首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of some new chelating agents on the cadmium burden of CHO cells in culture were investigated. The chelators were sodium-N-(4-methoxybenzyl)-D-glucamine-dithiocarbamate (MeOBG-DTC), sodium-N-benzyl-D-glucaminedithiocarbamate (BG-DTC) and di-isopropylmeso-2,3-dimercapto succinate (DiP-DMSA). The results were compared with the effect of the well known dimercaptopropanol (BAL).The derivates of dithiocarbamate are much less toxic than DiP-DMSA and BAL. All chelators effectively prevent Cd uptake into the cells. Mobilization of intracellular Cd, however, is more effective by the DTC-derivatives than by DiP-DMSA or BAL. Within the cell the major fraction of Cd after 48 hours incubation is found in the nuclei and cytosol and very little in the peroxisomes. The chelating agents remove the metal mostly from nuclei and cytosol. Incubation of the cells with cadmium leads to the induction of a Cd binding protein of an apparent molecular weight of 12500 Da, presumably metallothionein. MeOBG-DTC is more effective in removing the metal from this protein than BG-DTC.Abbreviations MeOBG-DTC Na-N(4-methoxybenzyl)-D-glucaminedithiocarbamate - BG-DTC Na-N-benzyl-D-glucaminedithiocarbamate - DiP-DMSA di-isopropyl-2,3-dimercaptosuccinate - BAL 2,3-dimercaptopropane-1-o1 - Da dalton - MEM minimum essential medium - IU international units - FBS fetal bovine serum - CD unbroken cells and debris - N nuclei - ML mitochondria, and lysosomes - P peroxisomes - HMW high molecular weight - MT metallothionein  相似文献   

2.
Recent research indicates that cadmium (Cd) induces oxidative damage in cells; however, the mechanism of the oxidative stress induced by this metal is unclear. We investigated the effects of Cd on the individual complexes of the electron transfer chain (ETC) and on the stimulation of reactive oxygen species (ROS) production in mitochondria. The activity of complexes II (succinate:ubiquinone oxidoreductase) and III (ubiquinol:cytochrome c oxidoreductase) of mitochondrial ETC from liver, brain, and heart showed greater inhibition by Cd than the other complexes. Cd stimulated ROS production in the mitochondria of all three tissues mentioned above. The effect of various electron donors (NADH, succinate, and 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinol) on ROS production was tested separately in the presence and in the absence of Cd. ESR showed that complex III might be the only site of ROS production induced by Cd. The results of kinetic studies and electron turnover experiments suggest that Cd may bind between semiubiquinone and cytochrome b566 of the Q0 site of cytochrome b of complex III, resulting in accumulation of semiubiquinones at the Q0 site. The semiubiquinones, being unstable, are prone to transfer one electron to molecular oxygen to form superoxide, providing a possible mechanism for Cd-induced generation of ROS in mitochondria.  相似文献   

3.
Clemens S 《Biochimie》2006,88(11):1707-1719
  相似文献   

4.
The vascular endothelium as a target of cadmium toxicity   总被引:4,自引:0,他引:4  
Cadmium (Cd) is an important industrial and environmental pollutant that can produce a wide variety of adverse effects in humans and animals. A growing volume of evidence indicates that the vascular endothelium may be one of the primary targets of Cd toxicity in vivo. Studies over the past 20 years have shown that Cd, at relatively low, sublethal concentrations, can target vascular endothelial cells at a variety of molecular levels, including cell adhesion molecules, metal ion transporters and protein kinase signaling pathways. The purpose of this review is to summarize the results of these recent studies and to discuss the implications of these findings with regard to the mechanisms of Cd toxicity in specific organs including the lung, liver, kidney, testis and heart. In addition the possible roles of the vascular endothelium in mediating the tumor promoting and anticarcinogenic effects of Cd are discussed.  相似文献   

