首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent evidences highlight the importance of mitochondria-nucleus communication for the clinical phenotype of oxidative phosphorylation (OXPHOS) diseases. However, the participation of small non-coding RNAs (sncRNAs) in this communication has been poorly explored. We asked whether OXPHOS dysfunction alters the production of a new class of sncRNAs, mitochondrial tRNA fragments (mt tRFs), and, if so, whether mt tRFs play a physiological role and their accumulation is controlled by the action of mt tRNA modification enzymes. To address these questions, we used a cybrid model of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), an OXPHOS disease mostly caused by mutation m.3243A>G in the mitochondrial tRNALeu(UUR) gene. High-throughput analysis of small-RNA-Seq data indicated that m.3243A>G significantly changed the expression pattern of mt tRFs. A functional analysis of potential mt tRFs targets (performed under the assumption that these tRFs act as miRNAs) indicated an association with processes that involve the most common affected tissues in MELAS. We present evidences that mt tRFs may be biologically relevant, as one of them (mt i-tRF GluUUC), likely produced by the action of the nuclease Dicer and whose levels are Ago2 dependent, down-regulates the expression of mitochondrial pyruvate carrier 1 (MPC1), promoting the build-up of extracellular lactate. Therefore, our study underpins the idea that retrograde signaling from mitochondria is also mediated by mt tRFs. Finally, we show that accumulation of mt i-tRF GluUUC depends on the modification status of mt tRNAs, which is regulated by the action of stress-responsive miRNAs on mt tRNA modification enzymes.  相似文献   

2.
The mutation 3243A-->G is the most common heteroplasmic pathogenic mitochondrial DNA (mtDNA) mutation in humans, but it is not understood why the proportion of this mutation decreases in blood during life. Changing levels of mtDNA heteroplasmy are fundamentally related to the pathophysiology of the mitochondrial disease and correlate with clinical progression. To understand this process, we simulated the segregation of mtDNA in hematopoietic stem cells and leukocyte precursors. Our observations show that the percentage of mutant mtDNA in blood decreases exponentially over time. This is consistent with the existence of a selective process acting at the stem cell level and explains why the level of mutant mtDNA in blood is almost invariably lower than in nondividing (postmitotic) tissues such as skeletal muscle. By using this approach, we derived a formula from human data to correct for the change in heteroplasmy over time. A comparison of age-corrected blood heteroplasmy levels with skeletal muscle, an embryologically distinct postmitotic tissue, provides independent confirmation of the model. These findings indicate that selection against pathogenic mtDNA mutations occurs in a stem cell population.  相似文献   

3.
The mutation rate of the human mtDNA deletion mtDNA4977.   总被引:3,自引:1,他引:2       下载免费PDF全文
The human mitochondrial mutation mtDNA4977 is a 4,977-bp deletion that originates between two 13-bp direct repeats. We grew 220 colonies of cells, each from a single human cell. For each colony, we counted the number of cells and amplified the DNA by PCR to test for the presence of a deletion. To estimate the mutation fate, we used a model that describes the relationship between the mutation rate and the probability that a colony of a given size will contain no mutants, taking into account such factors as possible mitochondrial turnover and mistyping due to PCR error. We estimate that the mutation rate for mtDNA4977 in cultured human cells is 5.95 x 10(-8) per mitochondrial genome replication. This method can be applied to specific chromosomal, as well as mitochondrial, mutations.  相似文献   

4.
5.
It is widely held that changes in the distribution of mutant mtDNAs underlie the progressive nature of mtDNA diseases, but there are few data documenting such changes. We compared the levels of 3243 A-->G mutant mtDNA in blood at birth from Guthrie cards and at the time of diagnosis in a blood DNA sample from patients with mitochondrial encephalopathy, lactic acidosis, and strokelike episodes (MELAS) syndrome. Paired blood DNA samples separated by 9-19 years were obtained from six patients with MELAS. Quantification of mutant load, by means of a solid-phase minisequencing technique, demonstrated a decline (range 12%-29%) in the proportion of mutant mtDNA in all cases (P=.0015, paired t-test). These results suggest that mutant mtDNA is slowly selected from rapidly dividing blood cells in MELAS.  相似文献   

