantavirus (SNV) nucleoprotein (N) antibodies which exhibit potent cross-reactivity against other hantavirus N antigens (3). ReoPro, a commercially available Fab fragment which partially blocks infection of hantaviruses in vitro by binding the entry receptor integrin β3 (5), was used as a positive control (80 μg/ml) along with the original antibody used for phage elution (5 μg/ml). As the maximum effectiveness of ReoPro in inhibiting hantavirus entry approaches 80%, we set this as a threshold for maximal expected efficacy for normalization. The most-potent phage identified by elution with the anti-Gn antibody 6B9/F5 bore the peptide CPSNVNNIC and inhibited hantavirus entry by greater than 60% (61%) (Table (Table1).1). From phage eluted with the anti-Gc antibody 6C5/D12, those bearing peptides CPMSQNPTC and CPKLHPGGC also inhibited entry by greater than 60% (66% and 72%, respectively).

TABLE 1.

Peptide-bearing phage eluted from ANDV
Phage% Inhibition (SD)aP valueb
Phage bearing the following peptides eluted with anti-Gn antibody 6B9/F5
    Group 1 (<30% inhibition)
        CDQRTTRLC8.45 (15.34)0.0002
        CPHDPNHPC9.94 (7.72)0.333
        CQSQTRNHC11.76 (13.25)0.0001
        CLQDMRQFC13.26 (9.92)0.0014
        CLPTDPIQC15.70 (14.05)0.0005
        CPDHPFLRC16.65 (15.22)0.8523
        CSTRAENQC17.56 (16.50)0.0004
        CPSHLDAFC18.98 (20.06)0.0017
        CKTGHMRIC20.84 (7.47)0.0563
        CVRTPTHHC20.89 (27.07)0.1483
        CSGVINTTC21.57 (19.61)0.0643
        CPLASTRTC21.65 (5.98)0.004
        CSQFPPRLC22.19 (8.26)0.0004
        CLLNKQNAC22.34 (7.78)0.001
        CKFPLNAAC22.89 (6.15)0.0001
        CSLTPHRSC23.63 (16.74)0.0563
        CKPWPMYSC23.71 (6.68)0.0643
        CLQHDALNC24.01 (7.60)1
        CNANKPKMC24.67 (11.67)0.0004
        CPKHVLKVC25.30 (28.36)0.0003
        CTPDKKSFC26.91 (11.15)0.399
        CHGKAALAC27.22 (32.53)0.005
        CNLMGNPHC28.08 (21.35)0.0011
        CLKNWFQPC28.64 (18.49)0.0016
        CKEYGRQMC28.76 (29.33)0.0362
        CQPSDPHLC29.44 (31.22)0.0183
        CSHLPPNRC29.70 (17.37)0.0061
    Group 2 (30-59% inhibition)
        CSPLLRTVC33.05 (20.26)0.0023
        CHKGHTWNC34.17 (12.50)0.0795
        CINASHAHC35.62 (13.03)0.3193
        CWPPSSRTC36.75 (26.95)0.0006
        CPSSPFNHC37.78 (7.11)0.0001
        CEHLSHAAC38.47 (7.60)0.0115
        CQDRKTSQC38.74 (9.12)0.1802
        CTDVYRPTC38.90 (25.03)0.006
        CGEKSAQLC39.11 (27.52)0.0013
        CSAAERLNC40.13 (6.33)0.0033
        CFRTLEHLC42.07 (5.01)0.0608
        CEKLHTASC43.60 (27.92)0.1684
        CSLHSHKGC45.11 (49.81)0.0864
        CNSHSPVHC45.40 (28.80)0.0115
        CMQSAAAHC48.88 (44.40)0.5794
        CPAASHPRC51.84 (17.09)0.1935
        CKSLGSSQC53.90 (13.34)0.0145
    Group 3 (60-79% inhibition)
        CPSNVNNIC61.11 (25.41)0.1245
Negative control0 (6.15)
6B9/F5 (5 μg/ml)26.77 (5.33)
ReoPro (80 μg/ml)79.86 (4.88)
Phage bearing the following peptides eluted with anti-Gc antibody 6C5/D12
    Group 1 (<30% inhibition)
        CHPGSSSRC1.01 (7.03)0.0557
        CSLSPLGRC10.56 (13.62)0.7895
        CTARYTQHC12.86 (3.83)0.3193
        CHGVYALHC12.91 (7.32)0.0003
        CLQHNEREC16.79 (13.72)0.0958
        CHPSTHRYC17.23 (14.53)0.0011
        CPGNWWSTC19.34(9.91)0.1483
        CGMLNWNRC19.48 (19.42)0.0777
        CPHTQFWQC20.44 (13.65)0.0008
        CTPTMHNHC20.92 (11.68)0.0001
        CDQVAGYSC21.79 (23.60)0.0063
        CIPMMTEFC24.33 (9.28)0.2999
        CERPYSRLC24.38 (9.09)0.0041
        CPSLHTREC25.06 (22.78)0.1202
        CSPLQIPYC26.30 (34.29)0.4673
        CTTMTRMTC (×2)29.27 (8.65)0.0001
    Group 2 (30-59% inhibition)
        CNKPFSLPC30.09 (5.59)0.4384
        CHNLESGTC31.63 (26.67)0.751
        CNSVPPYQC31.96 (6.51)0.0903
        CSDSWLPRC32.95 (28.54)0.259
        CSAPFTKSC33.40 (10.64)0.0052
        CEGLPNIDC35.63 (19.90)0.0853
        CTSTHTKTC36.28 (13.42)0.132
        CLSIHSSVC36.40 (16.44)0.8981
        CPWSTQYAC36.81 (32.81)0.5725
        CTGSNLPIC36.83 (31.64)0.0307
        CSLAPANTC39.73 (4.03)0.1664
        CGLKTNPAC39.75 (16.98)0.2084
        CRDTTPWWC40.08 (18.52)0.0004
        CHTNASPHC40.26 (4.77)0.5904
        CTSMAYHHC41.89 (8.61)0.259
        CSLSSPRIC42.13 (29.75)0.2463
        CVSLEHQNC45.54 (6.55)0.5065
        CRVTQTHTC46.55 (8.45)0.3676
        CPTTKSNVC49.28 (14.00)0.3898
        CSPGPHRVC49.50 (42.60)0.0115
        CKSTSNVYC51.20 (4.60)0.0611
        CTVGPTRSC57.30 (11.31)0.0176
    Group 3 (60-79% inhibition)
        CPMSQNPTC65.60 (13.49)0.014
        CPKLHPGGC71.88 (27.11)0.0059
Negative control0.26 (4.53)
6C5/D12 (5 μg/ml)22.62 (8.40)
ReoPro (80 μg/ml)80.02 (76.64)
Open in a separate windowaStandard deviations of four experiments are shown in parentheses. Peptide-bearing phage were added at 109 phage/μl.bP values for the pairwise amino acid alignment score of each peptide versus that of integrin β3 were determined using an unpaired Student''s t test. P values considered statistically significant are shown in bold.To determine whether the peptide sequences of any of the identified inhibitory phage showed homology to integrin β3, a known entry receptor for pathogenic hantaviruses (6, 7), we used the Gap program to perform a pairwise amino acid alignment of each peptide versus the extracellular portion of integrin β3 and determined P values for the alignments. Of 45 phage eluted with the anti-Gn antibody, 6B9/F5, 27 of the peptide sequences showed homology to integrin β3 (P < 0.05), and 9 were highly significant (P ≤ 0.0005) (Fig. (Fig.1A).1A). Of the latter, CKFPLNAAC and CSQFPPRLC map to the hybrid domain (Fig. (Fig.1B),1B), which is proximal to the plexin-semaphorin-integrin domain (PSI) containing residue D39, shown to be critical for viral entry in vitro (19). Five sequences (CPSSPFNH, CPKHVLKVC, CNANKPKMC, CQSQTRNHC, and CDQRTTRLC) map to the I-like (or βA) domain near the binding site of ReoPro (2). Finally, CLPTDPIQC maps to the epidermal growth factor 4 (EGF-4) domain, and CSTRAENQC aligns to a portion of β3 untraceable in the crystal structure, specifically the linker region between the hybrid domain and EGF-1. Although this represents a disordered portion of the protein (22), the location of this loop proximal to the PSI domain is worth noting, due to the role of the PSI domain in facilitating viral entry (19). Therefore, 60% of phage eluted with the anti-Gn antibody showed some homology to integrin β3, and those with highly significant P values predominantly mapped to or proximal to regions of known interest in viral entry.Open in a separate windowFIG. 1.Inhibitory peptides identified through phage panning against ANDV show homology to integrin β3. (A) Alignment of phage peptide sequences with P values for integrin β3 pairwise alignment of less than 0.05. Residues comprising the signal peptide, transmembrane, and cytoplasmic domains, which were not included during pairwise alignment, are underlined. Residues 461 to 548, which are missing in the crystal structure, are italicized. Residues involved in the ReoPro binding site are highlighted in green (2). Residue D39 of the PSI domain is highlighted in yellow (19). Peptides are shown above the sequence of integrin β3, with antibody 6C5/D12-eluted sequences shown in blue text and sequences eluted with antibody 6B9/F5 shown in red. Peptide sequences with alignment P values of ≤0.0005 are highlighted in yellow. Percent inhibition of the peptide-bearing phage is shown in parentheses. (B) View of integrin αvβ3 (PDB ID 1U8C [23]). αv is shown in blue ribbon diagram, and β3 is shown in salmon-colored surface representation, with specific domains circled. Residues corresponding to the ReoPro binding site are shown in green, as in panel A, and D39 is shown in yellow. Regions corresponding to 6C5/D12-eluted peptides with P values of ≤0.0005 for alignment with integrin β3 (highlighted in panel A) are shown in blue, and those corresponding to 6B9/F5-eluted peptides with P values of ≤0.0005 for alignment with integrin β3 are shown in red. Alignment of peptide PLASTRT (P value of 0.0040) adjacent to D39 of the PSI domain is shown in magenta. Graphics were prepared using Pymol (DeLano Scientific LLC, San Carlos, CA).Of the 41 peptide-bearing phage eluted with the anti-Gc antibody 6C5/D12, 14 showed sequence homology to integrin β3 (P < 0.05), 4 of which had P values of ≤0.0005 (Fig. (Fig.1A).1A). Of the latter, sequence CTTMTRMTC mapped to the base of the I-like domain (Fig. (Fig.1B),1B), while CHGVYALHC and CRDTTPWWC mapped to the EGF-3 domain. Finally, sequence CTPTMHNHC mapped to the linker region untraceable in the crystal structure. Therefore, in contrast to peptide sequences identified by competition with the anti-Gn antibody, sequences identified by competition with the anti-Gc antibody 6C5/D12 appear to be mostly unrelated to integrin β3.As a low level of pathogenic hantavirus infection can be seen in cells lacking integrin β3, such as CHO cells (19), we asked if any of the identified peptide sequences could represent a previously unidentified receptor. We used the Basic Local Alignment Search Tool to search a current database of human protein sequences for potential alternate receptors represented by these peptides. However, none of the alignments identified proteins that are expressed at the cell surface, eliminating them as potential candidates for alternate viral entry receptors. This suggests that the majority of the peptides identified here likely represent novel sequences for binding ANDV surface glycoproteins.To determine whether synthetic peptides would also block infection, we synthesized cyclic peptides based on the 10 most-potent peptide-bearing phage. These peptides, in the context of phage presentation, showed levels of inhibition ranging from 44 to 72% (Table (Table2).2). When tested by IFA at 1 mM, four of the synthetic peptides showed inhibition levels significantly lower than those of the same peptide presented in the context of phage. This is not surprising, as steric factors due to the size of the phage and the multivalent presentation of peptide in the context of phage may both contribute to infection inhibition (8). However, there was no significant difference in inhibition by synthetic peptide versus peptide-bearing phage for six of the sequences, implying that inhibition in the context of phage was due solely to the nature of the peptide itself and not to steric factors or valency considerations contributed by the phage, which contrasts with our previous results, determined by using phage directed against αvβ3 integrin (10).