5.
Ehrlich ascites tumor cells accumulate cadmium against a concentration gradient in a bisphasic uptake process. There is little efflux of the metal from preloaded cells into a cadmium-free medium. Incorporation of 3H-thymidine into DNA is markedly inhibited by cadmium ion at 5-100 ng atoms of Cd/mg of cell protein, but uptake of the nucleoside label into cells is not depressed in this concentration range. Cell respiration is much less affected by cadmium ion despite the sensitivity of isolated mitochondria to the metal. Model experiments using several cadmium complexes with known conditional formation constants show that bovine heart mitochondria have strong affinity for cadmium ion. The contrast between this result and the resistance of cells to respiratory inhibition with cadmium ion is discussed to illustrate the difficulty in relating in vitro studies to the cell. The behavior of cadmium ion with the Ehrlich cell is compared with data for zinc ion to reveal similarities in inhibition of nucleoside metabolism and respiration but a sharp difference in transport properties.  相似文献   

6.
Accumulation of cadmium in the liver was demonstrated by X-ray microanalysis in every type of experiment, i.e. after injecting Cd into the ligated intestine and after the peroral acute single and combined, subchronic and chronic administration of Cd. Half an hour after its injection, Cd was localized diffusely in the liver; one hour after injection its increased accumulation in the cells caused generalized changes in the endoplasmic reticulum, mitochondria and nuclei. In acute and chronic peroral tests, the hepatocytes of the intermedial and peripheral zone of the lobes were the main storage region. After an acute dose of Cd, the cells in the centrolobular zone were hydropic, or single-cell necrosis developed; after the longer effect of combined doses the latter was manifested as centrolobular focal necrosis. Cd was not demonstrated in the lesions. Chronic administration did not lead to manifest severe degenerative changes in the liver. Accretions in the mitochondria and on the membranes of the endoplasmic reticulum were identified by means of X-ray analysis with cadmium peaks. Cadmium showed up clearly as L alpha- and L beta-lines at 3.135-3.320 keV. We presume that cadmium is bound in the ribosomes of the endoplasmic reticulum, as well as the mitochondria, and is released by the invagination of swelling mitochondria of the peripheral hepatocytes into Disse's spaces.  相似文献   

7.
8.
Cadmium absorption and transportation pathways in plants   总被引:1,自引:0,他引:1  
Controlling the uptake, transport, translocation, and accumulation of excessive amounts of cadmium from polluted environments is critical for plants and, consequently, humans with regard to food safety. Plants adopt various cellular and molecular mechanisms to minimize Cd toxicity. Upon exposure to Cd, plants initially implement avoidance strategies, such as production of organic acids, chelation, and sequestration, to prevent metal access to root cells. Nevertheless, Cd can be transported through the roots, stems, and leaves via apoplastic and symplastic pathways. These processes have been controlled by specific sites at the root surface and root cortex, in cells responsible for loading the root xylem, at the transition between the vascular systems of the root and the shoot, and in connecting tissues and cells at the stem. Although resistance to heavy metal cadmium can be achieved by either avoidance or tolerance, genetic basis to tolerance is therefore implied, in that these mechanisms are heritable attributes of tolerant mutants or genotypes.  相似文献   

9.
Accumulation and effects of cadmium were investigated in Chironomus thummi larvae exposed to 10, 100 and 250 mug radiolabeled Cd/1 for up to 4 days. (1) After 4 days, average cadmium accumulation was 6.6 ng Cd/mg dry weight (10 mug Cd/1 exposure) and 177 ng Cd/mg dry weight (250 mug Cd/1 exposure). (2) Dissection studies showed that by 32 hr of exposure to both cadmium concentrations, 63.5-81.4% of accumulated cadmium was confined to the posterior midgut epithelium. Light microscope autoradiography similarly showed accumulations of cadmium in posterior midgut epithelium and smaller amounts in fat body and muscle. Little cadmium was associated with Malphigian tubules, haemocoel, anterior midgut or exoskeleton. (3) After exposure to 10 or 250 mug Cd/1, 60-75% of cadmium in ultracentrifuged homogenates of whole animals or dissected guts was associated with the resulting supernatant. When supernatants were further analyzed by gel chromatography, cadmium eluted with both a high and low molecular weight peak. The relative proportions of cadmium in the two peaks varied with concentration and length of exposure. (4) Transmission electron microscopy of posterior midgut cells from animals exposed to cadmium demonstrated frequent mitochondrial lesions. Exposure to high cadmium concentrations caused some posterior midgut cells to undergo generalized structural degeneration.  相似文献   