6.
The mutation rate in the human mtDNA control region   总被引:18,自引:0,他引:18       下载免费PDF全文
The mutation rate of the mitochondrial control region has been widely used to calibrate human population history. However, estimates of the mutation rate in this region have spanned two orders of magnitude. To readdress this rate, we sequenced the mtDNA control region in 272 individuals, who were related by a total of 705 mtDNA transmission events, from 26 large Icelandic pedigrees. Three base substitutions were observed, and the mutation rate across the two hypervariable regions was estimated to be 3/705 =.0043 per generation (95% confidence interval [CI].00088-.013), or.32/site/1 million years (95% CI.065-.97). This study is substantially larger than others published, which have directly assessed mtDNA mutation rates on the basis of pedigrees, and the estimated mutation rate is intermediate among those derived from pedigree-based studies. Our estimated rate remains higher than those based on phylogenetic comparisons. We discuss possible reasons for-and consequences of-this discrepancy. The present study also provides information on rates of insertion/deletion mutations, rates of heteroplasmy, and the reliability of maternal links in the Icelandic genealogy database.  相似文献   

7.
The neurological manifestations of sleeping sickness in man are attributed to the penetration of the blood-brain barrier (BBB) and invasion of the central nervous system by Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. However, how African trypanosomes cross the BBB remains an unresolved issue. We have examined the traversal of African trypanosomes across the human BBB using an in vitro BBB model system constructed of human brain microvascular endothelial cells (BMECs) grown on Costar Transwell inserts. Human-infective T. b. gambiense strain IL 1852 was found to cross human BMECs far more readily than the animal-infective Trypanosoma brucei brucei strains 427 and TREU 927. Tsetse fly-infective procyclic trypomastigotes did not cross the human BMECs either alone or when coincubated with bloodstreamform T. b. gambiense. After overnight incubation, the integrity of the human BMEC monolayer measured by transendothelial electrical resistance was maintained on the inserts relative to the controls when the endothelial cells were incubated with T. b. brucei. However, decreases in electrical resistance were observed when the BMEC-coated inserts were incubated with T. b. gambiense. Light and electron microscopy studies revealed that T. b. gambiense initially bind at or near intercellular junctions before crossing the BBB paracellularly. This is the first demonstration of paracellular traversal of African trypanosomes across the BBB. Further studies are required to determine the mechanism of BBB traversal by these parasites at the cellular and molecular level.  相似文献   

8.
The manifestations of Lyme disease, caused by Ixodes spp. tick-transmitted Borrelia burgdorferi, range from skin infection to bloodstream invasion into the heart, joints and nervous system. The febrile infection human granulocytic anaplasmosis is caused by a neutrophilic rickettsia called Anaplasma phagocytophilum, also transmitted by Ixodes ticks. Previous studies suggest that co-infection with A. phagocytophilum contributes to increased spirochetal loads and severity of Lyme disease. However, a common link between these tick-transmitted pathogens is dissemination into blood or tissues through blood vessels. Preliminary studies show that B. burgdorferi binds and passes through endothelial barriers in part mediated by host matrix metalloproteases. Since neutrophils infected by A. phagocytophilum are activated to release bioactive metalloproteases and chemokines, we examined the enhanced B. burgdorferi transmigration through vascular barriers with co-infection in vitro. To test whether endothelial transmigration is enhanced with co-infection, B. burgdorferi and A. phagocytophilum-infected neutrophils were co-incubated with EA.hy926 cells (HUVEC-derived) and human brain microvascular endothelial cells in Transwell cultures. Transmigration of B. burgdorferi through endothelial cell barriers was determined and endothelial barrier integrity was measured by transendothelial electrical resistivity. More B. burgdorferi crossed both human BMEC and EA.hy926 cells in the presence of A. phagocytophilum-infected neutrophils than with uninfected neutrophils without affecting endothelial cell integrity. Such a mechanism may contribute to increased blood and tissue spirochete loads.  相似文献   