TABLE 2.

Synthetic cyclic peptides inhibit ANDV infection
TargetSample% Inhibition bya:
Peptide-bearing phageSynthetic peptide
GnCMQSAAAHC48.88 (44.40)59.66 (11.17)
GcCTVGPTRSC57.30 (11.31)46.47 (7.61)
GnCPSNVNNIC61.11 (25.41)44.14 (10.74)
GnCEKLHTASC43.60 (27.92)34.87 (9.26)
GcCPKLHPGGC71.88 (27.11)30.95 (7.73)b
GnCSLHSHKGC45.11 (49.81)29.79 (9.34)
GcCPMSQNPTC65.60 (13.49)18.19 (8.55)b
GnCKSLGSSQC53.90 (13.34)18.10 (7.55)b
GnCNSHSPVHC45.40 (28.80)15.52 (10.48)
GnCPAASHPRC51.84 (17.09)0 (10.72)b
Integrin β3ReoPro80.10 (7.72)
Gn6B9/F5 antibody42.72 (6.75)
Gc6C5/D12 antibody31.04 (7.81)
Open in a separate windowaStandard deviations of the results of at least four experiments are shown in parentheses.bMean percent inhibition between phage and synthetic peptide differs significantly (P < 0.05).The three most-potent synthetic peptides were examined for their ability to inhibit ANDV entry in a dose-dependent manner. The concentration of each peptide that produces 50% of its maximum potential inhibitory effect was determined. As shown in Fig. Fig.2A,2A, the 50% inhibitory concentration for each of the peptides was in the range of 10 μM, which from our experience is a reasonable potency for a lead compound to take forward for optimization.Open in a separate windowFIG. 2.Activities of synthetic peptides in inhibition of ANDV infection in vitro. (A) Peptides were examined for their ability to block ANDV infection of Vero E6 cells in a dose-dependent manner by IFA. (B) Peptides were tested in parallel for the ability to block infection of Vero E6 cells by ANDV, SNV, HTNV, and PHV. (C) Peptides were tested, singly or in combination, for the ability to block ANDV infection of Vero E6 cells. For all experiments, controls included media, ReoPro at 80 μg/ml, and monoclonal antibodies 6C5/D12 and 6B9/F5 at 5 μg/ml. All peptides were used at 1 mM. Data points represent n = 2 to 6, with error bars showing the standard errors of the means. Statistical analyses were performed on replicate samples using an unpaired Student''s t test.In order to determine the specificity of the three most-potent synthetic cyclic peptides in blocking ANDV, we examined them for inhibition of ANDV infection versus two other pathogenic hantaviruses, SNV and Hantaan virus (HTNV), or the nonpathogenic hantavirus Prospect Hill virus (PHV). As shown in Fig. Fig.2B,2B, ReoPro, which binds integrin β3, showed inhibition of infection by each of the pathogenic hantavirus strains, known to enter cells via β3, but not the nonpathogenic PHV, which enters via integrin β1 (6, 7). In contrast, peptides selected for the ability to bind ANDV were highly specific inhibitors of ANDV versus SNV, HTNV, or PHV. The specificities of peptides eluted by the anti-Gn monoclonal antibody are not surprising, as they are likely due to global differences in the Gn amino acid sequence. Specifically, sequence homologies between ANDV and SNV, HTNV, and PHV are 61%, 36%, and 51%, respectively, for the region corresponding to the immunogen for antibody 6B9/F5. Although homology between the immunogen for antibody 6C5/D12 and the corresponding Gc region of these viruses is somewhat higher (82% with SNV, 63% with HTNV, and 71% with PHV), the possibility that the monoclonal antibody used here recognizes a three-dimensional epitope lends itself to the high specificity of the peptides.The current model for cellular infection by hantaviruses (14) is as follows. Viral binding of the host cell surface target integrin is followed by receptor-mediated endocytosis and endosome acidification. Lowered pH induces conformational changes in Gn and/or Gc, which facilitate membrane fusion and viral release into the cytosol. As there is currently little information available about whether one glycoprotein is dominant in mediating infection, and as neutralizing epitopes have been found on both Gn and Gc glycoproteins (1, 4, 12, 13, 20), we examined whether combining anti-Gn- and anti-Gc-targeted synthetic peptides would lead to an increased infection blockade compared to those for single treatments. As shown in Fig. Fig.2C,2C, the combination of anti-Gn and anti-Gc peptides CMQSAAAHC and CTVGPTRSC resulted in a significant increase in infection inhibition (P = 0.0207 for CMQSAAAHC, and P = 0.0308 for CTVGPTRSC) compared to that resulting from single treatments. Although the high specificity of the peptides for ANDV makes it unlikely that this combination treatment will lead to more cross-reactivity with other pathogenic hantaviruses, this can be determined only by additional testing. Regardless, these data suggest a unique role for each of these viral proteins in the infection process as well as the benefits of targeting multiple viral epitopes for preventing infection.To our knowledge, the peptides reported here are the first identified that directly target ANDV, and this work further illustrates the power of coupling phage display and selective elution techniques in the identification of novel peptide sequences capable of specific protein-protein interactions from a large, random pool of peptide sequences. These novel peptide inhibitors (R. S. Larson, P. R. Hall, H. Njus, and B. Hjelle, U.S. patent application 61/205,211) provide leads for the development of more-potent peptide or nonpeptide organics for therapeutic use against HCPS.  相似文献   

9.
Erratum to: Lepeule J,Baccarelli A,Tarantini L,Motta V,Cantone L,Litonjua AA,et al. Gene promoter methylation is associated with lung function in the elderly     
Johanna Lepeule  Andrea Baccarelli  Letizia Tarantini  Valeria Motta  Laura Cantone  Augusto A. Litonjua  David Sparrow  Pantel S. Vokonas  Joel Schwartz 《Epigenetics》2012,7(6):667
  相似文献   

10.
Plasmid pAMS1-Encoded,Bacteriocin-Related “Siblicide” in Enterococcus faecalis     
Christine M. Sedgley  Don B. Clewell  Susan E. Flannagan 《Journal of bacteriology》2009,191(9):3183-3188
  相似文献   

11.
New Design Strategy for Development of Specific Primer Sets for PCR-Based Detection of Chlorophyceae and Bacillariophyceae in Environmental Samples     
Claire Valiente Moro  Olivier Crouzet  Séréna Rasconi  Antoine Thouvenot  Gérard Coffe  Isabelle Batisson  Jacques Bohatier 《Applied and environmental microbiology》2009,75(17):5729-5733
  相似文献   

12.
Searching for Mesophilic Thermotogales Bacteria: “Mesotogas” in the Wild     
Camilla L. Nesb?  Rajkumari Kumaraswamy  Marlena Dlutek  W. Ford Doolittle  Julia Foght 《Applied and environmental microbiology》2010,76(14):4896-4900
All cultivated Thermotogales are thermophiles or hyperthermophiles. However, optimized 16S rRNA primers successfully amplified Thermotogales sequences from temperate hydrocarbon-impacted sites, mesothermic oil reservoirs, and enrichment cultures incubated at <46°C. We conclude that distinct Thermotogales lineages commonly inhabit low-temperature environments but may be underreported, likely due to “universal” 16S rRNA gene primer bias.Thermotogales, a bacterial group in which all cultivated members are anaerobic thermophiles or hyperthermophiles (5), are rarely detected in anoxic mesothermic environments, yet their presence in corresponding enrichment cultures, bioreactors, and fermentors has been observed using metagenomic methods and 16S rRNA gene amplification (6) (see Table S1 in the supplemental material). The most commonly detected lineage is informally designated here “mesotoga M1” (see Table S1 in the supplemental material). PCR experiments indicated that mesotoga M1 sequences amplified inconsistently using “universal” 16S rRNA gene primers, perhaps explaining their poor detection in DNA isolated from environmental samples (see text and Table S2 in the supplemental material). We therefore designed three 16S rRNA PCR primer sets (Table (Table1)1) targeting mesotoga M1 bacteria and their closest cultivated relative, Kosmotoga olearia. Primer set A was the most successful set, detecting a wider diversity of Thermotogales sequences than set B and being more Thermotogales-specific than primer set C (Table (Table22).

TABLE 1.

Primers targeting mesotoga M1 bacteria constructed and used in this study
PrimerSequence (5′ to 3′)Position in mesotoga 16S rRNA geneNo. of heterogeneity hot spotsaPotential primer match in other Thermotogales lineages
Primer set A1 (helix 17)
    NMes16S.286FCGGCCACAAGGAYACTGAGA286Perfect match in Kosmotoga olearia. The last 7 or 8 nucleotides at the 3′ end are conserved in other Thermotogales lineages.
    NMes16S.786RTGAACATCGTTTAGGGCCAG786One 5′ mismatch in Kosmotoga olearia and Petrotoga mobilis; 2-4 internal and 5′ mismatches in other lineages
Primer set BNone
    BaltD.42FATCACTGGGCGTAAAGGGAG540Perfect match in Kosmotoga olearia; one or two 3′ mismatches in most other Thermotogales lineages
    BaltD.494RGTGGTCGTTCCTCTTTCAAT992No match in other Thermotogaleslineages. The primer is located in heterogeneity hot spot helices 33 and 34. This primer also fails to amplify some mesotoga M1 sequences.
Primer set C9 (all 9 regions)
    TSSU-3FTATGGAGGGTTTGATCCTGG3Perfect match in Thermotoga spp., Kosmotoga olearia, and Petrotoga mobilis; two or three 5′ mismatches in other Thermotogales lineages; one 5′ mismatch to mesotoga M1 16S rRNA genes
    Mes16S.RACCAACTCGGGTGGCTTGAC1390One 5′ mismatch in Kosmotoga olearia; 1-3 internal or 5′ mismatches in other Thermotogales lineages
Open in a separate windowaHeterogeneity hot spots identified in reference 1.