10.
S Xu  H Pi  Y Chen  N Zhang  P Guo  Y Lu  M He  J Xie  M Zhong  Y Zhang  Z Yu  Z Zhou 《Cell death & disease》2013,4(3):e540
Mitochondria are critical targets in the hepatotoxicity of cadmium (Cd). Abnormal mitochondrial dynamics have been increasingly implicated in mitochondrial dysfunction in pathophysiological conditions. Therefore, our study aimed to investigate the effects and underlying mechanism of Cd on mitochondrial dynamics during hepatotoxicity. In the L02 liver cell lines, 12 μM cadmium chloride (CdCl2) exposure induced excessive mitochondrial fragmentation as early as 3 h post-treatment with Cd, which preceded the mitochondrial dysfunction such as reactive oxygen species (ROS) overproduction, mitochondrial membrane potential (ΔΨm) loss and ATP reduction. Concurrent to mitochondrial fragmentation, CdCl2 treatment increased the protein levels of dynamin-related protein (Drp1) and promoted the recruitment of Drp1 into mitochondria. Strikingly, mitochondrial fragmentation also occurred in the liver tissue of rats exposed to CdCl2, accompanied by enhanced recruitment of Drp1 into mitochondria. Moreover, in L02 cells, Drp1 silencing could effectively reverse Cd-induced mitochondrial fragmentation and mitochondrial dysfunction. Furthermore, the increased expression and mitochondrial recruitment of Drp1 were tightly related to the disturbance of calcium homeostasis, which could be prevented by both chelating [Ca2+]i and inhibiting [Ca2+]m uptake. Overall, our study indicated that Cd induced Drp1-dependent mitochondrial fragmentation by disturbing calcium homeostasis to promote hepatotoxicity. Manipulation of Drp1 may be the potential avenue for developing novel strategies to protect against cadmium-induced hepatotoxicity.  相似文献   

11.
The aim of this study was to determine the cadmium-induced immunohistochemical and morphological changes in the renal cortex of adult male rats exposed to high doses of cadmium for 30 d. Animals used as controls received a standard diet and water ad libitum. The animals used for this study received 15 ppm CdCl2 in their drinking water for 1 mo. The mean arterial pressure (MAP), the mean blood Cd level, and the mean tissue Cd content were significantly higher when compared to controls (p < 0.01). Immunohistochemical studies demonstrated a weak labeling to type IV collagen and laminin, but a strong labeling to fibronectin in the renal cortex of the Cd-treated animals when compared to controls. The ultrastructural alterations found in Cd-treated rats were a diminution in the amount of filtration slits, increased fusion of foot processes in epithelial cells of the glomeruli, increase of lysosomal structures and pinocytic vesicles as well as large mitochondria in proximal tubule cells, and degenerated cells in distal tubules. Additionally, the glomerular basement membrane was slightly thickened. In conclusion, cadmium toxicity results in alterations in the renal extracellular matrix and tubular or glomerular cells, which could play an important role in renal dysfunction.  相似文献   

12.
Metallothioneins and resistance to cadmium poisoning in Drosophila cells   总被引:5,自引:0,他引:5  
Toxicity of cadmium on Drosophila cell lines has been studied. Maximal tolerance for cadmium chloride is 10 microM. Metallothioneins are induced in Drosophila cells following cadmium addition. A stable cadmium resistant cell line (Cd R200) has been selected starting from the haploid D clone. The Cd R200 cells are diploid and display metallothionein levels 22 times higher than cells of the original line fully induced with cadmium. The 200 microM CdCl2 tolerance upper limit in Cd R200 line is overcome if L-cysteine is supplemented to the medium. It is thus possible, in the presence of 5 mM L-cysteine, to select cells able to resist 800 microM CdCl2. These cells produce 4 times more metallothioneins than Cd R200 cells.  相似文献   

13.
The current concept of radiobiology posits that damage to the DNA in the cell nucleus is the primary cause for the detrimental effects of radiation. However, emerging experimental evidence suggests that this theoretical framework is insufficient for describing extranuclear radiation effects, particularly the response of the mitochondria, an important site of extranuclear, coding DNA. Here, we discuss experimental observations of the effects of ionizing radiation on the mitochondria at (1) the DNA and (2) functional levels. The roles of mitochondria in (3) oxidative stress and (4) late radiation effects are discussed. In this review, we summarize the current understanding of targets for ionizing radiation outside the cell nucleus. Available experimental data suggest that an increase in the tumoricidal efficacy of radiation therapy might be achievable by targeting mitochondria. Likewise, more specific protection of mitochondria and its coding DNA should reduce damage to healthy cells exposed to ionizing radiation.  相似文献   