9.
Blood–brain barrier (BBB) disruption constitutes a hallmark event during pathogen‐mediated neurological disorders such as bacterial meningitis. As a prevalent opportunistic pathogen, Staphylococcus aureus (SA) is of particular interest in this context, although our fundamental understanding of how SA disrupts the BBB is very limited. This paper employs in vitro infection models to address this. Human brain microvascular endothelial cells (HBMvECs) were infected with formaldehyde‐fixed (multiplicity of infection [MOI] 0–250, 0–48 hr) and live (MOI 0–100, 0–3 hr) SA cultures. Both Fixed‐SA and Live‐SA could adhere to HBMvECs with equal efficacy and cause elevated paracellular permeability. In further studies employing Fixed‐SA, infection of HBMvECs caused dose‐dependent release of cytokines/chemokines (TNF‐α, IL‐6, MCP‐1, IP‐10, and thrombomodulin), reduced expression of interendothelial junction proteins (VE‐Cadherin, claudin‐5, and ZO‐1), and activation of both canonical and non‐canonical NF‐κB pathways. Using N‐acetylcysteine, we determined that these events were coupled to the SA‐mediated induction of reactive oxygen species (ROS) within HBMvECs. Finally, treatment of HBMvECs with Fixed‐ΔSpA (MOI 0–250, 48 hr), a gene deletion mutant of Staphylococcal protein A associated with bacterial infectivity, had relatively similar effects to Newman WT Fixed‐SA. In conclusion, these findings provide insight into how SA infection may activate proinflammatory mechanisms within the brain microvascular endothelium to elicit BBB failure.  相似文献   

10.
11.
Eighty-nine index patients from 85 families were defined as having Leber hereditary optic neuropathy (LHON) by the presence of one of the mtDNA mutations at positions 11778 (66 families), 3460 (8 families), or 14484 (11 families). There were 62 secondary cases. Overall, 64% of index cases had a history of similarly affected relatives. The ratios of affected males to affected females were 3.7:1 (11778), 4.3:1 (3460), and 7.7:1 (14484). The 95th centile for age at onset of symptoms was close to 50 years in index, secondary, male, and female patients. There were no differences in the distributions of age at onset between different mutation groups, between index and secondary cases, or between males and females, apart from this being slightly later in all female patients than in male 11778 patients. There was no significant correlation between age at onset in index cases and that in their affected siblings or cousins. Heteroplasmy (< 96% mutant mtDNA) was detected in 4% of affected subjects (67%-90% mutant mtDNA) and in 13.6% of 140 unaffected relatives (< 5%-90% mutant mtDNA). Analysis of all pedigrees, excluding sibships < 50 years of age and index cases, indicated recurrence risks of 30%, 8%, 46%, 10%, 31%, and 6%, respectively, to the brothers, sisters, nephews, nieces, and male and female matrilineal first cousins of index cases. Affected females were more likely to have affected children, particularly daughters, than were unaffected female carriers. The pedigree data were entirely compatible with the previously proposed X-linked susceptibility locus, with a gene frequency of .08, penetrance of .11 in heterozygous females, and 40% of affected females being homozygous, the remainder being explained by heterozygosity and disadvantageous X inactivation.  相似文献   

12.
Many pathogenic mitochondrial DNA mutations are heteroplasmic, with a mixture of mutated and wild-type mtDNA present within individual cells. The severity and extent of the clinical phenotype is largely due to the distribution of mutated molecules between cells in different tissues, but mechanisms underpinning segregation are not fully understood. To facilitate mtDNA segregation studies we developed assays that measure m.3243A>G point mutation loads directly in hundreds of individual cells to determine the mechanisms of segregation over time. In the first study of this size, we observed a number of discrete shifts in cellular heteroplasmy between periods of stable heteroplasmy. The observed patterns could not be parsimoniously explained by random mitotic drift of individual mtDNAs. Instead, a genetically metastable, heteroplasmic mtDNA segregation unit provides the likely explanation, where stable heteroplasmy is maintained through the faithful replication of segregating units with a fixed wild-type/m.3243A>G mutant ratio, and shifts occur through the temporary disruption and re-organization of the segregation units. While the nature of the physical equivalent of the segregation unit remains uncertain, the factors regulating its organization are of major importance for the pathogenesis of mtDNA diseases.  相似文献   