TABLE 2.

Mesotoga clade sequences detected in environmental samples and enrichment cultures screened in this studya
Site (abbreviation)Temp in situ(°C)WaterfloodedEnvironmental samplesb
Enrichment cultures
Primer set A
Primer set B
Primer set C
Thermotogalesdetected by primer setc:
Lineage(s) detected
No. of OTUs (no. of clones)LineageNo. of OTUs (no. of clones)LineageNo. of OTUs (no. of clones)LineageABC
Sidney Tar Ponds sediment (TAR)TemperateNA1 (5)M11M1+++M1, M2, M5
Oil sands settling basin tailings (05mlsb)∼12dNA1 (6)M1+M1
Grosmont A produced water (GrosA)20No1 (15)M11 (22)M12 (14)M1+++M1
Foster Creek produced water (FC)14No1 (21)M11 (23)M11 (1)M1+NDM1
Oil field D wellhead water (DWH)e,f52-53gYes1 (14)Kosmotogai1 (6)M1i1 (1)KosmotogaiNANANANA
Oil field D FWKO water (DF)f,h20-30Yes1 (45)Kosmotogai1 (17)M1i++M1, Kosmotoga, Petrotoga
Oil field H FWKO water (HF)j30-32Yes7 (59)M1, M2, M3, M4, Kosmotoga1 (29)M1++M1, Petrotoga
Oil field H satellite water (HSAT)e,j41 and 50gYes1 (8)M12 (16)Kosmotoga, ThermotogaNANANANA
Oil field H wellhead water (HWH)e,j41 and 50gYesNANANANA+++M1, Petrotoga
Open in a separate windowaSee the supplemental material for site and methodological details. NA, not applicable; ND, not determined.bThe number of OTUs observed at a 0.01 distance cutoff is given for each primer set. The numbers of clones with Thermotogales sequences are in parentheses. —, PCR was attempted but no Thermotogales sequences were obtained or the PCR consistently failed.c+, sequence(s) detected; −, not detected. For more information on the enrichments, see the text and Table S3 in the supplemental material.dFrom April to May 2004, the temperature at the depth where the sample was taken was 12°C (7).eThere were no water samples from DWH and HSAT available for enrichment cultures, and no DNA was available from HWH.fThis reservoir has been treated with biocides; moreover, at this site, the water is filtered before being reinjected into the reservoir.gTemperatures of the oil pool where the water sample was obtained. The HSAT facility receives water from two oil pools, one at 41°C and one at 50°C.hWe screened DNA from samples taken in 2006 and 2008 but detected the same sequences in both, so sequences from the two samples were pooled.iThe mesotoga M1 and Kosmotoga sequences from DWH and DF were >99% similar and were assembled into one sequence in Fig. Fig.11.jThis reservoir has been injected with water from a neighboring oil reservoir.Since the putative mesophilic Thermotogales have been overwhelmingly associated with polluted and hydrocarbon-impacted environments and mesothermic oil reservoirs are the only natural environments where mesotoga M1 sequences previously were detected (see Table S1 in the supplemental material), we selected four oil reservoirs with in situ temperatures of 14°C to 53°C and two temperate, chronically hydrocarbon-impacted sites for analysis (Table (Table2).2). Total community DNA was extracted, the 16S rRNA genes were amplified, cloned, and sequenced as described in the supplemental material.  相似文献   

13.
Widespread Distribution of Cell Defense against d-Aminoacyl-tRNAs     
Sandra Wydau  Guillaume van der Rest  Caroline Aubard  Pierre Plateau    Sylvain Blanquet 《The Journal of biological chemistry》2009,284(21):14096-14104
Several l-aminoacyl-tRNA synthetases can transfer a d-amino acid onto their cognate tRNA(s). This harmful reaction is counteracted by the enzyme d-aminoacyl-tRNA deacylase. Two distinct deacylases were already identified in bacteria (DTD1) and in archaea (DTD2), respectively. Evidence was given that DTD1 homologs also exist in nearly all eukaryotes, whereas DTD2 homologs occur in plants. On the other hand, several bacteria, including most cyanobacteria, lack genes encoding a DTD1 homolog. Here we show that Synechocystis sp. PCC6803 produces a third type of deacylase (DTD3). Inactivation of the corresponding gene (dtd3) renders the growth of Synechocystis sp. hypersensitive to the presence of d-tyrosine. Based on the available genomes, DTD3-like proteins are predicted to occur in all cyanobacteria. Moreover, one or several dtd3-like genes can be recognized in all cellular types, arguing in favor of the nearubiquity of an enzymatic function involved in the defense of translational systems against invasion by d-amino acids.Although they are detected in various living organisms (reviewed in Ref. 1), d-amino acids are thought not to be incorporated into proteins, because of the stereospecificity of aminoacyl-tRNA synthetases and of the translational machinery, including EF-Tu and the ribosome (2). However, the discrimination between l- and d-amino acids by aminoacyl-tRNA synthetases is not equal to 100%. Significant d-aminoacylation of their cognate tRNAs by Escherichia coli tyrosyl-, tryptophanyl-, aspartyl-, lysyl-, and histidyl-tRNA synthetases has been characterized in vitro (39). Recently, using a bacterium, transfer of d-tyrosine onto tRNATyr was shown to occur in vivo (10).With such misacylation reactions, the resulting d-aminoacyl-tRNAs form a pool of metabolically inactive molecules, at best. At worst, d-aminoacylated tRNAs infiltrate the protein synthesis machinery. Although the latter harmful possibility has not yet been firmly established, several cells were shown to possess a d-tyrosyl-tRNA deacylase, or DTD, that should help them counteract the accumulation of d-aminoacyl-tRNAs. This enzyme shows a broad specificity, being able to remove various d-aminoacyl moieties from the 3′-end of a tRNA (46, 11). Such a function makes the deacylase a member of the family of enzymes capable of editing in trans mis-aminoacylated tRNAs. This family includes several homologs of aminoacyl-tRNA synthetase editing domains (12), as well as peptidyl-tRNA hydrolase (13, 14).Two distinct deacylases have already been discovered. The first one, called DTD1, is predicted to occur in most bacteria and eukaryotes (see d-amino acids, including d-tyrosine (6). In fact, in an E. coli Δdtd strain grown in the presence of 2.4 mm d-tyrosine, as much as 40% of the cellular tRNATyr pool becomes esterified with d-tyrosine (10).

TABLE 1

Distribution of DTD1 and DTD2 homologs in various phylogenetic groupsHomologs of DTD1 and DTD2 were searched for using a genomic Blast analysis against complete genomes in the NCBI Database (www.ncbi.nlm.nih.gov). Values in the table are number of species. For instance, E. coli is counted only once in γ-proteobacteria despite the fact that several E. coli strains have been sequenced.
DTD1DTD2DTD1 + DTD2None
Bacteria
    Acidobacteria 2 0 0 0
    Actinobacteria 27 0 0 8
    Aquificae 1 0 0 0
    Bacteroidetes/Chlorobi 12 0 0 5
    Chlamydiae 1 0 0 6
    Chloroflexi 4 0 0 0
    Cyanobacteria 5 0 0 16
    Deinococcus/Thermus 4 0 0 0
    Firmicutes
        Bacillales 19 0 0 0
        Clostridia 19 0 0 0
        Lactobacillales 23 0 0 0
        Mollicutes 0 0 0 15
    Fusobacteria/Planctomycetes 2 0 0 0
    Proteobacteria
        α 6 0 0 55
        β 24 0 0 11
        γ 80 0 0 8
        δ 15 0 0 0
        ε 1 0 0 12
    Spirochaetes 0 0 0 7
    Thermotogae 5 0 0 0
Archaea
    Crenarchaeota 0 13 0 0
    Euryarchaeota 1 26 0 2
    Nanoarchaeota 0 0 0 1
Eukaryota
    Dictyosteliida 1 0 0 0
    Fungi/Metazoa
        Fungi 13 0 0 1
        Metazoa 19 0 0 0
    Kinetoplastida 3 0 0 0
    Viridiplantae 4 4 4 0
Open in a separate windowHomologs of dtd/DTD1 are not found in the available archaeal genomes except that of Methanosphaera stadtmanae. A search for deacylase activity in Sulfolobus solfataricus and Pyrococcus abyssi led to the detection of another enzyme (DTD2), completely different from the DTD1 protein (15). Importing dtd2 into E. coli functionally compensates for dtd deprivation. As shown in 16).Several cells contain neither dtd nor dtd2 homologs (d-tyrosyl-tRNA deacylase (DTD3). This protein, encoded by dtd3, behaves as a metalloenzyme. Sensitivity of the growth of Synechocystis to external d-tyrosine is strongly exacerbated by the disruption of dtd3. Moreover, expression of the Synechocystis DTD3 in a Δdtd E. coli strain, from a plasmid, restores the resistance of the bacterium to d-tyrosine. Finally, using the available genomes, we examined the occurrence of DTD3 in the living world. The prevalence of DTD3-like proteins is surprisingly high. It suggests that the defense of protein synthesis against d-amino acids is universal.  相似文献   

14.
Dominant Bacteria and Biomass in the Kuytun 51 Glacier     
Shu-Rong Xiang  Tian-Cui Shang  Yong Chen  Ze-Fan Jing  Tandong Yao 《Applied and environmental microbiology》2009,75(22):7287-7290
  相似文献   

15.
Physiological Versatility of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Supported by Transcriptomic Analysis of Heterotrophic,Autotrophic, and Mixotrophic Growth     
Kathryne S. Auernik  Robert M. Kelly 《Applied and environmental microbiology》2010,76(3):931-935
  相似文献   