14.
微生物镉解毒机制及微生物-植物互作修复研究进展   总被引:1,自引:1,他引:0  
镉(cadmium,Cd)是引起粮食减产的主要金属之一,具有高溶解性及高迁移性,易被植物吸收和积累。微生物长期在镉胁迫的条件下进化出一系列的镉解毒机制。微生物对镉的解毒包括抑制Cd(Ⅱ)的进入、促进Cd(Ⅱ)的外排,以及将进入胞内的Cd(Ⅱ)进行“扣押”。微生物的Cd(Ⅱ)钝化是通过细胞吸附和胞外沉淀将游离态的Cd(Ⅱ)进行钝化,这类微生物具有较强的土壤镉污染治理潜力。本文主要介绍微生物的镉解毒机制、微生物-微生物互作、微生物-植物互作机制及其在镉污染生物修复中应用的最新研究进展。  相似文献   

15.
Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants   总被引:30,自引:0,他引:30  
Using the examples of cadmium and lead, the review considers the various toxic effects exerted by these heavy metals. Putative specific and nonspecific mechanisms of the toxic effects of the heavy metals and plant responses are discussed together with the issue of Cd and Pb accumulation in various plant organelles, cells, tissues, and organs. The basic mechanisms providing for plant resistance to excess Cd and Pb are elucidated. These data are used to schematically outline the changes in plant metabolism produced by these heavy metals.  相似文献   

16.
Humans are frequently exposed to combinations of lead (Pb), cadmium (Cd) and Arsenic (As) but there is a paucity of actual data on the molecular effects of these agents at low dose levels. The present factorial design studies were undertaken in rats to examine the effects of these agents at LOEL dose levels on a number of molecular parameters of oxidative stress in hematopoietic and renal organ systems following oral exposure in drinking water at 30, 90 and 180 day time points. Results of these studies demonstrated dynamic, time-dependent alterations in both molecular targets and inducible oxidative stress protective systems in target cell populations. In general, cellular protective systems, which protected against oxidative damage at the 90 day time point, appeared to be finite such that molecular manifestations of oxidative stress became statistically significant at the 180 day time point for several of the combination exposure groups. These data demonstrate the importance of duration of exposure in assessing the toxic potential of Pb, Cd and As mixtures at low dose levels.  相似文献   

17.
The present study was undertaken to determine the effect of cadmium (Cd) on the antioxidant status of the yeast Saccharomyces cerevisiae. S. cerevisiae serves as a good eukaryotic model system for the study of the molecular mechanisms of oxidative stress. We investigated the adaptative response of S. cerevisiae exposed to Cd. Yeast cells could tolerate up to 100 microM Cd and an inhibition in the growth and viability was observed. Exposure of yeast cells to Cd showed an increase in malondialdehyde and glutathione. The activities of catalase, superoxide dismutase and glutathione peroxidase were also high in Cd-exposed cells. The incorporation of Cd led to significant increase in iron, zinc and inversely the calcium, copper levels were reduced. The results suggest that antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumably, these enzymes are essential for counteracting the pro-oxidant effects of Cd.  相似文献   

18.
19.
Microtubule-Targeting Agents (MTAs) constitute a class of drugs largely used for cancer treatment in adults and children. In cancer cells, they suppress microtubule dynamics, and induce cell death via the mitochondrial intrinsic pathway. To date, links between mitochondria and microtubule network disturbance in MTAs mechanism of action are not obvious. The aim of the present contribution is to provide elements that could answer to the question: how far are mitochondria essential to anticancer chemotherapy that targets the microtubule cytoskeleton? We review the main molecular candidates to link microtubule alteration with the apoptotic mitochondrial pathway control. Involvement of direct targeting of mitochondria in MTA efficacy is also discussed. Furthermore, we line up current evidence and emerging concepts on the participation of both mitochondria and microtubule in MTA neurotoxic side effects. To decipher the interconnections between the mitochondrial and the microtubule networks may help to improve cancer cell response to chemotherapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号