13.
The key aspect of neonatal meningitis is related to the ability of pathogens to invade the blood–brain barrier (BBB) and to penetrate the central nervous system. In the present study we show that, in an in vitro model of BBB, on the basis of co‐culturing primary bovine brain endothelial cells (BBEC) and primary bovine retinal pericytes (BRPC), Escherichia coli infection determines changes of transendothelial electrical resistance (TEER) and permeability (Pe) to sodium fluorescein. In the co‐culture model, within BBEC, bacteria are able to stimulate cytosolic and Ca2+‐independent phospholipase A2 (cPLA2 and iPLA2) enzyme activities. In supernatants of E. coli‐stimulated co‐cultures, an increase in prostaglandins (PGE2) and VEGF production in comparison with untreated co‐cultures were found. Incubation with E. coli in presence of AACOCF3 or BEL caused a decrease of PGE2 and VEGF release. SEM and TEM images of BBEC and BRPC showed E. coli adhesion to BBEC and BRPC but only in BBEC the invasion occurs. VEGFR‐1 but not VEGFR‐2 blockade by the specific antibody reduced E. coli invasion in BBEC. In our model of BBB infection, a significant loss of BRPC was observed. Following VEGFR‐1, but not VEGFR‐2 blockade, or in presence of AACOCF3 or BEL, elevated TEER values, reducedpermeability and BRPC loss were found. These data suggest that VEGFR‐1 negatively regulates BRPC survival and its blockade protects the barrier integrity. PGs and VEGF could exert a biological effect on BBB, probably by BRPC coverage ablation, thus increasing BBB permeability. Our results show the role played by the BBEC as well as BRPC during a bacterial attack on BBB. A better understanding of the mechanisms by which E. coli enter the nervous system and how bacteria alter the communication between endothelial cells and pericytes may provide exciting new insight for clinical intervention.  相似文献   

14.
The blood brain barrier (BBB) is essential for insulation of the nervous system from the surrounding environment. In Drosophila melanogaster, the BBB is maintained by septate junctions formed between subperineurial glia (SPG) and requires the Moody/G protein-coupled receptor (GPCR) signaling pathway. In this study, we describe novel specialized actin-rich structures (ARSs) that dynamically form along the lateral borders of the SPG cells. ARS formation and association with nonmuscle myosin is regulated by Moody/GPCR signaling and requires myosin activation. Consistently, an overlap between ARS localization, elevated Ca(2+) levels, and myosin light chain phosphorylation is detected. Disruption of the ARS by inhibition of the actin regulator Arp2/3 complex leads to abrogation of the BBB. Our results suggest a mechanism by which the Drosophila BBB is maintained by Moody/GPCR-dependent formation of ARSs, which is supported by myosin activation. The localization of the ARSs close to the septate junctions enables efficient sealing of membrane gaps formed during nerve cord growth.  相似文献   

15.
The pathomechanisms underlying oxidative phosphorylation (OXPHOS) diseases are not well-understood, but they involve maladaptive changes in mitochondria-nucleus communication. Many studies on the mitochondria-nucleus cross-talk triggered by mitochondrial dysfunction have focused on the role played by regulatory proteins, while the participation of miRNAs remains poorly explored. MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) is mostly caused by mutation m.3243A>G in mitochondrial tRNALeu(UUR) gene. Adverse cardiac and neurological events are the commonest causes of early death in m.3243A>G patients. Notably, the incidence of major clinical features associated with this mutation has been correlated to the level of m.3243A>G mutant mitochondrial DNA (heteroplasmy) in skeletal muscle. In this work, we used a transmitochondrial cybrid model of MELAS (100% m.3243A>G mutant mitochondrial DNA) to investigate the participation of miRNAs in the mitochondria-nucleus cross-talk associated with OXPHOS dysfunction. High-throughput analysis of small-RNA-Seq data indicated that expression of 246 miRNAs was significantly altered in MELAS cybrids. Validation of selected miRNAs, including miR-4775 and miR-218-5p, in patient muscle samples revealed miRNAs whose expression declined with high levels of mutant heteroplasmy. We show that miR-218-5p and miR-4775 are direct regulators of fetal cardiac genes such as NODAL, RHOA, ISL1 and RXRB, which are up-regulated in MELAS cybrids and in patient muscle samples with heteroplasmy above 60%. Our data clearly indicate that TGF-β superfamily signaling and an epithelial-mesenchymal transition-like program are activated in MELAS cybrids, and suggest that down-regulation of miRNAs regulating fetal cardiac genes is a risk marker of heart failure in patients with OXPHOS diseases.  相似文献   