16.
Environmental Isolates of Burkholderia pseudomallei in Ceará State,Northeastern Brazil     
Dione B. Rolim  Marcos F. G. Rocha  Raimunda S. N. Brilhante  Rossana A. Cordeiro  Natanael P. Leit?o-Junior  Timothy J. J. Inglis  José J. C. Sidrim 《Applied and environmental microbiology》2009,75(4):1215-1218
Melioidosis has been considered an emerging disease in Brazil since the first cases were reported to occur in the northeast region. This study investigated two municipalities in Ceará state where melioidosis cases have been confirmed to occur. Burkholderia pseudomallei was isolated in 26 (4.3%) of 600 samples in the dry and rainy seasons.Melioidosis is an endemic disease in Southeast Asia and northern Australia (2, 4) and also occurs sporadically in other parts of the world (3, 7). Human melioidosis was reported to occur in Brazil only in 2003, when a family outbreak afflicted four sisters in the rural part of the municipality of Tejuçuoca, Ceará state (14). After this episode, there was one reported case of melioidosis in 2004 in the rural area of Banabuiú, Ceará (14). And in 2005, a case of melioidosis associated with near drowning after a car accident was confirmed to occur in Aracoiaba, Ceará (11).The goal of this study was to investigate the Tejuçuoca and Banabuiú municipalities, where human cases of melioidosis have been confirmed to occur, and to gain a better understanding of the ecology of Burkholderia pseudomallei in this region.We chose as central points of the study the residences and surrounding areas of the melioidosis patients in the rural areas of Banabuiú (5°18′35″S, 38°55′14″W) and Tejuçuoca (03°59′20″S, 39°34′50′W) (Fig. (Fig.1).1). There are two well-defined seasons in each of these locations: one rainy (running from January to May) and one dry (from June to December). A total of 600 samples were collected at five sites in Tejuçuoca (T1, T2, T3, T4, and T5) and five in Banabuiú (B1, B2, B3, B4, and B5), distributed as follows (Fig. (Fig.2):2): backyards (B1 and T1), places shaded by trees (B2 and T2), water courses (B3 and T3), wet places (B4 and T4), and stock breeding areas (B5 and T5).Open in a separate windowFIG. 1.Municipalities of Banabuiú (5°18′35″S, 38°55′14″W) and Tejuçuoca (03°59′20″S, 39°34′50″W).Open in a separate windowFIG. 2.Soil sampling sites in Banabuiú and Tejuçuoca.Once a month for 12 months (a complete dry/rainy cycle), five samples were gathered at five different depths: at the surface and at 10, 20, 30 and 40 cm (Table (Table1).1). The samples were gathered according to the method used by Inglis et al. (9). Additionally, the sample processing and B. pseudomallei identification were carried out as previously reported (1, 8, 9).

TABLE 1.

Distribution of samples with isolates by site and soil depth
Sitesa and depth (cm)No. of B. pseudomallei isolates in samples from:
Banabuiú (n = 300)Tejuçuoca (n = 300)Total (n = 600)
B1/T13
    Surface2
    10
    201
    30
    40
B2/T21
    Surface1
    10
    20
    30
    40
B3/T315
    Surface2
    102
    204
    303
    404
B4/T45
    Surface
    101
    201
    3011
    401
B5/T52
    Surface
    10
    20
    302
    40
Total62026
Open in a separate windowaSites designated with B are in Banabuiú, and sites designated with T are in Tejuçuoca. See the text for details.The data on weather and soil composition were obtained from specialized government institutions, such as FUNCEME, IPECE, and EMBRAPA. The average annual temperature in both municipalities is between 26 and 28°C. In 2007, the annual rainfall in Tejuçuoca was 496.8 mm, and that in Banabuiú was 766.8 mm. There are a range of soil types in both Tejuçuoca and Banabuiú: noncalcic brown, sodic planossolic, red-yellow podzolic, and litholic. In Banabuiú, there are also alluvial and cambisol soils. The characteristic vegetation in both municipalities is caatinga (scrublands).There were isolates of B. pseudomallei in 26 (4.3%) of the 600 samples collected. The bacterium was isolated at a rate (3%) similar to that previously reported (9). The bacterium isolation occurred in both the dry (53.8%) and the rainy (46.2%) seasons. Tejuçuoca represented 76.9% (20/26) of the strains isolated. Four sites in Tejuçuoca (T1, T3, T4, and T5) and three in Banabuiú (B1, B2, and B4) presented isolates of the bacterium (Table (Table1).1). The isolation of the B. pseudomallei strains varied from the surface down to 40 cm. However, 17 of the 26 positive samples (65.3%) were found at depths between 20 and 40 cm (Table (Table1).1). Only two isolates were found at the surface during the dry season.A study in Vietnam (13) and one in Australia (9) reported the presence of B. pseudomallei near the houses of melioidosis patients. In our study, the same thing happened. Site T3 (15/26; 57.6%) was located 290 m from the patient''s house, as reported by the Rolim group (14).B. pseudomallei was isolated from a sheep paddock in Australia, where animals sought shelter below mango and fig trees (17). In our study, the bacterium was isolated at site T5, a goat corral alongside the house where the outbreak occurred in Tejuçuoca. Four sites in places shaded by trees yielded positive samples (30.7%) in both Tejuçuoca (palm trees) and Banabuiú (mango trees). Additionally, B. pseudomallei was isolated on three occasions from a cornfield (site 4B) located alongside the house of the melioidosis patient in Banabuiú.In the main areas of endemicity, the disease is more prevalent in the rainy season (4, 5, 16). The outbreak in Tejuçuoca was related to rainfall (14). Besides the association of cases of the disease with rainfall itself, the isolation of B. pseudomallei in soil and water was also demonstrated during the dry season (12, 15). An Australian study isolated strains from soil and water during the dry and rainy seasons (17). A Thai study also reported B. pseudomallei in the dry season (18). In our study, the isolation of B. pseudomallei took place either at the end of the wet season or in the dry months. Fourteen of the positive samples (53.8%) were collected during the dry season, albeit near a river or reservoir (sites T3 and B4).Physical, biological, and chemical soil features appear to influence the survival of B. pseudomallei (6, 10). In the present study, the soil was classified as litholic with sandy or clayey textures. It is susceptible to erosion, and when there is a lack of water, it is subject to salinization. During the dry season, the clay layer becomes dried, cracked, and very hard. During the rainy season, it becomes soggy and sticky. The isolation of B. pseudomallei in the dry season is possibly related to the capacity for adaptation of this soil, since the extreme conditions of lithosols do not prevent the bacterial growth and survival.It has been shown that B. pseudomallei is more often isolated at depths between 25 and 45 cm (17). In our study, 65.3% of the positive samples were taken at depths between 20 and 40 cm. Moreover, of these 17 samples, 10 (58.8%) were collected during the dry months. Also, unlike in other regions, two positive samples were taken from the surface in the period without rainfall.The rainfall in Tejuçuoca and Banabuiú is generally low, and temperatures do not vary significantly during the year. Therefore, the isolation of B. pseudomallei in these places occurs outside the rainfall, temperature, and moisture conditions observed in other regions of endemicity. Our data thus suggest that peculiar environmental features, such as soil composition, might favor the multiplication of B. pseudomallei in northeast Brazil.  相似文献   

17.
Quantitative Fluorescence In Situ Hybridization of Microbial Communities in the Rumens of Cattle Fed Different Diets     
Yunhong Kong  Maolong He  Tim McAlister  Robert Seviour  Robert Forster 《Applied and environmental microbiology》2010,76(20):6933-6938
At present there is little quantitative information on the identity and composition of bacterial populations in the rumen microbial community. Quantitative fluorescence in situ hybridization using newly designed oligonucleotide probes was applied to identify the microbial populations in liquid and solid fractions of rumen digesta from cows fed barley silage or grass hay diets with or without flaxseed. Bacteroidetes, Firmicutes, and Proteobacteria were abundant in both fractions, constituting 31.8 to 87.3% of the total cell numbers. They belong mainly to the order Bacteroidales (0.1 to 19.2%), hybridizing with probe BAC1080; the families Lachnospiraceae (9.3 to 25.5%) and Ruminococcaceae (5.5 to 23.8%), hybridizing with LAC435 and RUM831, respectively; and the classes Deltaproteobacteria (5.8 to 28.3%) and Gammaproteobacteria (1.2 to 8.2%). All were more abundant in the rumen communities of cows fed diets containing silage (75.2 to 87.3%) than in those of cows fed diets containing hay (31.8 to 49.5%). The addition of flaxseed reduced their abundance in the rumens of cows fed silage-based diets (to 45.2 to 58.7%) but did not change markedly their abundance in the rumens of cows fed hay-based diets (31.8 to 49.5%). Fibrolytic species, including Fibrobacter succinogenes and Ruminococcus spp., and archaeal methanogens accounted for only a small proportion (0.4 to 2.1% and 0.2 to 0.6%, respectively) of total cell numbers. Depending on diet, between 37.0 and 91.6% of microbial cells specifically hybridized with the probes used in this study, allowing them to be identified in situ. The identities of other microbial populations (8.4 to 63.0%) remain unknown.The rumen is an anaerobic ecosystem used by herbivores to convert fibrous plant material into fermentation products that are in turn used as energy by the host. Fibrolytic degradation is accomplished by a complex microbial community which includes specialized fungi, protozoa, and bacteria (14). More than 200 bacterial species (5) have been isolated from rumen, and many of these have been phylogenetically and physiologically characterized. Several of these, including Fibrobacter succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens, have the ability to hydrolyze cellulose in axenic culture (24). Despite the presence of these fibrolytic populations, a large portion of the fiber in low-quality forage diets passes through the rumen undigested. In the rumen, fibrolytic bacteria do not digest plant cell walls in isolation but rather interact with a consortium of bacteria (18). Although culture-dependent studies have improved our understanding of rumen microbiology, the importance of the isolates to the structure and function of the rumen microbial community, with the possible exception of the fibrolytic strains, is still unknown. Expanding our knowledge of the structure and function of the rumen microbial community may provide insights into approaches to improve the efficiency of fiber digestion and biofuel production (14).To provide a high-resolution view of the population structure of the rumen bacterial community, we used quantitative fluorescence in situ hybridization (qFISH) to investigate the composition and distribution of bacterial populations associated with the liquid and solid rumen contents from 12 ruminally cannulated Holstein dairy cows (3 cows were used for each diet) fed (for at least 21 days) grass hay or barley silage diets with or without flaxseed (Table (Table1).1). Six new 16S rRNA-targeted FISH probes (Table (Table2)2) for not only the fibrolytic groups but also other unclassified bacterial groups in the rumen were designed, using ARB software (17), against the rumen 16S rRNA gene sequences (data not shown) retrieved from the Ribosomal Database Project (RDP) database (6). The new probes target Bacteroidales-related clones (probe BAC1080) (phylum Bacteroidetes), Lachnospiraceae- and Ruminococcaceae-related clones (probes LAC435 and RUM831, respectively) (phylum Firmicutes), Butyrivibrio fibrisolvens-related clones (probe BFI826), and R. albus- and R. flavefaciens-related clones (probes RAL1436 and RFL155, respectively).

TABLE 1.

Composition of diets used in this study
IngredientDiet composition (% dry weight)
Hay-based dietHay and flaxseed dietSilage-based dietSilage and flaxseed diet
Alfalfa grass hay (chopped)47.547.500
Barley silage0047.547.5
Steamed rolled barley grain47.532.547.532.5
Ground flaxseeds015015
Other5555
Open in a separate window

TABLE 2.

Oligonucleotide probes and their target populations used in this study for FISH analyses
Probe nameaTarget rRNADesigned target(s)% FAbReference
EUB338 (00159)16SDomain Bacteria0-5016
EUB338II (00160)16SPhylum Planctomycetes0-5016
EUB338III (00161)16SPhylum Verrucomicrobia0-5016
NONEUB (00243)16SControl probe complementary to EUB3380-5016
ALF968 (00021)16SClass Alphaproteobacteria, phylum Proteobacteria2016
BET42a (00034)23SClass Betaproteobacteria, phylum Proteobacteria3516
GAM42a (00174)23SClass Gammaproteobacteria, phylum Proteobacteria3516
SRB385 (00300)16SClass Deltaproteobacteria, phylum Proteobacteria3516
SRB385Db (00301)16SClass Deltaproteobacteria, phylum Proteobacteria3516
HGC69a (00182)23SPhylum Actinobacteria2516
GNSB941 (00718)16SPhylum Chloroflexi3516
CFX1223 (00719)16SPhylum Chloroflexi3516
SPIRO1400 (01004)16SSubgroup of family Spirochaetaceae2016
TM7-905 (00600)16SCandidate phylum TM72016
LGC354A (00195)16SPhylum Firmicutes3516
LGC354B (00196)16SPhylum Firmicutes3516
LGC354C (00197)16SPhylum Firmicutes3516
RUM83116SRumen clones in family Ruminococcaceae, phylum Firmicutes35This study
RAL143616SRuminococcus albus-related clones, phylum Firmicutes20This study
RFL15516SRuminococcus flavefaciens-related clones, phylum Firmicutes45This study
LAC43516SClones in family Lachnospiraceae, phylum Firmicutes35This study
BFI82616SButyrivibrio fibrisolvens-related clones, phylum Firmicutes35This study
BAC108016SClones in order Bacteroidales, phylum Bacteroidetes20This study
Fibr225 (00005)16SFibrobacter succinogenes-related clones, phylum Fibrobacteres20c16
ARCH915 (00027)16SDomain Archaea2016
Open in a separate windowaThe numbers in parentheses after the probe names represent the probe accession numbers in probeBase (16).bFA, formamide concentration used in the FISH buffer.cThe optimum formamide concentration for the probe was determined in this study.The optimal formamide concentrations (OFC) of the new probes used in FISH were assessed in different ways. Probes RUM831 and BAC1080 were assessed by using pure cultures of Ruminococcus and Prevotella strains with zero and one mismatch (Fig. (Fig.1)1) to the probes. The OFC of probes LAC435 and BFI826 were assessed using Clone-FISH (21) with zero and one mismatch 16S rRNA clone (Fig. (Fig.1)1) by following the procedure described previously (9, 10). The highest formamide concentration (tested in 5% stepwise increases) at which a clear fluorescent signal was observed with the reference bacterium or competent cells with zero mismatches after FISH probing, but not with bacteria or competent cells with one mismatch, was selected. The OFC of probes FIB225 (designed by Stahl et al. [23]), RFL155, and RAL1436 were assessed using only pure cultures of F. succinogenes, R. flavefaciens, and R. albus, respectively, all having perfect matches to each probe (Fig. (Fig.1).1). The highest formamide concentration (tested in 5% stepwise increases) at which a clear fluorescent signal was observed with the reference bacterium after FISH probing was selected. These probes were employed with other available probes (Table (Table2)2) chosen from probeBase (16) based on the alignment and classification of the 16S rRNA gene sequences retrieved from rumen communities.Open in a separate windowFIG. 1.Alignments of the probe sequences and their target sites and sequences of corresponding sites in reference bacteria or clones. The probe names in parentheses after the abbreviated names are according to Oligonucleotide Probe Database nomenclature (2). Only the nucleotides that are different from target sequences are shown. E, empty space; R., Ruminococcus; P., Prevotella; F., Fibrobacter.The digest samples from the top, bottom, and middle of the rumen were collected through a cannula, thoroughly mixed, and fractioned as liquid fraction (LiqF) and solid fraction (SolF). On-site, about 100 ml was transferred to a heavy-wall 250-ml beaker and squeezed using a Bodum coffee maker plunger (Bodum Inc., Triengen, Switzerland). The extruded liquid samples (containing the planktonic cells) were fixed in ethanol and paraformaldehyde (PFA) for FISH probing (3). The remaining liquid was discarded, and the squeezed particulate samples (used to collect particulate-attached cells) were washed with 100 ml phosphate buffer (5.23 g/liter K2HPO4, 2.27 g/liter KH2PO4, 3.00 g/liter NaHCO3, and 20 ml/liter 2.5% cysteine HCl) by stirring gently with a spatula, followed by squeezing again and decanting. Washed particulate samples (5 g) were then fixed for FISH as described above.After fixation, the particulate samples plus the fixation solution were transferred into a stomacher bag and “stomached” (Stomacher 400 Circulator, Seaward England) at 230 rpm for 6 min. Treated samples were then transferred into a clean 250-ml beaker and squeezed again. Microscopic examination of the squeezed residues after DAPI (4′,6-diamidino-2-phenylindole) staining (100 μl [0.003 mg/ml] for 10 min) showed only a few bacterial cells attached on the plant fibers, indicating that most bacterial cells had been “stomached” into the liquid (data not shown). To recover cells, filtrates were centrifuged (5,000 × g), and the cell pellet was washed three times with phosphate buffer before being used for FISH probing. On the day of sampling, each cow was sampled twice, at 1100 h and 1600 h. The liquid FISH samples obtained from the 3 cows fed with the same diet (at two different sampling times) were mixed, as were the particulate FISH samples, and used in qFISH analysis. FISH was carried out according to Amann (3). FISH was carried out on glass coverslips (24 by 60 mm) coated with gelatin (9). DAPI staining of biomass samples was carried out after FISH probing. FISH and DAPI images were captured with a Zeiss epifluorescence microscope (Zeiss PM III) equipped with a Canon 5D Mark II camera. Raw images captured randomly were transferred into gray TIF images and sharpened in Adobe Photoshop CS3. Cells stained with DAPI and hybridized to the probes were enumerated using the function provided in ImageJ (1). The percent compositions of these probe-defined groups (against all DAPI-stained cells in the same microscopic field) in the different fractions of rumen contents from cows fed different diets are presented in Table Table33.

TABLE 3.