16.
Cardiomyopathy is a frequent cause of morbidity and mortality in patients carrying the A3243G transition in the mitochondrial DNA (mtDNA) tRNALeu(UUR) gene, the most common heteroplasmic single mtDNA defect. We used phosphorus magnetic resonance spectroscopy (31P-MRS) to look for evidence of an in vivo bioenergetics defect in patients carrying the A3243G mtDNA mutation with and without echocardiographic signs of left ventricle hypertrophy (LVH). Eight patients, three with LVH, carrying the A3243G mtDNA mutation and 10 healthy subjects underwent one-dimensional chemical shift imaging 31P-MRS. In the patients, mean cardiac phosphocreatine to adenosine triphosphate ratio (PCr/ATP) (1.55 +/- 0.58) was significantly reduced compared to the control group (2.34 +/- 0.14; P < 0.001). Cardiac PCr/ATP was within the normal range only in one case that showed normal echocardiography. Our results point to a central role of bioenergetics deficit in the development of cardiac hypertrophy in patients with the A3243G mtDNA mutation. Impaired cardiac energy metabolism in patients with normal echocardiography suggests that the enhancement of mitochondrial function may be beneficial not only to patients with cardiac hypertrophy but also to those patients carrying the mutation in the absence of signs of cardiac hypertrophy and/or dysfunction but with cardiac bioenergetics deficit.  相似文献   

17.
18.
α-Tocopherol (αTocH), a member of the vitamin E family, is essential for normal neurological function. Despite the importance of αTocH transport into the CNS, transfer mechanisms across the blood–brain barrier (BBB) are not entirely clear. We here investigate whether afamin, a known αTocH-binding protein, contributes to αTocH transport across an in vitro model of the BBB consisting of primary porcine brain capillary endothelial cells (BCEC) and basolaterally cultured astrocytoma cells. Exogenously added afamin had no adverse effects on BCEC viability or barrier function and was transported across BCEC Transwell cultures. Furthermore, αTocH transport across polarized BCEC cultures to astrocytoma cells is facilitated by afamin, though to a lesser extent than by high-density lipoprotein-mediated transport, an essential and in vivo operating αTocH import pathway at the cerebrovasculature. We also demonstrate that porcine BCEC endogenously synthesize afamin. In line with these in vitro findings, afamin was detected by immunohistochemistry in porcine, human postmortem, and mouse brain, where prominent staining was observed almost exclusively in the cerebrovasculature. The demonstration of afamin mRNA expression in isolated brain capillaries suggests that afamin might be a new family member of binding/transport proteins contributing to αTocH homeostasis at the BBB in vivo .  相似文献   

19.

Background

Due to the use of organophosphates (OP) as pesticides and the availability of OP-type nerve agents, an effective medical treatment for OP poisonings is still a challenging problem. The acute toxicity of an OP poisoning is mainly due to the inhibition of acetylcholinesterase (AChE) in the peripheral and central nervous systems (CNS). This results in an increase in the synaptic concentration of the neurotransmitter acetylcholine, overstimulation of cholinergic receptors and disorder of numerous body functions up to death. The standard treatment of OP poisoning includes a combination of a muscarinic antagonist and an AChE reactivator (oxime). However, these oximes can not cross the blood-brain barrier (BBB) sufficiently. Therefore, new strategies are needed to transport oximes over the BBB.

Methodology/Principal Findings

In this study, we combined different oximes (obidoxime dichloride and two different HI 6 salts, HI 6 dichloride monohydrate and HI 6 dimethanesulfonate) with human serum albumin nanoparticles and could show an oxime transport over an in vitro BBB model. In general, the nanoparticulate transported oximes achieved a better reactivation of OP-inhibited AChE than free oximes.

Conclusions/Significance

With these nanoparticles, for the first time, a tool exists that could enable a transport of oximes over the BBB. This is very important for survival after severe OP intoxication. Therefore, these nanoparticulate formulations are promising formulations for the treatment of the peripheral and the CNS after OP poisoning.  相似文献   

20.
In order to improve the predictive accuracy of impedance cardiac output, the relationship between blood resistance, chemistry, and hematocrit was examined. Blood samples from sixty-three intensive care (ICU) patients was analyzed for hematocrit, sodium, bicarbonate, urea, total protein, albumin, glucose, and pH, and the electrical resistance of the sample was measured. Multiple regression analysis produced a statistically significant model with resistance as the dependant variable, and the exponent of the hematocrit (Exp[Hct]), pH and blood urea as the independent variables. This study therefore suggests that the accuracy of resistance prediction can be improved by incorporating pH and urea into the resistivity equation. It is to be expected that this in turn will improve the accuracy of impedance cardiac output estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号