Distribution and composition of FISH probe-defined groups in rumen microbial communities in cows fed with different diets
Probe-defined microbial groupComposition (mean value [%] ± SD)a
Hay-based diet
Hay and flaxseed diet
Silage-based diet
Silage and flaxseed diet
LiqFSolFLiqFSolFLiqFSolFLiqFSolF
BAC10809.6 ± 1.330.1 ± 0.0219.2 ± 3.714.2 ± 0.7214.2 ± 3.1118.8 ± 3.8814.4 ± 2.8916.7 ± 4.33
ALF9680.2 ± 0.020.2 ± 0.020.2 ± 0.030.2 ± 0.040.7 ± 0.141.5 ± 0.410.1 ± 0.010.1 ± 0.01
BET42a000.6 ± 0.011.2 ± 0.270.1 ± 0.01<0.10.4 ± 0.060.2 ± 0.04
GAM42a3.2 ± 0.534.4 ± 0.574.2 ± 0.764.5 ± 0.672.0 ± 0.321.2 ± 0.238.2 ± 1.235.3 ± 0.95
SRBmix5.8 ± 0.8811.6 ± 2.439.0 ± 1.5210.1 ± 2.5628.3 ± 4.4323.3 ± 4.547.7 ± 0.7813.2 ± 2.22
CHLmix1.7 ± 0.2700.5 ± 0.010 ± 00.2 ± 0.020.4 ± 0.070.1 ± 0.010.1 ± 0.02
SPIRO14000.5 ± 0.091.9 ± 0.321.7 ± 0.332.0 ± 0.211.4 ± 0.311.9 ± 0.330.4 ± 0.030.4 ± 0.07
TM7-9050.6 ± 0.080.8 ± 0.070.5 ± 0.010.1 ± 0.031.5 ± 0.230.2 ± 0.020.6 ± 0.020.3 ± 0.08
HGC69a1.3 ± 0.282.1 ± 0.310.3 ± 0.060.3 ± 0.050.4 ± 0.030.1 ± 0.020.5 ± 0.090.2 ± 0.02
RUM8315.5 ± 0.135.7 ± 0.895.8 ± 0.738.9 ± 1.3218.0 ± 4.1323.8 ± 3.115.6 ± 1.147.4 ± 1.32
RAL14360.4 ± 0.060.3 ± 0.030.2 ± 0.060.2 ± 0.030.3 ± 0.050.6 ± 0.090.7 ± 0.130.6 ± 0.12
RFL1550.7 ± 0.110.2 ± 0.030.3 ± 0.070.7 ± 0.190.1 ± 0.010.8 ± 0.110.5 ± 0.061.2 ± 0.34
LAC43525.5 ± 3.9810.0 ± 1.519.6 ± 1.3111.7 ± 1.6712.6 ± 2.5620.2 ± 3.239.3 ± 1.5116.1 ± 3.31
BFI8260.3 ± 0.060.4 ± 0.050.4 ± 0.060.7 ± 0.120.5 ± 0.050.3 ± 0.082.4 ± 0.370.2 ± 0.02
Fibr225000.2 ± 0.040.1 ± 0.020.8 ± 0.140.7 ± 0.140.4 ± 0.110.1 ± 0.04
ARCH9150.3 ± 0.080.2 ± 0.070.6 ± 0.010.3 ± 0.070.6 ± 0.090.1 ± 0.020.4 ± 0.050.4 ± 0.06
Total hybridizedb54.13752.443.780.991.64860.7
Otherc45.96347.656.319.18.45239.3
Open in a separate windowaThe two numbers represent the mean value (%) and the standard deviation of individual probe-defined microbial groups in a specified rumen digest fraction, which were calculated based on 3 mean values, each consisting of 20 enumerations.bThe numbers represent the sum of percentages of all individual probe-defined microbial groups in a specified rumen digest fraction. The percentages obtained with FISH probes RAL1436, RFL155, and BFI826 were not counted in the sum because the bacterial cells hybridizing with the former two probes also hybridized with RUM831, and the bacterial cells hybridizing with the last probe also hybridized with probe LAC435.cThe numbers represent the percentages of microorganisms which were not identified by FISH in a specified rumen digest fraction.We provided quantitative data by using qFISH to show that Bacteroidetes, Firmicutes, and Proteobacteria were abundant in both the LiqF and the SolF, constituting 31.8 to 87.3% of the total cell numbers. These FISH data add weight to the view that Firmicutes and Bacteroidetes might be dominant in rumens, as suggested previously from their high ratios retrieved from 16S rRNA clone libraries (e.g., see references 12, 26, and 27). However, information emerging from 16S rRNA gene clone library data cannot be used to reach conclusions on the quantitative composition of the rumen bacterial community. Bacteria may have 1 to 14 copies of rRNA genes, and several biases are known to be associated with their PCR amplification (8).These 3 dominant bacterial groups have been identified at a high-resolution level. They belong mainly to the order Bacteroidales (0.1 to 19.2%), hybridizing with probe BAC1080 (Fig. (Fig.22 A); the families Lachnospiraceae (9.3 to 25.5%) and Ruminococcaceae (5.5 to 23.8%), hybridizing with LAC435 (Fig. (Fig.2E)2E) and RUM831 (Fig. (Fig.2D),2D), respectively; and the classes Deltaproteobacteria (5.8 to 28.3%) and Gammaproteobacteria (1.2 to 8.2%), hybridizing with SRBmix (equal moles of SRB385 and SRB385Db) (Fig. (Fig.2C)2C) and GAM42a (Fig. (Fig.2B),2B), respectively. All were more abundant in the microbial communities in the rumens of cows fed diets containing silage (75.2 to 87.3%) than in those in the rumens of cows fed diets containing hay (31.8 to 49.5%). These results show how diets containing different forages (hay or silage) may influence the distribution of the microbial populations, which is in line with data by Tajima et al. (25). We also found in this study that the addition of flaxseed (to inhibit methane emission) reduced their abundance in the rumens of cows fed silage-based diets (to 45.2 to 58.7%) but did not change markedly their abundance in the rumens of cows fed hay-based diets (31.8 to 49.5%), suggesting that adding flaxseed to these diets also affected rumen microbial community composition, although the extent of its influence reflected the forage used, being more profound with a silage-based diet than when hay was used.Open in a separate windowFIG. 2.Images of digest samples from the rumens of cows fed hay- or silage-based diets with and without flaxseed after color combination. Images from probes are labeled in red, and those from DAPI staining are in green. The yellow (combination of red and green), including those partly colored cells in panels A to F, hybridized with probes BAC1080, GAM42a, SRBmix, RUM831, LAC435, and ARCH915, respectively. A few cells (arrows) hybridizing with SRBmix (C) were not stained by DAPI. Bars, 10 μm.We also present evidence here to suggest that Proteobacteria are common members of the microbial community, with sulfur-reducing bacteria (SRB) belonging to Deltaproteobacteria in particular being readily detected (up to 28% of the total cells) in both the LiqF and the SolF of rumen contents from cows fed the four different diets examined here. SRB have seldom been retrieved in clone libraries obtained from rumen samples. Lin et al. (15) have estimated SRB abundance in the rumen using DNA hybridization and concluded that they were of minor importance (0.7 to 0.8% of the total rRNA). Our estimates are much higher than those for every diet regime examined, possibly reflecting the coverage of the probes used in the two different studies. The probe mixture SRBmix used here targets most members of the Deltaproteobacteria, while those of Lin et al. (15) covered mainly members of the Desulfobacteraceae, Desulfovibrionaceae, and Desulfobulbaceae. We also recognized that the probe mixture SRBmix perfectly matched with the 16S rRNA genes of some bacteria other than SRB in Deltaproteobacteria. The possibility of overestimation of SRB cannot be ruled out. Interestingly, our data suggest that Gammaproteobacteria were abundant in some of the rumen communities we examined by FISH, comprising 1.2 to 8.2% of total cells.The other unexpected finding was that the fibrolytic bacteria and archaeal methanogens accounted for only a minor fraction of the communities. Of the three characterized fibrolytic bacterial species, F. succinogenes was not detected in the rumen digesta from cattle fed the hay-based diet but was present in the remainder of the diets. In contrast, R. albus and R. flavefaciens were present in both the LiqF and the SolF of the rumen digesta from cows fed all four diets. Although the importance of these bacteria within the rumen microbial community cannot be denied, these three populations accounted for only 0.7 to 2.1% of the total microbial cells. This numerical range compares well with that determined previously for F. succinogenes (0.1 to 6.9% of total rRNA) (4, 23) and Ruminococcus spp. (1.5 to 2.9% of total rRNA) (11), considering that different animals and diets were used in those studies and that different specificities of the probes and different detection methods were used. However, this is much lower than the 9% (of total rRNA) detected by Michalet-Doreau et al. (19) in their work. The abundance of fibrolytic B. fibrisolvens-related species was also low, being present at <1% in all fractions, except in the LiqF in cows fed the mixture of silage and flaxseed, where they contributed 2.4% of total cells.Methanogens hybridized to ARCH915 (Fig. (Fig.2F)2F) were present (0.1 to 0.6%) in all rumen samples examined by FISH, which is close to or within the range (0.3 to 3.3%) estimated in other studies (15, 22). Interestingly, no marked difference in abundance of the methanogens could be seen between the samples from the rumens of cows fed diets with flaxseed and those from the rumens of cows fed diets without flaxseed, although it has been reported (7) that the addition of fatty acids could decrease methane production in the rumen. This may be due to the presence of methanogens with different activities in different rumen samples or the inability of probe ARCH915 to hybridize to all methanogens in the rumen samples examined here.Bacteria belonging to Chloroflexi, TM7, Spirochetes, and Actinobacteria hybridizing with CHLmix, TM7-905, SPRO1400, and HGC69a, respectively, accounted for only a minor fraction of the total cell numbers observed. In most cases, their abundances in each fraction did not change markedly with diet, always being present in small numbers (0 to 1%), suggesting that they have a minor role there. This conclusion, however, has to be confirmed since many (8.4 to 63.0%, depending on diet) of the bacteria could not be identified in the rumens of cows fed with all diets except the silage-based diet (Table (Table33).FISH with the probes designed in this study failed to identify all of the bacterial cells. This is because the probes do not target all rumen 16S rRNA gene sequences and/or the true extent of rumen biodiversity has not been revealed from cloning analyses. This indicates that our current understanding of the quantitative composition of the rumen microbial community is far from complete. Moreover, no physiological data were generated in this study to suggest what the role(s) of most of the dominant populations (except the SRB hybridized with probe SRBmix) identified by FISH might be, meaning that it is still not possible to link their abundance to their in situ function. Furthermore, each FISH-probed population probably includes bacteria with different phenotypes. Clearly, much needs to be done before the structure and function of the rumen microbial community are fully understood.FISH is a useful tool in the investigation of microbial composition in complex ecosystems (3). However, FISH probes targeting rumen bacterial populations are limited. By comparison with other culture-independent methods, e.g., quantitative PCR, FISH has several advantages (8). In particular, in combination with histochemical staining methods (20) and microautoradiography (MAR-FISH) (13), the in situ ecophysiology of a targeted population can be determined under specified electron acceptor conditions. These techniques may provide important clues as to the functional role of microbial populations within complex communities, like that of the rumen. The possession of the FISH probes described in this paper could allow such studies to be undertaken in herbivore rumens.  相似文献   

18.
Identification of a Polyketide Synthase Coding Sequence Specific for Anatoxin-a-Producing Oscillatoria Cyanobacteria     
Sabrina Cadel-Six  Isabelle Iteman  Caroline Peyraud-Thomas  Stéphane Mann  Olivier Ploux  Annick Méjean 《Applied and environmental microbiology》2009,75(14):4909-4912
  相似文献   

19.
Impact of Viral Dose and Major Histocompatibility Complex Class IB Haplotype on Viral Outcome in Mauritian Cynomolgus Monkeys Vaccinated with Tat upon Challenge with Simian/Human Immunodeficiency Virus SHIV89.6P     
Aurelio Cafaro  Stefania Bellino  Fausto Titti  Maria Teresa Maggiorella  Leonardo Sernicola  Roger W. Wiseman  David Venzon  Julie A. Karl  David O'Connor  Paolo Monini  Marjorie Robert-Guroff  Barbara Ensoli 《Journal of virology》2010,84(17):8953-8958
The effects of the challenge dose and major histocompatibility complex (MHC) class IB alleles were analyzed in 112 Mauritian cynomolgus monkeys vaccinated (n = 67) or not vaccinated (n = 45) with Tat and challenged with simian/human immunodeficiency virus (SHIV) 89.6Pcy243. In the controls, the challenge dose (10 to 20 50% monkey infectious doses [MID50]) or MHC did not affect susceptibility to infection, peak viral load, or acute CD4 T-cell loss, whereas in the chronic phase of infection, the H1 haplotype correlated with a high viral load (P = 0.0280) and CD4 loss (P = 0.0343). Vaccination reduced the rate of infection acquisition at 10 MID50 (P < 0.0001), and contained acute CD4 loss at 15 MID50 (P = 0.0099). Haplotypes H2 and H6 were correlated with increased susceptibility (P = 0.0199) and resistance (P = 0.0087) to infection, respectively. Vaccination also contained CD4 depletion (P = 0.0391) during chronic infection, independently of the challenge dose or haplotype.Advances in typing of the major histocompatibility complex (MHC) of Mauritian cynomolgus macaques (14, 20, 26) have provided the opportunity to address the influence of host factors on vaccine studies (13). Retrospective analysis of 22 macaques vaccinated with Tat or a Tat-expressing adenoviral vector revealed that monkeys with the H6 or H3 MHC class IB haplotype were overrepresented among aviremic or controller animals, whereas macaques with the H2 or H5 haplotype clustered in the noncontrollers (12). More recently, the H6 haplotype was reported to correlate with control of chronic infection with simian immunodeficiency virus (SIV) mac251, regardless of vaccination (18).Here, we performed a retrospective analysis of 112 Mauritian cynomolgus macaques, which included the 22 animals studied previously (12), to evaluate the impact of the challenge dose and class IB haplotype on the acquisition and severity of simian/human immunodeficiency virus (SHIV) 89.6Pcy243 infection in 45 control monkeys and 67 monkeys vaccinated with Tat from different protocols (Table (Table11).

TABLE 1.

Summary of treatment, challenge dose, and outcome of infection in cynomolgus monkeys
Protocol codeNo. of monkeysImmunogen (dose)aAdjuvantbSchedule of immunization (wk)RoutecChallenged (MID50)Virological outcomee
Reference(s) or source
ACV
ISS-ST6Tat (10)Alum or RIBI0, 2, 6, 12, 15, 21, 28, 32, 36s.c., i.m.104114, 17
ISS-ST1Tat (6)None0, 5, 12, 17, 22, 27, 32, 38, 42, 48i.d.101004, 17
ISS-PCV3pCV-tat (1 mg)Bupivacaine + methylparaben0, 2, 6, 11, 15, 21, 28, 32, 36i.m.103006
ISS-ID3Tat (6)none0, 4, 8, 12, 16, 20, 24, 28, 39, 43, 60i.d.10111B. Ensoli, unpublished data
ISS-TR6Tat (10)Alum-Iscom0, 2, 6, 11, 16, 21, 28, 32, 36s.c., i.d., i.m.10420Ensoli, unpublished
ISS-TGf3Tat (10)Alum0, 4, 12, 22s.c.1503Ensoli, unpublished
ISS-TG3Tatcys22 (10)Alum1503Ensoli, unpublished
ISS-TG4Tatcys22 (10) + Gag (60)Alum1504Ensoli, unpublished
ISS-TG4Tat (10) + Gag (60)Alum1504Ensoli, unpublished
ISS-MP3Tat (10)H1D-Alum0, 4, 12, 18, 21, 38s.c., i.m.15021Ensoli, unpublished
ISS-MP3Tat (10)Alums.c.15003Ensoli, unpublished
ISS-GS6Tat (10)H1D-Alum0, 4, 12, 18, 21, 36s.c., i.m.15132Ensoli, unpublished
NCI-Ad-tat/Tat7Ad-tat (5 × 108 PFU), Tat (10)Alum0, 12, 24, 36i.n., i.t., s.c.15232Ensoli, unpublished
NCI-Tat9Tat (6 and 10)Alum/Iscom0, 2, 6, 11, 15, 21, 28, 32, 36s.c., i.d., i.m.1524312
ISS-NPT3pCV-tat (1 mg)Bupivacaine + methylparaben-Iscom0, 2, 8, 13, 17, 22, 28, 46, 71i.m.20003Ensoli, unpublished
ISS-NPT3pCV-tatcys22 (1 mg)Bupivacaine + methylparaben-Iscom0, 2, 8, 13, 17, 22, 28, 46, 71i.m.20111
    Total vaccinated67191731
        Naive11NoneNoneNAgNA10 or 15137
        Control34None, Ad, or pCV-0Alum, RIBI, H1D, Iscom or bupivacaine + methylparaben-Iscoms.c., i.d., i.n., i.t., i.m.10, 15, or 2051316
    Total controls4561623
    Total112253354
Open in a separate windowaAll animals were inoculated with the indicated dose of Tat plasmid DNA (pCV-tat [8], adenovirus-tat [Ad-tat] [27]) or protein, Gag protein, or empty vectors (pCV-0, adenovirus [Ad]) by the indicated route. Doses are in micrograms unless indicated otherwise.bAlum, aluminum phosphate (4); RIBI oil-in-water emulsions containing squalene, bacterial monophosphoryl lipid A, and refined mycobacterial products (4); Iscom, immune-stimulating complex (4); H1D are biocompatible anionic polymeric microparticles used for vaccine delivery (10, 12, 25a).cs.c., subcutaneous; i.m., intramuscular; i.d., intradermal; i.n., intranasal; i.t., intratracheal.dAll animals were inoculated intravenously with the indicated dose of the same SHIV89.6.Pcy243 stock.eAccording to the virological outcome upon challenge, monkeys were grouped as aviremic (A), controllers (C), or viremic (V).fBecause of the short follow-up, controller status could not be determined and all infected monkeys of the ISS-TG protocol were therefore considered viremic.gNA, not applicable.  相似文献   

20.
Sequences from Ancestral Single-Stranded DNA Viruses in Vertebrate Genomes: the Parvoviridae and Circoviridae Are More than 40 to 50 Million Years Old     
Vladimir A. Belyi  Arnold J. Levine  Anna Marie Skalka 《Journal of virology》2010,84(23):12458-12462
Vertebrate genomic assemblies were analyzed for endogenous sequences related to any known viruses with single-stranded DNA genomes. Numerous high-confidence examples related to the Circoviridae and two genera in the family Parvoviridae, the parvoviruses and dependoviruses, were found and were broadly distributed among 31 of the 49 vertebrate species tested. Our analyses indicate that the ages of both virus families may exceed 40 to 50 million years. Shared features of the replication strategies of these viruses may explain the high incidence of the integrations.It has long been appreciated that retroviruses can contribute significantly to the genetic makeup of host organisms. Genes related to certain other viruses with single-stranded RNA genomes, formerly considered to be most unlikely candidates for such contribution, have recently been detected throughout the vertebrate phylogenetic tree (1, 6, 13). Here, we report that viruses with single-stranded DNA (ssDNA) genomes have also contributed to the genetic makeup of many organisms, stretching back as far as the Paleocene period and possibly the late Cretaceous period of evolution.Determining the evolutionary ages of viruses can be problematic, as their mutation rates may be high and their replication may be rapid but also sporadic. To establish a lower age limit for currently circulating ssDNA viruses, we analyzed 49 published vertebrate genomic assemblies for the presence of sequences derived from the NCBI RefSeq database of 2,382 proteins from known viruses in this category, representing a total of 23 classified genera from 7 virus families. Our survey uncovered numerous high-confidence examples of endogenous sequences related to the Circoviridae and to two genera in the family Parvoviridae: the parvoviruses and dependoviruses (Fig. (Fig.11).Open in a separate windowFIG. 1.Phylogenetic tree of vertebrate organisms and history of ssDNA virus integrations. Times of integration of ancestral dependoviruses (yellow icosahedrons), parvoviruses (blue icosahedrons), and circoviruses (triangles) are approximate.The Dependovirus and Parvovirus genomes are typically 4 to 6 kb in length, include 2 major open reading frames (encoding replicase proteins [Rep and NS1, respectively] and capsid proteins [Cap and VP1, respectively]), and have characteristic hairpin structures at both ends (Fig. (Fig.2).2). For replication, these viruses depend on host enzymes that are recruited by the viral replicase proteins to the hairpin regions, where self-primed viral DNA synthesis is initiated (2). Circovirus genomes are typically ∼2-kb circles. DNA of the type species, porcine circovirus 1 (PCV-1), contains a stem-loop structure within the origin of replication (Fig. (Fig.2),2), and the largest open reading frame includes sequences that are homologous to the Parvovirus replicase open reading frame (9, 11). The circoviruses also depend on host enzymes for replication, and DNA synthesis is self-primed from a 3′-OH end formed by endonucleolytic cleavage of the stem-loop structure (4). The frequency of Dependovirus infection is estimated to be as high as 90% within an individual''s lifetime. None of the dependoviruses have been associated with human disease, but related viruses in the family Parvoviridae (e.g., erythrovirus B19 and possibly human bocavirus) are pathogenic for humans, and members of both the Parvoviridae and the Circoviridae can cause a variety of animal diseases (2, 4).Open in a separate windowFIG. 2.Schematics illustrating the structure and organization of Parvoviridae and Circoviridae genomes and origins of several of the longest-integrated ancestral viral sequences found in vertebrates. Integrations were aligned to the Dependovirus adeno-associated virus 2 (AAV2), the Parvovirus minute virus of mice (MVM), and the Circovirus porcine circovirus 1 (PCV-1). The inverted terminal repeat (ITR) sequences in the Dependovirus and Parvovirus genomes are depicted on an expanded scale. A linear representation of the circular genome of PCV-1 is shown with the 10-bp stem-loop structure on an expanded scale. Horizontal lines beneath the maps indicate the lengths of similar sequences that could be identified by BLAST. The numbers indicate the locations of amino acids in the viral proteins where the sequence similarities in the endogenous insertions start and end. The actual ancestral virus-derived integrated sequences may extend beyond the indicated regions.With some ancestral endogenous sequences that we identified, phylogenetic comparisons can be used to estimate age. For example, as a Dependovirus-like sequence is present at the same location in the genomes of mice and rats, the ancestral virus must have existed before their divergence, more than 20 million years ago. Some Circovirus- and Dependovirus-related integrations also predate the split between dog and panda, about 42 million years ago. However, in most other cases, we rely on an indirect method for estimating age (1). As genomic sequences evolve, they accumulate new stop codons and insertion/deletion-induced frameshifts. The rates of these events can be tied directly to the rates of neutral sequence drift and, therefore, the time of evolution. To apply this method, we first performed a BLAST search of vertebrate genomes for all known ssDNA virus proteins (BLAST options, -p tblastn -M BLOSUM62 -e 1e−4). Candidate sequences were then recorded, along with 5 kb of flanking regions, and then again aligned against the database of ssDNA viruses to find the most complete alignment (BLAST options, -t blastx -F F -w 15 -t 1500 -Z 150 -G 13 -E 1 -e 1e−2). Detected alignments were then compared with a neutral model of genome evolution, as described in the supplemental material, and the numbers of stop codons and frameshifts were converted into the expected genomic drift undergone by the sequences. The age of integration was then estimated from the known phylogeny of vertebrates (7, 10). Using these methods, we discovered that as many as 110 ssDNA virus-related sequences have been integrated into the 49 vertebrate genomes considered, during a time period ranging from the present to over 40 to 60 million years ago (Table (Table1;1; see also Tables S1 to S3 in the supplemental material).

TABLE 1.

Selected endogenous sequences in vertebrate genomes related to single-stranded DNA viruses
Virus group and vertebrate speciesInitial genomic search using TBLASTN
Best sequence homology identified using BLASTX
Predicted nucleotide drift (%)Integration labelAge (million yr) or timing of integration based on sequence aging
Chromosomal or scaffold locationProteinBLAST E value/% sequence identityMost similar virusaProteinCoordinatesNo. of stop codons/frameshifts
Circoviruses
    CatScaffold_62068Rep6E−05/37Canary circovirusRep4-2833/7 in 268 aab14.2fcECLG-182
Scaffold_24038Rep6E−06/51Columbid circovirusRep44-3174/5 in 231 aac15.2fcECLG-287
    DogChr5dRep7E−16/46Raven circovirusRep16-2636/5 in 250 aa17.6cfECLG-198
Chr22Rep1E−14/43Beak and feather disease virusRep7-2642/1 in 261 aac4.5cfECLG-254
    OpossumChr3Rep4E−46/44Finch circovirusRep2-2910/2 in 282 aa2.3mdECLG12
Cap6-360/0 in 30 aa
Dependoviruses
    DogChrXRep6E−05/55AAV5Rep239-4453/4 in 200 aa14.0cfEDLG-178
    DolphinGeneScaffold1475Rep8E−39/39Avian AAV DA1Rep79-4863/4 in 379 aac6.6ttEDLG-255
Cap4E−61/47Cap1-7384/7 in 678 aac
    ElephantScaffold_4Rep0/55AAV5Rep3-5890/0 in 579 aa0.0laEDLGRecent
    HyraxGeneScaffold5020Cap3E−34/53AAV3Cap485-7350/5 in 256 aa7.0pcEDLG-129
Scaffold_19252Rep9E−72/47Bovine AAVRep2-3488/4 in 348 aa14.3pcEDLG-260
    MegabatScaffold_5601Rep2E−13/31AAV2Rep315-4791/5 in 175 aa13.1pvEDLG-376
    MicrobatGeneScaffold2026Rep1E−117/50AAV2Rep1-6172/5 in 612 aa5.8mlEDLG-127
Cap9E−33/51Cap1-7312/9 in 509 aac
Scaffold_146492Cap6E−32/42AAV2Cap479-7320/3 in 252 aa4.2mlEDLG-219
    MouseChr1Rep2E−06/34AAV2Rep4-2063/5 in 191 aa17.1mmEDLG-139
Chr3Rep2E−24/31AAV5Rep71-47812/7 in 389 aa16.5mmEDLG-237
Cap2E−22/45Cap22-72412/10 in 649aac
Chr8Rep1E−08/46AAV2Rep314-4733/3 in 147 aa13.8mmEDLG-331
Cap1-1371/2 in 114 aa
    PandaScaffold2359Rep2E−06/37Bovine AAVRep238-4262/3 in 186 aa10.4amEDLG-159
    PikaScaffold_9941Rep4E−14/28AAV5Rep126-4152/2 in 282 aa5.4opEDLG14
    PlatypusChr2Rep9E−10/35Bovine AAVRep297-4374/3 in 138 aa17.1oaEDLG-179
Cap272-4191/2 in 150 aac
Contig12430Rep2E−09/47Bovine AAVRep353-4503/1 in 123 aa12.0oaEDLG-255
Cap2E−05/32Cap253-3672/1 in 116 aa
    RabbitChr10Rep3E−97/39AAV2Rep1-6193/9 in 613 aa9.3ocEDLG43
Cap5E−50/45Cap1-72310/9 in 675 aa
    RatChr13Rep2E−09/33AAV2Rep4-1752/4 in 177 aa13.3rnEDLG-128
Chr2Rep4E−18/40AAV5Rep1-46112/12 in 454 aa22.7rnEDLG-251
Chr19Rep2E−07/33AAV5Rep329-4642/4 in 136 aa16.1rnEDLG-335
Cap31-1332/1 in 93 aa
    TarsierScaffold_178326Rep4E−14/23AAV5Rep96-4652/3 in 356 aa5.3tsEDLG23
Parvoviruses
    Guinea pigScaffold_188Rep3E−24/46Porcine parvovirusRep313-5675/3 in 250 aa12.3cpEPLG-140
Cap1E−16/36Cap10-68911/12 in 672 aa
Scaffold_27Rep1E−50/39Canine parvovirusRep11-6401/4 in 616 aa5.3cpEPLG-217
Cap1E−38/39Porcine parvovirusCap3-7192/14 in 700 aa
    TenrecScaffold_260946Rep2E−20/38LuIII virusRep406-5984/4 in 190 aa19.0etEPLG-260
Cap11-63916/15 in 595 aa
    RatChr5Rep6E−10/56Canine parvovirusRep1-2820/0 in 312 aa0.6rnEPLGRecent
Cap0/62Cap637-6670/2 in 760 aa
Rep0/631-751
    OpossumChr3Rep2E−39/33LuIII virusRep7-57011/3 in 502 aa10.9mdEPLG-256
Cap7E−8/33Cap11-72914/7 in 704 aa
Chr6Rep6E−58/44Porcine parvovirusRep16-5633/7 in 534 aac4.6mdEPLG-324
Cap6E−60/38Cap10-7152/5 in 707 aac
    WallabyScaffold_108040Rep4E−74/62Canine parvovirusRep341-6450/0 in 287 aa1.3meEPLG-37
Cap8E−37/32Cap35-7380/4 in 687 aa
Scaffold_72496Rep2E−61/42Porcine parvovirusRep23-5674/3 in 531 aa5.7meEPLG-630
Cap2E−31/38Cap10-5326/4 in 514 aa
Scaffold_88340Rep7E−37/55Mouse parvovirus 1Rep344-5660/3 in 223 aa6.7meEPLG-1636
Cap7E−22/33Cap11-7136/9 in 700 aa
Open in a separate windowaSome ambiguity in choosing the most similar virus is possible. We generally used the alignment with the lowest E value in the BLAST results. However, one or two points in the exponent of an E value were sometimes sacrificed to achieve a longer sequence alignment.baa, amino acids.cThese sequences have long insertions compared to the present-day viruses. In all cases tested, these insertions originated from short interspersed elements (SINEs). These insertions were excluded from the counts of stop codons and frameshifts and the estimation of integration age.dChr, chromosome.It is important to recognize that there is an intrinsic limit on how far back in time we can reach to identify ancient endogenous viral sequences. First, the sequences must be identified with confidence by BLAST or similar programs. This requirement places a lower limit on sequence identity at about 20 to 30% of amino acids, or about 75% of nucleotides (nucleotides evolve nearly 2.5 times slower than the amino acid sequence they encode). Second, the related, present-day virus must have evolved at a rate that is not much higher than that of the endogenous sequences. The viruses for which ancestral endogenous sequences were identified in this study exhibit sequence drift similar to that associated with mammalian genomes. Setting this rate at 0.14% per million years of evolution (8), we arrive at 90 million years as the theoretical limit for the oldest sequences that can be identified using our methods. This limit drops to less than 35 million years for endogenous viral sequences in rodents and even lower for sequences related to viruses that evolve faster than mammalian genomes.The most widespread integrations found in our survey are derived from the dependoviruses. These include nearly complete genomes related to adeno-associated virus (AAV) in microbat, wallaby, dolphin, rabbit, mouse, and baboon (Fig. (Fig.2).2). We did not detect inverted terminal repeats in several integrations tested, even though repeats are common in the present-day dependoviruses. This result could be explained by sequence decay or the absence of such structures in the ancestral viruses. However, we do see sequences that resemble degraded hairpin structures to which Dependovirus Rep proteins bind, with an example from microbat integration mlEDLG-1 shown in Fig. Fig.3.3. The second most widespread endogenous sequences are related to the parvoviruses. They are found in 6 of 49 vertebrate species considered, with nearly complete genomes in rat, opossum, wallaby, and guinea pig (Fig. (Fig.22).Open in a separate windowFIG. 3.Hairpin structure of the inverted terminal repeat of adeno-associated virus 2 (left) and a candidate degraded hairpin structure located close to the 5′ end of the mlEDLG-1 integration in microbats (right). Structures and mountain plots were generated using default parameters of the RNAfold program (5), with nucleotide coloring representing base-pairing probabilities: blue is below average, green is average, and red is above average. Mountain plots represent hairpin structures based on minimum free energy (mfe) calculations and partition function (pf) calculations, as well as the centroid structure (5). Height is expressed in numbers of nucleotides; position represents nucleotide.The Dependovirus AAV2 has strong bias for integration into human chromosome 19 during infection, driven by a host sequence that is recognized by the viral Rep protein(s). Rep mediates the formation of a synapse between viral and cellular sequences, and the cellular sequences are nicked to serve as an origin of viral replication (14). The related integrations in mice and rats, located in the same chromosomal locations, might be explained by such a mechanism. However, the extent of endogenous sequence decay and the frequency of stop codons indicate that these integrations occurred some 30 to 35 million years ago, implying that they are derived from a single event in a rodent ancestor rather than two independent integration events at the same location. Similarly, integrations EDLG-1 in dog and panda lie in chromosomal regions that can be readily aligned (based on University of California—Santa Cruz [UCSC] genome assemblies) and show sequence decay consistent with the age of the common ancestor, about 42 million years. Endogenous sequences related to the family Parvoviridae can thus be traced to over 40 million years back in time, and viral proteins related to this family have remained over 40% conserved.Sequences related to circoviruses were detected in five vertebrate species (Table (Table11 and Table S1 in the supplemental material). At least one of these sequences, the endogenous sequence in opossum, likely represents a recent integration. Several integrations in dog, cat, and panda, on the other hand, appear to date from at least 42 million years ago, which is the last time when pandas and dogs shared a common ancestor. We see evidence for this age in data from sequence degradation (Table (Table1),1), phylogenetic analyses of endogenous Circovirus-like genomes (see Fig. S2 in the supplemental material), and genomic synteny where integration ECLG-3 is surrounded by genes MTA3 and ARID5A in both dog and panda and integration ECLG-2 lies 35 to 43 kb downstream of gene UPF3A. In fact, Circovirus integrations may even precede the split between dogs and cats, about 55 million years ago, although the preliminary assembly and short genomic contigs for cats make synteny analysis impossible.The most common Circovirus-related sequences detected in vertebrate genomes are derived from the rep gene. We speculate that, like those of the Parvoviridae, the ancestral Circoviridae sequences might have been copied using a primer sequence in the host DNA that resembled the viral origin and was therefore recognized by the virus Rep protein. Higher incidence of rep gene identifications may represent higher conservation of this gene with time, or alternatively, possession of these sequences may impart some selective advantage to the host species. The largest Circovirus-related integration detected, in the opossum, comprises a short fragment of what may have been the cap gene immediately adjacent to and in the opposite orientation from the rep gene. This organization is similar to that of the present day Circovirus genome in which these genes share a promoter in the hairpin regions but are translated in opposite directions (Fig. (Fig.22).In summary, our results indicate that sequences derived from ancestral members of the families Parvoviridae and Circoviridae were integrated into their host''s genomes over the past 50 million years of evolution. Features of their replication strategies suggest mechanisms by which such integrations may have occurred. It is possible that some of the endogenous viral sequences could offer a selective advantage to the virus or the host. We note that rep open reading frame-derived proteins from some members of these families kill tumor cells selectively (3, 12). The genomic “fossils” we have discovered provide a unique glimpse into virus evolution but can give us only a lower estimate of the actual ages of these families. However, numerous recent integrations suggest that their germ line transfer has been continuing into present times.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号